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Abstract: The displacement of one fluid by another is an important process, not only in industrial
and environmental fields, such as chromatography, enhanced oil recovery, and CO2 sequestration,
but also material processing, such as Lost Foam Casting. Even during hydrodynamically stable fluid
displacement where a more viscous fluid displaces a less viscous fluid in porous media or in Hele-
Shaw cells, the growing interface fluctuates slightly. This fluctuation is attributed to thermodynamic
conditions, which can be categorized as the following systems: fully miscible, partially miscible, and
immiscible. The dynamics of these three systems differ significantly. Here, we analyze interfacial
fluctuations under the three systems using Family–Vicsek scaling and calculate the scaling indexes.
We discovered that the roughness exponent, α, and growth exponent, β, of the partially miscible case
are larger than those of the immiscible and fully miscible cases due to the effects of the Korteweg
convection as induced during phase separation. Moreover, it is confirmed that fluctuations in all
systems with steady values of α and β are represented as a single curve, which implies that accurate
predictions for the growing interface with fluctuations in Hele-Shaw flows can be accomplished at
any scale and time, regardless of the miscibility conditions.

Keywords: fluid displacement; Family–Vicsek scaling; phase separation

1. Introduction

When a more viscous fluid displaces a less viscous fluid in porous media or in a Hele-
Shaw cell, which is comprised of two parallel plates with a thin gap between them, the
interface between the two fluids becomes stable. However, in the reverse situation, where
a less viscous fluid displaces a more viscous fluid, the interface becomes hydrodynamically
unstable and forms finger-like patterns. This phenomenon is known as the Saffman–Taylor
instability [1] or viscous fingering [2,3]. Hydrodynamic instabilities in the Hele-Shaw cell
have been utilized in a step-emulsification process for the high-throughput production
of colloidal monodisperse droplets [4] and the flow-driven control of calcium carbonate
precipitation patterns [5]. Especially in so-called Lost Foam Casting, it has been pointed
out that deformation of the liquid metal interface due to Saffman–Taylor instability leads
to the entrainment of the degrading pattern material and associated defects [6]. Therefore,
establishing of a quantitative prediction of the deformation due to such hydrodynamic
instability is important for material design. The fluid pair is thermodynamically categorized
into the following three types. The first is a fully miscible system in which the fluids have
infinite mutual solubility, such as glycerol–water. The second is a partially miscible system
where fluids have finite mutual solubility, such as crude oil–water under high pressure
and temperature conditions for enhanced oil recovery [7,8]. The third is an immiscible
system having zero mutual solubility of fluids, such as oil–water at atmospheric pressure
and room temperature (25 ± 1 ◦C). Several studies regarding interfacial hydrodynamics
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that considered fully miscible and immiscible cases have been reported [3,9–12]. Recently,
Suzuki et al. discovered a novel interfacial dynamics feature using a partially miscible
system, which can be treated at room temperature and atmospheric pressures [13–16].
Their partially miscible system was comprised of polyethylene glycol (PEG), Na2SO4, and
water, for which spinodal decomposition phase separation occurred at the boundary of the
displacing and displaced liquids. They performed hydrodynamically stable displacements
in a radial Hele-Shaw cell and observed interfacial deformation only in the partially
miscible system [13]. They proved that interfacial fluctuations are driven by spontaneous
convection as induced by the Korteweg force [17,18] due to the chemical potential gradient
during spinodal decomposition-type phase separation. The Korteweg force was first
proposed by Korteweg in 1901 [19]. It is defined thermodynamically as the functional
derivative of free energy [20], and is characterized as a body force. The Korteweg force tends
to minimize the free energy stored at the interface and induces spontaneous convection.
Suzuki et al. found that the direction of Korteweg convection differed from that of injection,
which roughened the interface [13].

Interfacial fluctuations are ubiquitous in nature at various lengths and time scales.
They include the propagation of flame fronts, as well as deposition processes, such as falling
snow, atomic deposition, and bacterial growth [21]. In general, the interface morphology
depends on the length and time scale of observations. In such growing interfaces, it has
been reported that a universal scaling law holds theoretically [21,22]. Interface fluctuations
are often quantified by the width w(l, t), which is defined as the standard deviation of the
interface height h(x, t) over a length scale l at time t. Family–Vicsek scaling is one of the
most popular scaling laws [23] as it expresses the self-affinity of an interface as:

w(l, t) ∼ tβF
(

lt−
1
z

)
∼
{

lα for l � l∗
tβ for l � l∗

, (1)

