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Abstract: Bearing performance degradation assessment (PDA), as an important part of prognostics
and health management (PHM), is significant to prevent major accidents and economic losses in
industry. For the data-driven PDA, the extraction and selection of features is quite important. To
better integrate the degradation information, the bearing performance degradation assessment based
on SC-RMI and Student’s t-HMM is proposed in this article. Firstly, spectral clustering was used
as a preprocessing step to cluster features with similar degradation curves. Then, rank mutual
information, which is more suitable for trendability estimation of long time series, was utilized to
select the optimal feature from each cluster. The feature selection method based on these two steps
is called SC-RMI for short. With the selected features, Student’s t-HMM, which is more robust to
outliers, was utilized for performance degradation modeling and assessment. The verifications
based on an accelerated life test and the public XJTU-SY dataset showed the superiority of the
proposed method.

Keywords: performance degradation assessment; feature selection; spectral clustering; rank mutual
information; Student’s t-HMM

1. Introduction

Rolling element bearings are widely used in rotary machines, such as drills, electric
motors, wind turbines, and turbofan engines. Therefore, bearing failure may lead to abrupt
shut-downs, costly losses, and even catastrophic accidents [1]. Recently, the precision
and complexity of modern machinery and equipment are constantly improving. While
the prognostics and health management are facing huge challenges, fault diagnosis and
performance degradation assessment (PDA) are receiving more and more attention [2,3].
PDA focus on the changes in the equipment health status during the entire service process,
rather than just discovering whether the equipment malfunctions. Effective PDA results
are the basis for further accurate remaining useful life (RUL) prediction, which can largely
ensure the safety and reliability of the equipment in the process of operation and reduce
the cost of equipment maintenance [4,5]. Therefore, the research related to bearing PDA
has been widely concerned [6–8].

Feature extraction and selection, as an important procedure in bearing PDA, directly
affects the final PDA results. Many common features have been applied, including time-
domain features such as root mean square (RMS) and kurtosis, frequency-domain features
such as frequency kurtosis, and time-frequency domain features obtained by wavelet packet
decomposition, empirical mode decomposition, and variational mode decomposition as
well as other features such as those based on mathematical morphology particles [9].
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Meanwhile, with the development of deep learning, many deep network architectures are
introduced for feature extraction and health indicator construction, such as long short-term
memory [10] and convolutional neural networks [11]. In order to solve the problem that
bearing vibration signals are susceptible to serious interference, He et al. [12] proposed
multi-resolution singular value decomposition and a long short-term memory-network-
based bearing PDA method. Xu et al. [13] used a moving window-based stacked auto-
encoder with an exponential function to construct a smooth degradation curve. The deep-
learning-based methods can realize end-to-end deep feature extraction without human
intervention automatically. However, time-consuming and unclear physical meaning are
the common shortcomings of deep learning.

