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Abstract: This paper presents the results of comparative fatigue tests carried out on steel S355J2N
specimens cut out using different cutting methods, i.e., plasma cutting, water jet cutting, and
oxyacetylene cutting. All the specimens were subjected to cyclic loading from which appropriate S-N
curves were obtained. Furthermore, face-of-cut hardness and roughness measurements were carried
out to determine the effect of the cutting method on the fatigue strength of the tested steel. The fatigue
strength results were compared with the standard S-N fatigue curves. The fatigue strength of the
specimens cut out with oxyacetylene was found to be higher than that of the specimens cut out with
plasma even though the surface roughness after cutting with plasma was smaller than in the case of
the other cutting technology. This was due to the significant effect of material hardening in the heat-
affected zones. The test results indicate that, in comparison with the effect of the cutting technology,
the surface condition of the specimens has a relatively small effect on their fatigue strength.

Keywords: steel structures; fatigue strength of steel; hardness; roughness; plasma cutting; water jet
cutting; gas cutting; composite dowel

1. Introduction

Most of the steel frame structures currently built and used in, i.a., the construction
industry, the marine industry, and the manufacturing industry have their parts joined
together and properly shaped by, e.g., welding and cutting out from larger steel elements.
Currently, oxyacetylene cutting, plasma cutting, and water jet cutting are the predominant
cutting technologies. In the case of oxyacetylene cutting, computer-controlled devices
usually execute the cutting line with an accuracy of 0.8–1.6 mm. The width of the slit
depends on the cutting parameters, i.e., the diameter and shape of the oxygen nozzle, the
cutting oxygen and inflammable gas pressure, and the cutting speed. After oxygen cutting,
the cut heat-affected zone (CHAZ) is relatively wide and depends on the alloying element
content in the material. In the case of low-carbon steel plates, the width of CHAZ amounts
to less than 0.8 mm at the thickness of 12.5 mm and to about 3 mm at the thickness of
150 mm [1]. Plasma cutting consists in melting metal and ejecting it from the slit with a
strongly concentrated electric arc flowing between a nonconsumable electrode and the
workpiece. The width of CHAZ is inversely proportional to the cutting speed and depends
on the composition (conductivity) of the material being cut. In the case of 25 mm thick
18-8-type austenitic steels, CHAZ is 0.08–0.13 mm wide at the cutting speed of 1.2 m/min.
Water jet cutting consists in using a strongly compressed water jet formed by passing
water through a small-diameter nozzle. The water jet removes the cut material from the
cutting slit through erosion and cutting fatigue under high local stresses and, additionally,
through micromachining when abrasive powder with a (gamet, olivine, or silica) grain
size of 0.3–0.4 mm is used. The temperature of the cut edges does not exceed 100 ◦C (cold
cutting). The cut material thickness depends on the water jet cutting parameters, i.a., the
cutting speed, the water pressure, the kind and grain size of the powder, and the powder
feed rate [1].

Materials 2021, 14, 6097. https://doi.org/10.3390/ma14206097 https://www.mdpi.com/journal/materials

https://www.mdpi.com/journal/materials
https://www.mdpi.com
https://orcid.org/0000-0001-5512-7381
https://doi.org/10.3390/ma14206097
https://doi.org/10.3390/ma14206097
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/ma14206097
https://www.mdpi.com/journal/materials
https://www.mdpi.com/article/10.3390/ma14206097?type=check_update&version=2


Materials 2021, 14, 6097 2 of 15

Thanks to the significant differences between the above-mentioned cutting technolo-
gies, they find application in the manufacture of all kinds of steel frame structures. The
choice of a cutting technology depends on the quality requirements and the manufacturer’s
technical and financial capabilities as well as on the requirements specified by the design
engineer who takes into consideration the effect of the particular technologies of cutting
out a steel frame structure on the latter’s ultimate and fatigue strength.