where α and β are the exponents that characterize the length- and time-dependent dynamics
of the roughening process, respectively; z = α/β is a dynamic exponent; F(·) is a scaling
function; and l∗ ∼ t1/z is the crossover length scale. The simplest theory for a local growing
interface was proposed by Kardar, Parisi, and Zhang and is known as the KPZ theory [22].
In two dimensions, the renormalization group approach provides the exact value of the
exponents at αKPZ = 1/2 and βKPZ = 1/3, which are universal as widely confirmed in
numerical models [21]. An experimental example regarding the propagating fronts of
combustion was reported by Myllys et al. [24]. They discovered that 0.51 ≤ α ≤ 0.57 (χLR
in their study) and 0.28 ≤ β ≤ 0.40 (βLR in their study). Another study pertaining to the
interface growth of bacterial colonies was reported by Wakita et al. [25], who observed that
α ∼= 0.50 ± 0.01 for one condition and 0.76 ≤ α ≤ 0.80 for another. Takeuchi et al. [26]
demonstrated that α = 0.50 and β = 0.336 at the growing interface in nematic liquid crystals.

The roughness of the growth interface for various phenomena was analyzed via
scaling. Fluid displacement occurs frequently in industrial and environmental improve-
ments [8,27,28]; however, it progresses at various lengths and time scales. In actual in-
dustrial processes, fluid displacement not only involves hydrodynamic instabilities but
also various irreversible processes, such as mutual diffusion, phase separation associated
with composition changes, and forced convection due to external forces. Studies regarding
interfacial fluctuations that involve such complex irreversible processes have not been
reported to date because a solution system that controls its solubility under normal temper-
atures and pressures with nearly unchanged physicochemical properties has not yet been
discovered. We found a solution system in a previous study that can significantly change
its thermodynamic state with only small changes in composition at room temperature
and atmospheric pressures while maintaining its component viscosities [13]. If the inter-
facial fluctuations of fluid displacements in various nonequilibrium conditions observed
at laboratory scales follow the scaling law, then it can be applied to various industrial
processes that are performed on large scales. In this study, the Family–Vicsek scaling is
used to quantitatively evaluate the roughness of the growth interfaces in hydrodynamically
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stable fluid displacements using three systems with the following thermodynamic states:
fluid displacement with mutual diffusion (fully miscible system), without mutual diffusion
(immiscible system), and with phase separation (partially miscible system). We discovered
that the characteristic exponents of the roughening process depend on its thermodynamic
state.

2. Materials and Methods
2.1. Solutions

We used the same solutions indicated in previous studies, [13,14] i.e., a 36.5 wt% PEG–
0 wt% Na2SO4 solution system as fully miscible, a 36.5 wt% PEG–20 wt% Na2SO4 solution
system as partially miscible, and a phase L–phase H (explained below) as immiscible
(Figure 1), where PEG represents polyethylene glycol 8000, whose average molecular
weight is approximately 8000. Figure 1 presents the phase diagram [29] of PEG–Na2SO4–
water at 25 ◦C. When the composition of the solution is in Region I, the solution approaches
a single phase, which is known as a fully miscible system. The displacement of a fully
miscible system is thermodynamically stable, but the molecular diffusion progresses at
the interface and the fluids mix together. When the composition is in Region II, the
solution separates into two phases. The red solid curve in the figure shows the immiscible
composition. Thus, when the initial solution compositions are on the curve, they are
immiscible. For example, when the solution is comprised of 10 wt% PEG and 13 wt%
Na2SO4 (closed black triangle in Figure 1), it separates into phases L (closed red circle)
and H (open red circle). Phase L is comprised of 36.5 wt% PEG and 3.2 wt% Na2SO4,
and phase H is comprised of 1.4 wt% PEG and 16.0 wt% Na2SO4. Phases L and H are in
thermodynamic equilibrium with each other. and considered immiscible. The displacement
between the two fluids with a composition within Region II becomes thermodynamically
unstable, and the mixing of the two fluids causes phase separation to occur at the interface.
Therefore, the composition of a system is important to determine the thermodynamic state
of a solution. Using the phase diagram in Figure 1 allows for the easy controlling the
thermodynamic state of the solution system. The physical properties used in the system,
such as the density and viscosity, are listed in Table 1.

