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Abstract: Porous films of metals and metal oxides exhibit larger surface areas and higher reactivities
than those of dense films. Therefore, they have gained growing attention as potential materials for use
in various applications. This study reports the use of a modified direct current magnetron sputtering
method to form porous Zn-ZnO composite films, wherein a subsequent wet post-oxidation process is
employed to fabricate pure porous ZnO films. The porous Zn-ZnO composite films were initially
formed in clusters, and evaluation of their resulting properties allowed the optimal conditions to
be determined. An oxygen ratio of 0.3% in the argon gas flow resulted in the best porosity, while a
process pressure of 14 mTorr was optimal. Following deposition, porous ZnO films were obtained
through rapid thermal annealing in the presence of water vapor, and the properties and porosities
of the obtained films were analyzed. An oxidation temperature of 500 ◦C was optimal, with an
oxidation time of 5 min giving a pure ZnO film with 26% porosity. Due to the fact that the films
produced using this method are highly reliable, they could be employed in applications that require
large specific surface areas, such as sensors, supercapacitors, and batteries.

Keywords: zinc oxide; porous film; post-oxidation; DC magnetron sputtering; oxidation mechanism

1. Introduction

Unlike conventional films, porous films contain pores between their component
particles and can be fabricated using both metals and metal oxides. Due to the fact that
porous films exhibit larger surface areas and higher reactivities than those of dense films,
they have gained growing attention as potential materials for use in various fields, such as
energy storage and conversion, catalysis, and sensors [1–9].

For example, porous zinc oxide films are known to possess excellent semiconduc-
tor properties with wide band gaps (i.e., ~3.37 eV), thereby rendering them suitable for
application in gas sensors. More specifically, metal oxide semiconductor-based gas sen-
sors are particularly desirable due to their good stability, superior selectivity, and fast
reaction/recovery rates [10–12]. Porous zinc oxide films are also n-type semiconductor
materials and, thus, are suitable for use in solar cells [13], photocatalysts [14], varistors,
and electrodes. They are relatively inexpensive and are easy to fabricate in various forms,
such as nanorods, nanoflakes, and nanofibers [15–17].

The ZnO nanoparticles used for the preparation of pure porous ZnO films are com-
monly obtained through wet methods, such as hydrothermal, ball milling, sol–gel, and
co-precipitation methods [18–21]. Among them, the sol–gel method is most commonly
used because of its simplicity, despite the fact that it is environmentally less desirable.

Alternatively, dry fabrication methods can also be considered, including the gas
evaporation/condensation, aerosol [22], and sputtering routes [23]. However, the first two
methods are not applicable for metals with high melting points and are particularly costly,
while the aerosol method involves a higher safety risk and greater maintenance costs due
to the high pressures required during its operation. In contrast, the sputtering method is
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eco-friendly compared to the above-mentioned wet methods and allows a high degree
of freedom regarding the deposition materials and substrates employed. It was therefore
selected for use in the current study to fabricate pure porous ZnO films.

Compared with the vapor–liquid–solid process, the vapor–solid process, the metal–
organic chemical vapor deposition route [24–27], and vapor phase methods such as solution
formation [28–30], the wet post-oxidation method is advantageous for the preparation of
nanostructures via oxidation routes since it allows efficient process control and reduces
pollution through lower energy consumption. In addition, the nanostructures formed
using this method tend to exhibit a high plasticity and excellent adhesion to the cor-
responding substrate [31]. However, a number of studies have demonstrated that the
mass production of ZnO nanostructures is difficult under a dry oxygen atmosphere, with
water vapor playing an important role in the oxidation process to produce the desired
nanostructures [32,33].

Thus, we herein report the use of a modified direct current (DC) magnetron sputtering
method to form porous Zn-ZnO composite films, wherein a subsequent wet post-oxidation
process is employed to fabricate pure porous ZnO films. More specifically, following the
formation of porous Zn-ZnO composite films in clusters using various pressures and O2
ratios, the deposition thicknesses, particle sizes, and porosities of the obtained films are
measured. Subsequently, porous ZnO films are fabricated through rapid thermal annealing
(RTA) in a water vapor environment, and the changes in the properties and porosities as a
function of the heat treatment time and temperature are analyzed. Finally, the oxidation
mechanism responsible for the formation of these pure porous ZnO films is examined.