The adverse effect of the technology of cutting out a structure on the latter’s fatigue
strength was observed during extensive experimental studies on innovative connectors of
the composite dowel type used in composite steel and concrete bridges [2]. Such connectors
are created by appropriately joining together steel structural members and concrete. The
innovative composite dowel joint is based on the idea of cutting the rolled beam’s steel web
in two along a specifically shaped line (Figure 1) so that the dowels obtained in this way in
each of the two parts when embedded in concrete will constitute a mechanical connector
carrying the delamination forces between the steel and the concrete [3–5].

Figure 1. Cut-out MCL: (a) steel connectors with marked parts to be removed, (b) connector before separation of two parts
of cut beam, (c) component parts of the innovative joint with MCL dowels.

It was only after the PreCo-Beam [2] had been completed when the effect of the cutting
technology on the load-bearing capacity of the composite dowel joint was given some
thought. It was found that the roughness of the dowel’s front face after oxyacetylene
cutting could be the cause of fatigue cracking in beams under cyclic loading [6–8].

In the literature, one can find the results of experimental studies of the effect of the
technology of cutting steel on the latter’s strength. However, one should bear in mind that
such studies do not take into account the complexity of this problem (particularly in the
construction industry) as the experiments are conducted not on full-size models of the
structures but on specimens. Moreover, the results are for the element’s particular shape,
thickness, and steel grade. The effect of cutting technologies and the obtained specimen
surface characteristics on the fatigue strength is described in the work of [9]. Specimens
6 and 12 mm thick with a steel strength of 240–900 MPa were tested. It was confirmed
that the fatigue strength increases with the tensile strength of the steel and depending
on the surface roughness. The fatigue strength of the specimens increases when their
surface roughness is reduced by additional surface treatments, such as sandblasting [10].
The oxygen cut specimens have the highest fatigue strength, followed by the laser and
plasma cut specimens. The gas-cut specimens have the highest surface roughness but
also the highest compressive residual stress state. The plasma cut specimens have the
lowest roughness, but their residual stresses are practically zero in comparison with the
oxygen and laser-cut specimens [11]. The fatigue strength of plasma cut surfaces can
be significantly improved with a post-cutting treatment applicable. The improvement
is achieved by introducing compressive residual stress and reducing surface roughness
height through grinding [12].

For steel S690Q and steel S355M, it is observed that when straight edges are cut with
plasma and a laser, these cutting technologies improve, in comparison with gas cutting, the
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fatigue strength [13,14]. Laser-cut steel S890Q was found to have higher fatigue strength
than when cut with gas or plasma [15].

It emerges from the tests carried out on specimens that the fatigue strength of steel
frame structures is a complex problem sensitive to many factors. In construction, this
problem is further compounded by the fact that it is not possible to directly observe the
initiation and propagation of cracks (the connector is embedded in concrete) and also by
the complicated interactions in the joint (delamination forces change from dowel to dowel
and are transmitted through the direct pressure of the concrete against the front faces of the
dowels and via the adhesive forces between the steel beam’s flat surfaces and the concrete).
Therefore in order to assess the effect of the cutting technology on the fatigue strength of
the material, comparative tests were carried out on dumbbell-shaped specimens cut out
using different cutting technologies.

2. Experiment
2.1. Test Specimens and Test Plan

The specific specimen shape and dimensions (thickness and fillet radius) (Figure 2)
were adopted so that the test results could apply to connectors of the composite dowel type
(Figure 1). The specimens were cut out of 10 mm thick plate S355J2N along the plate rolling
direction. Three series of specimens were cut out using different cutting technologies
designated as: A—water jet, B—oxyacetylene, and C—plasma.
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specimen, (c) series B (oxyacetylene cut) specimen, (d) series C (plasma cut) specimen. 

The tests were carried out on a 100 kN testing machine. The specimens were 
subjected to uniaxial tension-compression (R = −1) in the high cycle fatigue range until 
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such a frequency was selected that the temperature of the specimens during tests would 
not exceed 60 °C. The tests were conducted in a cyclic testing machine in set stress ranges 
∆σi (Table 1) on one to four specimens for each level ∆σi. The number of cycles N = 5 m 
was set as the lifespan limit. The force signal and the total deformation signal were 

Figure 2. Specimen for comparative cyclic tests: (a) geometry (mm), (b) series A (water jet cut)
specimen, (c) series B (oxyacetylene cut) specimen, (d) series C (plasma cut) specimen.