2.2. Displacement

We performed fluid displacement under hydrodynamically stable conditions, i.e., a
more viscous fluid displaces a less viscous fluid. Therefore, a 36.5 wt% PEG solution was
used to displace a 0 wt% Na2SO4 solution for the fully miscible case; a 36.5 wt% PEG
solution to displace a 20 wt% Na2SO4 solution for the partially miscible case; and phase L
to displace phase H for the immiscible case (shown in Table 1). A radial Hele-Shaw cell
comprises two square transparent glass plates (140 mm × 140 mm × 10 mm) with a gap
of 0.3 mm. The gap was achieved using four metal plates located in four corners of the
cell. The top glass plate had a small hole (4 mm diameter) drilled into the center for fluid
injection. We first filled the cell with the less viscous liquid, then injected the more viscous
liquid into it, as shown in Figure 2. The displacement experiments were recorded from the
bottom of the setup using a video camera. To visualize the displacement, the more viscous
fluids (PEG solution and phase L) were dyed blue with 0.1 wt% indigo carmine, which
could not dissolve into the Na2SO4 solution due to the salting-out effect. All experiments
were performed at room temperature (25 ± 1 ◦C) and atmospheric pressures at a constant
injection flow rate of q = 7.07× 10−10 m3/s. We conducted the fluid displacement under
same conditions three times to confirm the reproductivity.
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2.3. Family–Vicsek Scaling

We define the local radius r(x, t) for the growing interface to characterize its roughness
as a function of the coordinate x. The radius of the growth interface at each time is expressed
as a function of angle (Figure 3). The interface width is defined as follows [21]:

w(l, t) ≡ 〈
√
〈[r(x, t)− 〈r〉l ]

2〉
l
〉, (2)

where l is a length segment along the interface, 〈 〉l denotes the average over a length
segment l, and 〈 〉 denotes the average of the entire interface. Therefore, w(l, t) is regarded
as a root-mean-squared interface width at time t. The temporal growth of the roughness
was measured based on the overall width as:

W(t) ≡
√
〈[r(x, t)− 〈r〉]2〉 . (3)

We then calculated the roughness exponent α and growth exponent β for the three
miscibility systems using Equations (1)–(3).
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Figure 1. Phase diagram of the polyethylene glycol (PEG)–Na2SO4–water system [15]. The different
color symbols show the three systems having different three thermodynamic states: the red circles
for the immiscible system, the blue circles for the fully miscible system, and the green circles for the
partially miscible system. The closed circles mean more viscous solutions and open ones mean less
viscous solutions. The black line is the tie-line, whose end points determine the equilibrium phase
compositions. The red curve represents the binodal curve, indicating equilibrium compositions of
the two immiscible phases after separation.
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Table 1. Physicochemical properties of the considered system.

System Displacing More Viscous Liquid
(Density, Viscosity)

Displaced Less Viscous Liquid
(Density, Viscosity)

Fully miscible 36.5 wt% PEG solution
(1.07 g/cm3, 112 mPa·s)

0 wt% Na2SO4 solution
(0.997 g/cm3, 0.972 mPa·s)

Partially
miscible

36.5 wt% PEG solution
(1.07 g/cm3, 112 mPa·s)

20 wt% Na2SO4 solution
(1.19 g/cm3, 2.08 mPa·s)

Immiscible Phase L
(1.08 g/cm3, 125 mPa·s)

Phase H
(1.16 g/cm3, 1.76 mPa·s)
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3. Results and Discussion

Figure 4 presents a typical example of the growing interface during fluid displacement
for the three miscibility systems. A nearly circular pattern was observed in the fully
miscible and immiscible systems, albeit with slight distortions because the experimental
conditions (a more viscous fluid displaced a less viscous fluid in the horizontal Hele-Shaw
cells) were hydrodynamically stable according to Darcy’s law for Hele-Shaw flows [1].
In a fully miscible system, the interface diffuses due to the mutual dissolution of both
phases. Therefore, the contour of the binarized interface of the fully miscible system
appears to grow faster than that of the immiscible system. However, for the partially
miscible system, distinct distortions appeared at the growing interface due to spontaneous
convection by the Korteweg force, which was induced by compositional gradients during
phase separation [13,14]. The interface distortions increased over time because the flow
weakened due to the radial geometry, despite a constant volume from the injection flow rate.

Figure 5 presents the scaling of the interface width w(l, t) with the length scale l for
different measurement times. In the present study, the onset time of the injection is defined
as t = 0 and x and l are measured in length scale from radii. For all systems, the interface
width increased with the length scale and reached a steady state when beyond a certain
length, which increased with the measurement time. The dependence of the interfacial
width on the length scale in the partially miscible system was more significant than that of
the other two systems, and a considerable temporal change was observed. The slope in the
fully miscible case differs slightly from that in the immiscible case because of diffusion in
the fully miscible case and interfacial tension in the immiscible case. The slope of the data
shown in Figure 5 represents the roughness exponent α. The used value of α is the value
when the α achieved at steady-state value.