With the rapid development of signal processing and feature extraction technique, the
high-dimension features containing abundant fault and degradation information can be
available. In this case, how to extract or select features with high degradation information
and low redundancy becomes the key issue. Typical metrics such as monotonicity, robust-
ness, trendability, and consistency are often used for feature evaluation. Niu et al. [14]
utilized the rank mutual information criterion to measure the nonlinear correlation be-
tween feature and time. Chen et al. [15] calculated the mixed scores of three evaluation
indicators and utilized a variant correlation-based feature selection method to determine
the number of optimal features. Methods based on mixed evaluation indicators can more
comprehensively evaluate features without doubt, but the parameters of mixed evaluation
metrics commonly rely on manual experience adjustment, which limits its application.
Besides, the whole lifetime of bearings contains several different degradation stages. Taking
the evolution process of bearing wear fault as an example, this characteristic of bearing
degradation process can be shown directly in Figure 1 provided by the literature [16]. The
surface roughness becomes smoother in the running-in stage, and the steady-state stage
is accompanied by uniform lubricating film and contact mechanics. In the third stage,
microcracks initiate and open on and under the surface. Then, the microcracks gradually
expand to produce secondary cracks or separation. The evolution mechanism of each
degradation stage is different, which leads to different vibration characteristics. Therefore,
the evaluation of degradation features can not only be estimated from the overall devel-
opment trend but also considering the local structure of feature curves. However, in the
existing literature, this factor is rarely considered in the evaluation metrics for degradation
feature selection.
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To solve this problem, a systematic degradation feature selection method based on
spectral clustering and rank mutual information is proposed in this article. As a typical
clustering algorithm, the spectral clustering algorithm can find clusters at any space and
converge to the global optimal solution [17]. It is often used in fault diagnosis [18] and fault
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state recognition [19] but rarely in feature clustering. In this study, spectral clustering was
used as a preprocessing step of feature selection to cluster features with similar degradation
curves. Then, the optimal feature set was constructed by selecting the optimal feature from
each cluster. Feature selection based on these two steps can not only reduce the information
redundancy caused by similar feature curves in the feature set but can also ensure the
diversity of different degradation curves in the feature set. In particular, how to evaluate
the sensitivity of different feature curves in each cluster is the key procedure. In order
to better evaluate features, rank mutual information (RMI) was introduced in this study,
which is more suitable for trendability estimation of long time series. This feature selection
based on these two steps is described in detail in the following sections.

After feature extraction and selection, the final PDA needs to fuse these selected
multi-dimension features to build a health indicator [20]. Tse et al. [21] used principal
component analysis (PCA) to construct a health indicator for impeller PDA. Guo et al. [10]
input the feature set formed by integrating similar features and classical time-frequency
features into a recurrent neural network (RNN) to construct RNN-HI. Different from deep
learning, the hidden Markov model (HMM) infers the hidden state change through the
observations, which is more suitable for PDA. HMM has been widely used in recent
years due to the advantages of high accuracy in small samples and with clear physical
meaning. Ocak et al. [22] used HMM for bearing fault detection and diagnosis for the first
time. Yu et al. [23] proposed a machine health degradation assessment method based on
HMM and contribution analysis. Li et al. [24] used the time-dependent state transition
probability matrix with degradation characteristics to obtain the HMM reliability curve
and realized the reliability evaluation of wind turbine components based on small sample
data. Li et al. [25] established a hazard model describing the time-varying and conditional
adaptive state transition probability to estimate the wear state of the tool. Yu et al. [26]
proposed an adaptive-learning-based method for machine faulty detection and health
degradation monitoring, which provide a useful guide for developing a condition-based
maintenance system. Jiang et al. [27] combined Student’s t-HMM with nuisance attribute
projection to construct a robust PDA model, which shows more tolerance to outliers than
conventional HMMs. In this study, Student’s t-HMM was utilized to construct a health
indicator based on the selected feature sets and to assess the degradation process.

The rest of the article is structured as follows. The related theoretical backgrounds
of spectral clustering, rank mutual information, and Student’s t-HMM are introduced in
Section 2. In Section 3, the whole procedures of the proposed bearing PDA are introduced.
In Section 4, two experimental data sets are used to verify the proposed method. Finally,
a conclusion is carried out in Section 5.

2. Theory Background
2.1. Spectral Clustering

Different from the traditional clustering algorithms like k-means, the spectral cluster-
ing algorithm is based on graph theory [28]. Spectral clustering takes samples as vertices
and the similarity between samples as the weight of vertex connection edge, transforming
the clustering problem into the partition problem of an undirected graph with weights. It
can find clusters at any space and converge to the global optimal solution [29], which is
superior to the traditional clustering method [30]. Therefore, spectral clustering is utilized
to cluster different lifetime curves as a pre-procedure of feature selection in PDA.