The tests were carried out on a 100 kN testing machine. The specimens were subjected
to uniaxial tension-compression (R = −1) in the high cycle fatigue range until fracture. The
load spectrum was sinusoidal with a frequency f = 10 Hz. Through trials, such a frequency
was selected that the temperature of the specimens during tests would not exceed 60 ◦C.
The tests were conducted in a cyclic testing machine in set stress ranges ∆σi (Table 1) on one
to four specimens for each level ∆σi. The number of cycles N = 5 m was set as the lifespan
limit. The force signal and the total deformation signal were registered during the tests.
Deformation was measured along the gauge length of 25 mm by means of an extensometer.
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Table 1. Test stress ranges ∆σi for cutting technologies.

Specimen Type ∆σ
(MPa) Specimen Type ∆σ

(MPa) Specimen Type ∆σ
(MPa)

A
Water jet cutting

150

B
Oxyacetylene

cutting

200

C
Plasma cutting

125
175 225 150
200 250 175
300 300 200
325 - 225
350 - -

The specimens would most often fail due to rupture in the fillet (geometric notch)
area. Photographs of selected specimens after failure for each of the cutting technologies
are shown below (Figure 3).
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Figure 3. Failed specimens cut out with: (a) water, (b) oxyacetylene, (c) plasma.

2.2. Results

The test results are presented in Tables 2–4.

Table 2. Test results for specimens A.

Specimen No. (-) F (kN) ∆σ (MPa) Nf (Cycles)

12A
30 150

5,402,341
13A 5,467,028
18A 5,034,480

11A
35 175

779,609
16A 1,209,227
17A 2,744,983

14A
40 200

536,918
15A 336,773

1A
60 300

7619
2A 9174
3A 8339

7A
65 325

3722
8A 3330
9A 3339

5A
70
70

350
350

2175
6A 2225
4A 2129

22A 1225
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Table 3. Test results for specimens B.

Specimen No. (-) F (kN) ∆σ (MPa) Nf (Cycles)

13B
40 200

5,476,832
14B 3,463,974

8B

45 225

5,249,668
9B 3,475,725
10B 3,568,974
11B 5,882,781
12B 2,870,595

3B
50 250

338,745
4B 1,030,958

5B
60 300

13,463
6B 32,353
7B 15,718

Table 4. Test results for specimens C.

Specimen No. (-) F (kN) ∆σ (MPa) Nf (Cycles)

12C
25 125

5,000,000
13C 5,000,000
14C 5,000,000

7C
30 150

5,000,000
10C 1,714,866
11C 430,863

3C
35 175

1,143,120
5C 444,094
6C 716,537

9C 40 200 196,487

2C
45 225

141,694
4C 70,782
8C 108,665

Figure 4 shows the test results as logarithmic stress amplitude versus the logarithmic
number of cycles for the three cutting technologies. Test results regression curves for each
of the technologies were calculated. The standard curves for the fatigue categories of
80 MPa and 125 MPa according to standard [16] were included for comparison.

From the regression curves for the respective cutting technologies, ∆σc stress values at
N = 2 million cycles, i.e., the fatigue categories, and values of fatigue curve slope cotangent
m were calculated. The results are presented in Table 5.
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Table 5. Values of ∆σc and m and regression curves for considered cutting technologies.