Figure 6 presents the time dependence of the overall width W(t). After the initial
disturbance, W(t) began to increase over time. The β remains nearly constant in the
region where α reaches a steady state with respect to time. We obtained β for the three
different systems as 0.84 ± 0.17, 0.69 ± 0.05, and 0.44 ± 0.12 for the partially miscible,
immiscible, and fully miscible systems, respectively. The α and β in the partially miscible
system were significantly higher than those predicted by various models without spatially
nonlocal interactions [22–24]. Such high values of the exponents in the partially miscible
system were most likely because the phase separation affected the fluctuations of the
interfacial growth. The roughening of the moving interface based on the phase field
model using the generalized Cahn–Hilliard equation, which describes the dynamics of
composition change with phase separation, yielded β = 0.85 ± 0.04 [30,31]. In this model,
α varied significantly from 0.34 to 1.4 with a decreasing disorder strength [32]. When
phase separation occurred and nonlocal interactions became dominant through the effects
of interfacial tension and liquid conservation, both exponents increased. As the effect of
fluctuation became dominant, α approached the value predicted by the models without
spatially nonlocal interactions. The immiscible interface is affected more by fluctuation than
the partially miscible interface. Our experimental results show that α. for the immiscible
interface is lower than that for the partially miscible interface, which is consistent with the
model predictions.
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We demonstrated the correlation of the interface width using Family−Vicsek scaling
with α. and β obtained in the long-time scale portion (shown in Table 2). We confirmed
that our data for w(l, t) collapsed onto a single curve in each system (Figure 7). This
indicates that predictions for the fluctuations of the growing interface can be achieved on
any spatiotemporal scale, regardless of the thermodynamic state of the solution.
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Table 2. Summary of steady values of α and β for the three experiments.

Fully Miscible Partially Miscible Immiscible

α 0.35 ± 0.02 0.86 ± 0.03 0.49 ± 0.02
β 0.44 ± 0.12 0.84 ± 0.17 0.69 ± 0.05
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4. Conclusions

We demonstrated interfacial fluctuation differences between three thermodynamic
conditions (fully miscible, partially miscible, and immiscible systems) in a hydrodynami-
cally stable displacement of liquids using Family–Vicsek scaling. We confirmed that the
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fluctuations in all systems with steady values of α and β can be represented with a single
curve. This implies that accurate predictions for the growing interface with fluctuations in
Hele-Shaw flows can be accomplished at any scale and time for applications, regardless
of system thermodynamics. The interfacial roughness, α, and interfacial growth, β, of
partially miscible systems were larger than those of immiscible and fully miscible systems
because of the Korteweg-induced convection during phase separation in the partially mis-
cible systems, which affected the interfacial roughness and growth. The phenomenon in
which the roughness exponents are larger than the KPZ predictions is known as anomalous
roughening, which is frequently observed in growing interfaces accompanied by fluid
flow [33–35]. However, this is still an unsolved problem. Moreover, the dependence of the
exponential values α and β on the flow rate, viscosity ratio, and concentration is of interest
and should be addressed in future studies.

Author Contributions: Conceptualization, T.B.; methodology, T.B. and R.T.; software, R.T.; validation,
T.B.; formal analysis, R.T. and R.X.S.; investigation, T.B. and R.T.; resources, T.B.; data curation, R.T.;
writing—original draft preparation, T.B. and R.X.S.; writing—review and editing, T.B. and R.X.S.;
visualization, R.X.S.; supervision, T.B. and Y.N.; project administration, T.B.; funding acquisition,
R.X.S. and Y.N.; All authors have read and agreed to the published version of the manuscript.

Funding: This research was funded by JSPS KAKENHI Grant Numbers 19J12553 and 19K04189.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: The data that supports the findings of this study are available within
the article.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Saffman, P.G.; Taylor, G. The Penetration of a Fluid into a Porous Medium or Hele-Shaw Cell Containing a More Viscous Liquid.

Proc. R. Soc. A 1958, 245, 312–329. [CrossRef]
2. Engelberts, W.F.; Klinkenberg, L.J. Laboratory experiments on the displacement of oil by water from packs of granular material.

In Proceedings of the 3rd World Petroleum Congress, The Hague, The Netherlands, 28 May–6 June 1951; pp. 544–554.
3. Homsy, G.M. Viscous Fingering in Porous Media. Annu. Rev. Fluid Mech. 1987, 19, 271–311. [CrossRef]
4. Li, Z.; Leshansky, A.M.; Pismen, L.M.; Tabeling, P. Step-emulsification in a microfluidic device. Lab Chip 2015, 15, 1023–1031.