2. Materials and Methods

Figure 1 shows a schematic diagram of the modified DC magnetron sputtering system
used to form the porous Zn-ZnO composite films, wherein the system is divided into two
independent upper and lower parts. As indicated, using this process, plasma is formed
in the upper chamber and Zn particles are sputtered at the target, which is located in
the lower chamber. As the sputtered zinc particles lose energy through contact with the
cooling system on the upper chamber wall and diffuse into the lower chamber, they collide
with one another to form clusters of various sizes. During this process, a small amount
of O2 is introduced to oxidize the Zn particles and form composite films containing Zn
and ZnO. For the purpose of this study, a zinc target with a purity of 99.99% was used,
and the distance between the target and the substrate was 18 cm. In addition, the flow rate
of Ar gas was 10 sccm, while O2 gas was injected at a ratio of 0–0.7% relative to Ar. The
experiment was performed at a process pressure range of 7–20 mTorr, and the substrates
were deposited for 60 min at 150 W. The temperature of the chiller was maintained at 20 ◦C.
Dry-oxidized Si wafers with a thickness of 2000 Å were used as the deposition substrates.

The deposited porous Zn-ZnO composite films were subjected to wet post-oxidation
using an RTA instrument under a water vapor atmosphere to form the pure porous ZnO
films. The experiment was conducted at a range of temperatures (i.e., 400–600 ◦C, N.B.
melting point of Zn = 420 ◦C) and reaction times (i.e., 5–30 min). N2 gas was used as the
carrier gas and was introduced through a bubbler at a flow rate of 0.7 L/min to supply
water vapor into the chamber for oxidation. The conditions used for the deposition and
heat treatment process are summarized in Table 1.
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Figure 1. Schematic diagram of the modified DC magnetron sputtering system used in this study [34].

Table 1. Summary of the experimental parameters used in this study for fabrication of the porous zinc oxide thin films.

Deposition

Variable
Parameters

Operating pressure (mTorr) 7–28
Gas ratio (O2, %) 0–0.7

Fixed
Parameters

Chiller temperature (◦C) 20
Deposition time (min) 60

Power (W) 150
Argon flow rate (sccm) 10

Oxidation

Variable
Parameters

Oxidation temperature (◦C) 400–600
Oxidation time (min) 5–30

Fixed
Parameters

Gas species N2 + H2O
Carrier gas flow rate (LPM) 0.7

The geometric shapes and deposition rates of the fabricated porous Zn-ZnO composite
films and the pure porous ZnO films were observed using surface and cross-sectional
scanning electron microscopy (SEM) imaging (Nova Nano 450, ThermoFisher, Waltham,
MA, USA), respectively, while the types and relative amounts of the constituting phases
were determined by X-ray diffraction (XRD, D2 Phaser, Bruker Co., Billerica, MA, USA).
The porosity of each film was determined by initially measuring its mass before and after
deposition using a high-precision electronic scale (EX225/AD, OHAUS Co., Parsippany,
NJ, USA) with a resolution of up to 10−5 g and then comparing the obtained values with
the bulk density of zinc oxide (5.61 g/cm3). The density of porous ZnO films could be
calculated by dividing the measured mass of the films by the product of the deposition
area and the average thickness of the films. The porosity of ZnO films could be obtained
by using Equation (1).

Porosity of ZnO film(%) =
Bulk density of ZnO − Density of ZnO film

Bulk density of ZnO
× 100 (1)
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3. Results and Discussion

Figure 2 shows the changes in the surface SEM images and XRD patterns of the porous
Zn and Zn-ZnO composite films with variation in the O2 ratio relative to Ar. The pure
porous Zn film fabricated by injecting only Ar gas into the system exhibited a porosity of
about 40% but showed poor substrate adhesion and low reliability. Following the addition
of O2 gas to the Ar stream, porous Zn-ZnO composite films were obtained that exhibited
improved adhesion properties and a superior reliability while maintaining the porosity
of the original Zn film. Figure 2a shows the changes in the particle size and distribution
as a function of the O2 ratio. As the O2 ratio was increased, the particle size increased,
and the porosity decreased, indicating a tendency of increasing density. The XRD results
presented in Figure 2b show a strong Zn peak when Ar gas alone was employed, whereas
both Zn and ZnO were present when the O2 ratio was ≥0.3%. However, at an O2 ratio
of ≥0.5%, dense films were obtained, and so a ratio of 0.3% was selected to maintain the
optimal porosity. Compared to the pure porous Zn films, the Zn-ZnO composite films were
thought to have relatively superior adhesion to the substrate through the results of 3M
tape, scratch, and gas injection tests.
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Figure 2. (a) Surface SEM images and (b) XRD patterns of the formed Zn and ZnO films upon variation in the O2 ratio.