Cutting Technology Regression
Curve Equation

Fatigue Category
∆σc (MPa)

Fatigue Curve
Slope m

water A ∆σ = 764.6·(N)−0.105 167 10
oxyacetylene B ∆σ = 531.6·(N)−0.059 226 17

plasma C ∆σ = 990.6·(N)−0.132 146 8

3. Cut Edge Conditions
3.1. Macroscopic and Microscopic Examinations of Fatigue Fractures

Detailed macroscopic and microscopic analyses of selected specimens cut out with:
water (2A, 14A, 17A), oxyacetylene (4B, 10B, 14B), and plasma (6C, 8C, 10C) were car-
ried out. The specimens’ faces of cut and fatigue fracture and crack surfaces (Figure 5)
were examined.
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Figure 5. Test specimen: L—face of cut, N—fatigue fracture, K—area from which samples were taken
to make metallurgical polished sections, Z-Z’—cross-sections on which polished sections were made,
g—metallurgical polished section hardness measuring length.

The macroscopic examinations were performed under a stereoscopic light microscope,
while the microscopic examinations were carried out using a confocal laser scanning
microscope and a scanning electron microscope. Samples for preparing metallurgical
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polished sections were cut out using a precision cutter and mounted in conductive resin.
The mounted samples were ground and polished on a polishing machine and subjected to
etching with 5% HNO3 solution.

The tested specimens’ faces of cut showed numerous furrows resulting from cutting,
along which fatigue cracks propagated (Figures 6 and 7). This is particularly visible for
water jet cutting, in which case the face of the cut is distinctly varied, showing an area of
the entry of the water jet with an abrasive and an exit area (Figure 8).
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The examinations of the fractured surfaces of the specimens clearly corroborated the
fatigued character of the fractures, as visible in Figure 9.
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3.2. Investigations of Face-of-Cut Roughness

Roughness, i.e., the arithmetic mean deviation of the profile from the mean line, on
the two faces of cut denoted in Figure 10 was investigated for each specimen. The results
are presented in Table 6.
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Table 6. Results of roughness measurements: Ra—roughness, Ra,mean—mean roughness.

Specimen No. (-) Ra (µm) Ra,mean (µm)

L P

2A 3.358 3.529
3.49614A 3.889 3.311

17A 3.715 3.172

4B 1.531 1.719
1.44410B 1.158 1.166

14CB 1.530 1.561

6C 0.296 0.369
0.2088C 0.314 0.269

10C 0.355 0.329
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3.3. Microscopic Examinations of Metallurgical Polished Sections

For microscopic examinations, a sample was cut out from the measurement area of
the specimens consistently with the Z-Z’ plane, parallel to the fracture surface (Figure 5).
After etching with 5% HNO3 solution, a nonequilibrium ferritic-pearlitic structure became
visible (Figure 11).
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Figure 11. Microstructures of specimens: (a–c) cut out with water, (d–f) cut out with oxyacetylene, (g–i) cut out with plasma.

3.4. Investigations of Cut Heat-Affected Zone

The specimens cut out using the gas technology, and the plasma technology showed a
distinctly changed structure at the cut edge (Figures 12 and 13) due to the local heating of
the material. The cut heat-affected zone (CHAZ presented in Table 7) was characterized
by a martensitic structure with varied carbon content. This structure, unlike the ferritic-
pearlitic structure, was more brittle and susceptible to cracking (Figure 14). No significant
changes in microstructure were observed in the case of the water cut specimens.

3.5. Hardness Tests

Hardness was measured using the Vickers method in accordance with the stan-
dard [17]. The measurements were performed under the load of 10 kg acting over the time
of 10 s.

The hardness measurements were carried out on metallurgical polished sections along
segment g (Figure 5) consistent with the pearlite-ferrite banding. The distance between the
cut edge and the first impression amounted to 0.3 mm. The next impressions were spaced
at every 1.5 mm. In total, 10 impressions were made for each specimen.

The hardness of the tested specimen materials ranged from 146 to 352 HV10 (Figure 15).
Hardness values above 150 HV10 were measured exclusively at the edges of the specimens
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cut with oxyacetylene and plasma. The average hardness in these places amounted to
244 HV10 and 310 HV10 for the type B specimens and the type C specimens, respectively.
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Table 7. Depth of cut heat-affected zone (CHAZ).