[CrossRef]
5. Schuszter, G.; Brau, F.; De Wit, A. Flow-driven control of calcium carbonate precipitation patterns in a confined geometry. Phys.

Chem. Chem. Phys. 2016, 18, 25592–25600. [CrossRef]
6. Griffiths, W.D.; Ainsworth, M.J. Instability of the Liquid Metal–Pattern Interface in the Lost Foam Casting of Aluminum Alloys.

Metall. Mater. Trans. A Phys. Metall. Mater. Sci. 2016, 47, 3137–3149. [CrossRef]
7. Orr, F.M.J.; Taber, J.J. Use of Carbon Dioxide in Enhanced Oil Recovery. Science 1984, 224, 563–569. [CrossRef]
8. Lake, L.W.; Johns, R.T.; Rossen, W.R.; Pope, G.A. Fundamentals of Enhanced Oil Recovery; Society of Petroleum Engineers:

Richardson, TX, USA, 2014; ISBN 978-1-61399-328-6.
9. McCloud, K.V.; Maher, J.V. Experimental perturbations to Saffman-Taylor flow. Phys. Rep. 1995, 260, 139–185. [CrossRef]
10. Nagatsu, Y. Viscous Fingering Phenomena with Chemical Reactions. Curr. Phys. Chem. 2015, 5, 52–63. [CrossRef]
11. De Wit, A. Chemo-hydrodynamic patterns in porous media. Philos. Trans. R. Soc. A Math. Phys. Eng. Sci. 2016, 374, 20150419.

[CrossRef]
12. De Wit, A. Chemo-Hydrodynamic Patterns and Instabilities. Annu. Rev. Fluid Mech. 2020, 52, 531–555. [CrossRef]
13. Suzuki, R.X.; Nagatsu, Y.; Mishra, M.; Ban, T. Fingering pattern induced by spinodal decomposition in hydrodynamically stable

displacement in a partially miscible system. Phys. Rev. Fluids 2019, 4, 104005. [CrossRef]
14. Suzuki, R.X.; Nagatsu, Y.; Mishra, M.; Ban, T. Phase separation effects on a partially miscible viscous fingering dynamics. J. Fluid

Mech. 2020, 898, A11. [CrossRef]
15. Suzuki, R.X.; Takeda, R.; Nagatsu, Y.; Mishra, M.; Ban, T. Fluid Morphologies Governed by the Competition of Viscous Dissipation

and Phase Separation in a Radial Hele-Shaw Flow. Coatings 2020, 10, 960. [CrossRef]
16. Suzuki, R.X.; Tada, H.; Hirano, S.; Ban, T.; Mishra, M.; Takeda, R.; Nagatsu, Y. Anomalous patterns of Saffman-Taylor fingering

instability during a metastable phase separation. Phys. Chem. Chem. Phys. 2021, 23, 10926–10935. [CrossRef]
17. Ban, T.; Aoyama, A.; Matsumoto, T. Self-generated Motion of Droplets Induced by Korteweg Force. Chem. Lett. 2010, 39,

1294–1296. [CrossRef]

http://doi.org/10.1098/rspa.1958.0085
http://doi.org/10.1146/annurev.fl.19.010187.001415
http://doi.org/10.1039/C4LC01289E
http://doi.org/10.1039/C6CP05067K
http://doi.org/10.1007/s11661-016-3461-3
http://doi.org/10.1126/science.224.4649.563
http://doi.org/10.1016/0370-1573(95)91133-U
http://doi.org/10.2174/1877946805999150818104141
http://doi.org/10.1098/rsta.2015.0419
http://doi.org/10.1146/annurev-fluid-010719-060349
http://doi.org/10.1103/PhysRevFluids.4.104005
http://doi.org/10.1017/jfm.2020.406
http://doi.org/10.3390/coatings10100960
http://doi.org/10.1039/D0CP05810F
http://doi.org/10.1246/cl.2010.1294


Materials 2021, 14, 6089 10 of 10

18. Ban, T.; Yamada, T.; Aoyama, A.; Takagi, Y.; Okano, Y. Composition-dependent shape changes of self-propelled droplets in a
phase-separating system. Soft Matter 2012, 8, 3908. [CrossRef]

19. Korteweg, D.J. Sur la forme que prennent les équations du mouvement des fluides si l’on tient compte des forces capillaires
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