Figure 3 shows the variations in the film deposition rate and ZnO peak ratio upon
altering the O2 ratio relative to Ar. The ZnO peak ratio could be obtained by using
Equation (2). In the equation, the ZnO peak area is obtained by integrating the region
around ZnO (100) peak in the XRD pattern. Similarly, the Zn peak area is the value
calculated from the Zn (101) XRD peak.

ZnO peak ratio(%) =
ZnO peak area

ZnO peak area + Zn peak area
(2)

More specifically, in an oxygen-free atmosphere, the deposition rate was 40 nm/min,
while at O2 ratios of 0.3% and 0.7%, the rate dropped to 29 and 5 nm/min, respectively. This
reduction in the deposition rate with increasing O2 ratios was attributed to the increased
number of ZnO particles suppressing the formation of Zn clusters. In addition, due to the
fact that the ZnO particles were expected to have a higher mobility on the substrate surface
compared to the Zn clusters, the film porosity decreased at higher O2 ratios. Furthermore,
the film with a higher ZnO peak area ratio was obtained at a higher O2 ratio as zinc and
oxygen could be easily combined.
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Figure 4 shows the surface SEM images and XRD patterns obtained upon variation
in the process pressure at the optimized O2 ratio of 0.3%. More specifically, Figure 4a
illustrates the changes in the particle size and distribution at each pressure. Based on these
observations, it appeared that the porosity decreased as the process pressure increased,
and this was attributed to the fact that contact with oxygen became more likely at higher
pressures, thereby promoting the formation of the highly mobile ZnO on the substrate
surface and increasing the film density. As shown in the XRD measurement results in
Figure 4b, a film containing both Zn and ZnO was formed even at a deposition pressure of
7 mTorr, although the peak intensity of the Zn component was significantly higher. As the
pressure was increased, the peak intensity of the Zn component decreased, whereas that
corresponding to ZnO increased, thereby implying an increased amount of ZnO formation.
This observation indicates that higher process pressures generate greater quantities of gas
in the plasma, thereby increasing the probability of interactions between Zn and O2 and
resulting in a greater amount of ZnO.
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Figure 4. (a) Surface SEM images and (b) XRD patterns of the formed Zn and ZnO films upon variation in the
process pressure.

Figure 5 illustrates the change in the deposition rate and ZnO peak ratio upon variation
in the process pressure at a constant O2 ratio of 0.3%. As indicated, the deposition rate
was lower at higher pressures, likely because the number of collisions between particles
increased, which reduced the kinetic energy of particles and, in turn, the number of



Materials 2021, 14, 6112 6 of 11

particles reaching the substrate. Densification caused by the increased formation of ZnO
particles under high pressures was also considered to play a role in this decrease in the
deposition rate. The ZnO peak ratio increased with the increase in pressure. The ratio
reached almost 100% at a pressure of 28 mTorr. The increase in the collision between
particles could enhance the bonding of zinc and oxygen, which have higher energy.
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Figure 6 shows the SEM images and XRD patterns of the films fabricated through the
wet post-oxidation treatment of the porous Zn-ZnO composite films at various oxidation
temperatures, which were prepared at an O2 ratio of 0.3% and a process pressure of
14 mTorr. More specifically, Figure 6a shows the changes in the particle size and distribution
upon variation in the oxidation temperature. As indicated, similar results were obtained
between 450 and 500 ◦C, but the particle size started to increase with decreasing porosity
at 550 ◦C, while at 600 ◦C, the particle size increased significantly. Figure 6b shows the
corresponding XRD results, which indicate the presence of a Zn peak at temperatures up
to 450 ◦C and the presence of a peak corresponding to the pure porous ZnO at 500 ◦C. As
the oxidation temperature was increased, the intensity of the ZnO peak also increased.
This was attributed to the fact that oxidation treatment at a high temperature weakened
the bonding in the Zn clusters and facilitated the reaction with the incoming water vapor
to form ZnO, resulting in overall oxidation [31,32]. For the oxidation reaction to proceed
to a point where no residual Zn was present, an oxidation temperature of >500 ◦C was
required. However, for the purpose of this study, an oxidation temperature of 500 ◦C was
selected to minimize the decrease in porosity caused by the coarsening of particles with
increasing temperature.