Specimen No. (-) CHAZ (µm)

4B 450
10B 550
14B 550
6C 505
8C 517
10C 475
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Figure 14. Structures: (a) acicular structure in CHAZ in specimens cut with plasma, (b) acicular structure in CHAZ in
specimens cut with oxyacetylene, (c) pearlitic-ferritic structure in specimens cut with plasma, (d) pearlitic-ferritic structure
in specimens cut with oxyacetylene.
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4. Analysis of Results

The specimens cut out using the oxyacetylene technology showed a longer fatigue
lifespan than the other specimens cut out with plasma and water, as presented in Figure 6.
Fatigue categories were calculated from the regression curves of the cutting technolo-
gies. The fatigue categories amounted to: ∆σc,B = 226 MPa for oxyacetylene cutting,
∆σc,A = 167 MPa for water jet cutting and ∆σc,C = 146 MPa for plasma cutting. The results
are above fatigue category ∆σc = 125 MPa according to the work of [16], which is safely and
most frequently adopted by building designers and applies to gas-cut metal plates with
removed edge discontinuities. Unfortunately, in the case of series-produced connectors of
the composite dowel type, each of the production operations, including the machining of
the face of cut, is thought to add to the cost, and so efforts are made to reduce the latter by,
i.a., limiting the additional treatments of the face of the cut. The current design guidelines
according to the work of [16] do not take into account the effect of the cutting technology
and the quality of the cut surface on the fatigue strength of the structure. Therefore it is
necessary to clarify and specify more precisely the fatigue category for other cutting tech-
nologies, including water jet cutting and plasma cutting, which should have a beneficial
effect on the design of steel frame structures.

In all the considered cases, the fatigue curve slope cotangents m were larger (mA = 10,
mB = 17, mC = 8) in comparison with the standard curves according to the work of [16],
for which m = 3. The slope values provide information about the speed of fracture of the
specimens under variable load. In the case of oxyacetylene cutting, the specimens would
fracture slowest (mB = 17), as opposed to the specimens cut out with plasma, which would
fracture fastest (mC = 8). It should be noted that the results of this test depend on, i.a.,
the number and shape of the specimens, the character of the fatigue load, and the yield
point of the material. Therefore it is difficult to directly compare the obtained results. A
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convergence between the results is considered to be a satisfactory outcome. In the case
of steel S355, one gets curve slope m = 7 for oxygen cut specimens and m = 13 for plasma
cut specimens [11], or m = 5.2 for plasma, m = 5.8 for oxygen and m = 16.8 for water, as
described in the work of [18]. The ongoing research confirms the conservative standard
recommendations for which m = 3 [16]. It should be added that the obtained moderate
conservatism can be proper considering that small-scale specimens, in general, ensure
greater fatigue reliability than large-scale beam specimens [19].

The material tests corroborated the relatively smaller surface roughness for plasma
cutting (Ra,mean = 0.208 µm) and oxyacetylene cutting (Ra,mean = 1.444 µm) than for water
jet cutting (Ra,mean = 3.496 µm). The numerous furrows in the water jet entry zones in the
water cut surfaces were micronotches in which the initiation of fatigue fractures would
take place. It is noteworthy that the choice of cutting parameters and the thickness of the
metal plate being cut have a bearing on the quality of the cut-out specimen’s surface [18].

The effect of the kind of machining and the surface layer condition on the fatigue
strength is expressed by surface condition coefficient βp as a ratio of the fatigue strength
of an unnotched (polished) specimen to the latter’s strength after machining. The higher
the surface condition coefficient, the lower the specimen’s fatigue strength due to surface
irregularities. Figure 16 shows the results of experiments [20] in which the effect of the
kind of machining (grinding, fine rolling, coarse rolling) on the value of coefficient βp,
depending on the tensile strength, was studied. As one can see, the surface condition
coefficient increases with surface roughness. Additionally, the mean surface roughness
values of the faces of cut of in-house specimens of type A, B, and C for steel S355J2N with
tensile strength fu = 510 MPa were included in the figure.
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Figure 16. Effect of kind of machining on the value of surface condition coefficient βp for tension or
bending, depending on tensile strength of steel and kind of machining for: 0—polished, 1—ground,
2—fine rolled, 3—coarse rolled, and 4—sharply ring-notched (for comparison) specimens. Adapted
with permission from Ref. [20], 2021, Wydawnictwo Naukowe PWN.

Table 8 contains the measured values of βp (according to Figure 16) and the calculated
fatigue categories ∆σc for each of the cutting technologies and the percentage differences
relative to the results for the specimens cut out with plasma. Judging by the differences,
the condition of the surface of the specimens has a relatively small (up to 12%) effect on
their fatigue strength in comparison with the technologies used to cut them (55%).
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Table 8. Values of βp and ∆σc and differences between results for tested specimens.

Cutting
Technology βp (-) Difference between

βp Results (%) ∆σc (MPa) Difference between
∆σc Results (%)

Water (A) 1.13 12 167 14
Oxyacetylene (B) 1.05 4 226 55

Plasma (C) 1.01 0 146 0

The fatigue strength of the specimens cut out with oxyacetylene (∆σc = 226 MPa) is
higher than that of the specimens cut out with plasma (∆σc = 146 MPa) even though the
surface roughness after cutting with plasma is smaller than in the case of the other cutting
technology. This is due to the significant effect of material hardening in the heat-affected
zones. In both cases, acicular structures (Figure 12) with comparable heat-affected zone
depths measured from the surface of the cut were obtained. However, in the case of plasma
cutting, the hardness measured at the cut edge (310 HV10) was 27% greater than for the
specimens cut out using the gas cutting technology (244 HV10). A similar agreement
between the results was obtained in the tests described in the work of [18], where the
specimens cut out with plasma were characterized by the highest hardness (280 HV10) and
lower fatigue strength (∆σc = 239 MPa) in comparison with the oxygen cut specimens for
which hardness amounted to 190 HV10 and fatigue strength to 264 MPa.

The results of the comparative tests indicate that the gas cutting technology used so far
to cut out connectors for the innovative composite dowel joint is more advantageous than
the plasma cutting technology or the water cutting technology. Furthermore, oxyacetylene
cutting is the cheapest and most available cutting technology in prefabrication plants.

5. Conclusions

From the results of the fatigue tests carried out on steel S355J2N specimens cut out
using different cutting methods, i.e., plasma cutting, water jet cutting, and oxyacetylene
cutting, the following conclusions, providing a basis for further analyses leading to the
development of design guidelines for steel connectors of the composite dowel type, can
be drawn:

1. The technology of cutting out dowels of the composite dowel type has a bearing on
their fatigue strength. Connectors cut out using oxyacetylene cutting can have higher
fatigue strength than the ones cut out using plasma cutting or water jet cutting;

2. The effect of the technology used to cut out steel connectors of the composite dowel
type can be greater than that of the condition of the face of the cut;

3. The slopes of the fatigue strength curves determined for the cut-out specimens:
mA = 10 for water jet cutting, mB = 17 for oxygen cutting, and mC = 8 for plasma
cutting, corroborate the conservative standard recommendation m = 3 according to
the work of [16];

4. The FAT125 fatigue curve according to the work of [16] can be appropriate for the
design of composite dowel connectors to be cut out using oxygen cutting, plasma
cutting, and water jet cutting. Nevertheless, further experimental studies (the S-N
curve method) need to be carried out on beam specimens of composite structures in
order to verify the fatigue curve for the composite dowel connector.
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Abbreviations
The following symbols and notations, in the order in which they appear in the text, are used in

this paper:

CHAZ Cut heat-affected zone
R Stress ratio
∆σ Nominal stress range
F Force
Nf Number of cycles to failure
logA Intercept of mean S-N curve
m Slope of fatigue strength curve
Ra Surface roughness
βp Coefficient of surface condition

The other symbols used in this paper are explained when they appear in the text for the first time.
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