Figure 7 shows the SEM images and XRD patterns of the optimized Zn-ZnO composite
films with respect to the oxidation time under a wet post-oxidation temperature of 500 ◦C.
More specifically, Figure 7a shows the changes in the particle size and distribution upon
variation in the oxidation time, wherein it can be seen that the grain size increased due to
the merging of adjacent grains over time. Based on the XRD results presented in Figure 7b,
an oxidation time of 5 min was considered sufficient to obtain a pure porous ZnO film,
since a shorter time led to highly porous ZnO films.
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Based on the above results, the optimized conditions for the wet post-oxidation
process were taken as an oxidation temperature of 500 ◦C and an oxidation time of 5 min.
Figure 8 shows the changes in the SEM images and XRD patterns with variation in the
deposition pressure following the optimized wet post-oxidation process for the Zn-ZnO
composite films. More specifically, Figure 8a shows the surfaces of the obtained films,
wherein upon comparison with the images shown in Figure 4a, no significant differences
in the surface shape were observed, and the pore structure was almost maintained. The
density and porosity were also calculated and were found to range from 4.15 to 4.33 g/cm3

and from 23% to 26%, respectively. The cross-section SEM images are shown in Figure 8b,
in which the observed thicknesses were used to calculate the density and porosity values in
Figure 8a. Furthermore, Figure 8c shows the XRD patterns obtained at the various process
pressures, wherein it is apparent that under all conditions examined, a pure porous ZnO
film was obtained. Based on these results, we fabricated Zn-ZnO composite films under a
process pressure of 14 mTorr and an O2 ratio of 0.3%, followed by wet oxidation at 500 ◦C
for 5 min to obtain ideal porous ZnO films.
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Finally, Figure 9 shows the mechanism by which a porous Zn-ZnO composite film is
oxidized to yield a pure porous ZnO film. More specifically, in stage 1, the Zn and ZnO
clusters are deposited together to form a porous structure. In stage 2, the wet post-oxidation
process is conducted at 500 ◦C, which is higher than the melting point of Zn (i.e., 420 ◦C),
and so the Zn present in the clusters melts, thereby weakening the bonding and reacting
with the introduced water vapor to form ZnO. However, at a lower temperature, Zn remains
in the film as a result of an insufficient reaction with water. In stage 3, the prepared ZnO
acts as a support during the oxidation process, which allows the porosity to be maintained
while forming pure porous ZnO films. However, higher oxidation temperatures or longer
oxidation times result in grain growth due to the transport of ZnO particles, which reduces
the porosity and gives a denser structure.
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4. Conclusions

The formation of porous Zn-ZnO composite films was examined using the modified
direct current (DC) magnetron sputtering method, followed by the formation of pure
porous ZnO films through subsequent heat treatment in the presence of water vapor. Upon
variation in the O2 content of the Ar gas flow during Zn-ZnO film deposition, it was
found that an O2 ratio of 0.3% resulted in the best porosity, with any further increase
in the O2 content leading to a denser surface on the obtained Zn-ZnO film. In addition,
upon variation in the process pressure, a pressure of 14 mTorr was found to be optimal.
Although the deposition rate was higher at a lower process pressure, the probability of
reaction was reduced, which led to films containing mainly Zn, and only small amounts
of ZnO were detected. At a higher process pressure, the particles lost significant amounts
of energy through more frequent collisions, thereby reducing the amount of deposition
and increasing the amount of ZnO to give a film with low porosity. Furthermore, at a
low oxidation temperature, an X-ray diffraction peak corresponding to residual Zn was
observed, while upon increasing the oxidation temperature to ≥500 ◦C, pure porous ZnO
films were obtained. However, it should be noted that the film density also increased
at higher temperatures. Upon varying the oxidation time, the porosity decreased as the
particles grew over time; a pure ZnO film was formed within 5 min. Ultimately, we were
able to obtain a porous ZnO film with a porosity of 26% by depositing a Zn-ZnO composite
film at a process pressure of 14 mTorr and an O2 ratio of 0.3%, followed by oxidation of
the film at 500 ◦C for 5 min. Due to the fact that the films produced using this method are
highly reliable, we expect that they could be suitable for applications that require large
specific surface areas, such as sensors, supercapacitors, and batteries.
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