For the sample data {x1, x2, . . . , xn}, each data point xi can be represented as a vertex
vi. Let G = (V, E) be an undirected graph with a vertex set V = {v1, v2, . . . , vn} [22].
Assume that the graph G is weighted. Each edge between two vertices vi and vj carries
a non-negative weight wij ≥ 0. Then, a weighted adjacency matrix of the graph can be
obtained as follows:

W =
{

wij
}
(i, j = 1, . . . , n) (1)
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As G is undirected, wij = wji. If wij = 0, it means that the vertices vi and vj are not
connected by any edge. Then, W(,) defines the relations of two not necessarily disjoint sets
A,B ⊂ V.

W(A, B) := ∑
i∈A,j∈B

wij (2)

The goal of spectral clustering is to cut the graph G = (V,E) into k subgraphs with no
connection, which can be defined as follows:

cut(A1, A2, . . . , Ak) =
1
2

k

∑
i=1

W(Ai, Ai) (3)

The set of each subgraph points is defined as A1, A2, . . . , Ak, and they satisfy
Ai∩Aj = ∅, and A1∪A2∪ . . . ∪Ak = V. Many techniques have been proposed to solve
the cutting graph problem, and the NCut technique was utilized in this study [22]. Based
on the NCut technique, the problem described in Equation (3) can be rewritten as

argmin︸ ︷︷ ︸
F

tr(YTD−1/2LsymD−1/2Y) s.t. YTY = I (4)

where the degree matrix D is defined as the diagonal matrix with the degrees d1, d2, . . . , dn

on the diagonal, and di =
n
∑

j=1
wij. Lsym is the normalized graph Laplacian matrix defined as

Lsym = I−D−1/2WD−1/2. This is the standard trace minimization problem, and solution
Y consists of the minimum first k eigenvectors of the matrix Lsym. Now, all sample points
belonging to the same cluster were mapped from the original high-dimensional feature
space into a new low-dimensional feature space (i.e., xi → yi ), which enabled us to obtain
the final clustering result based on the simple clustering method. In this study, the classical
k-means method was adopted.

2.2. Rank Mutual Information

The Spearman coefficient, as one of the major statistical correlation coefficients, was
often used to measure the correlation between two continuous variables. Generally, the
Spearman coefficient is utilized to evaluate the non-linear correlation between feature
and time series for feature selection in PDA as a similarity metric. However, the whole
degradation process of the bearing usually covers several different degradation stages.
The evolution mechanism of each stage was different, resulting in different development
patterns of vibration signals in each stage. For example, during the whole lifetime of the
bearing, the normal stage is usually long and stable, while the fault stage usually changes
rapidly. Unfortunately, the Spearman coefficient can only evaluate the overall trendability
of time series, which cannot reflect the local structure of data. Therefore, it is not suitable
as an evaluation metric for the selection of bearing degradation features. In this study, we
introduced a new evaluation metric for degradation feature selection called rank mutual
information (RMI).

RMI is a generalization method based on Shannon entropy, which can be used to
measure the correlation between two sequence data. In particular, when RMI is used to
measure the non-linear correlation between sequence data and time series, we find that
it is more easily affected by the trendability of data in the later stage. This quality has
advantages in optimizing the bearing degradation feature curves. So, RMI was introduced
as the evaluation metrics for feature selection in this study.

Let X = {x1, · · · , xn, · · · xN} and Y = {y1, · · · , yn, · · · yN} be two sequence data,
where 1 ≤ n ≤ N. Given ∀xi ∈ X, ∀yi ∈ Y, we defined the following sets:

[xn]≥ = {xi ∈ X|xi ≥ xn} (5)

[xn]≤ = {xi ∈ X|xi ≤ xn} (6)
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[yn]≥ = {yi ∈ Y|yi ≥ yn} (7)

[yn]≤ = {yi ∈ Y|yi ≤ yn} (8)

Then, the ascending rank mutual information (ARMI) and the descending rank mutual
information (DRMI) between sequence X and Y were defined as:

ARMI(X, Y) = − 1
N

N

∑
n=1

log

∣∣[xn]≤
∣∣× ∣∣∣[yn]≤

∣∣∣
N ×

∣∣∣[xn]≤ ∩ [yn]≤

∣∣∣ (9)

DRMI(X, Y) = − 1
N

N

∑
n=1

log

∣∣[xn]≥
∣∣× ∣∣∣[yn]≥

∣∣∣
N ×

∣∣∣[xn]≥ ∩ [yn]≥

∣∣∣ (10)

In ARMI,
∣∣[xn]≤

∣∣ = ∑ irni is the cardinality of set [xn]≤; ∩ is an intersection operator;
and rni is the degree of xn worse than xi. We have:

rni = 0, if xn > xi

rni = 1, if xn ≤ xi

(11)

In DRMI, rni is the degree of yn better than yi. We have:
rni = 0, if yn < yi

rni = 1, if yn ≥ yi

(12)

When RMI is used to measure the trendability between feature sequence X and time
series T, Equations (9) and (10) could be rewritten as:

ARMI(X, T) =
1
N

N

∑
n=1

log
N ×

∣∣[xn]≤ ∩ [tn]≤
∣∣

(N − n + 1)×
∣∣[xn]≤

∣∣ (13)

DRMI(X, T) =
1
N

N

∑
n=1

log
N ×

∣∣[xn]≥ ∩ [tn]≥
∣∣

n×
∣∣[xn]≥

∣∣ (14)

It can be seen from Equation (13) that the larger n is, the larger N/(N − n + 1) is. ARMI
is more susceptible to the current rank sequence. From Equation (14), we can see that as
n increases, DRMI is less affected by the current rank sequence, which is just opposite
to ARMI. Therefore, we used ARMI to assess the trendability of the degradation feature
sequence, aiming to select features with better trendability in the degradation or fault
stage. It was easy to deduce that 1 is the upper bound of ARMI, and the derivation process
is as follows:

ARMI(X, T) ≤ 1
N

N

∑
n=1

log
N ×

∣∣[xn]≤
∣∣

(N − n + 1)×
∣∣[xn]≤

∣∣ = 1
N

N

∑
n=1

log
N

(N − n + 1)
≤ 1

We used a few simple simulation data to illustrate the properties of RMI. The mathe-
matical formulas of y1 and y2 are shown as follows:

y1 =

 −
x

60 + N(x), 1 ≤ x ≤ 600
(x−600)2

600 − 10 + N(x), 600 < x ≤ 800

y2 = x
30 + 30× N(x), 1 ≤ x ≤ 800

(15)

where x is a positive integer representing time, and N(x) is a random fluctuation following
the standard normal distribution. The plots of y1 and y2 are shown in Figure 2. The
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Spearman and RMI were used to measure the trendability of y1 and y2. The calculation
results are shown in Table 1.
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Figure 2. Plots of simulation data.

Table 1. The trendability evaluated by Spearman coefficient and ARMI.

Data Spearman Coefficient ARMI

y1 −0.0955 0.2689
y2 0.2262 0.1706

From the results of Spearman in Table 1, we can see that the absolute value of y2
was greater than y1, indicating that y2 had a greater trendability. However, y1 is more
desirable and more consistent with the actual bearing performance degradation process.
For y1, the negative trendability of the previous stage and the positive trendability of
the later stage offset each other, making the value of Spearman close to 0, which reflects
the “misjudgment” of the Spearman coefficient. However, RMI can reduce the impact
of previous stage data to a certain extent and prefers the features with good trendability
in the later stage. So, RMI is more suitable for degradation feature curve selection. It is
worth mentioning that the positive and negative trendability dividing line of ARMI is not
necessarily 0, while Spearman is. So, we can use the Spearman coefficient for trendability
correction before using ARMI if necessary.

2.3. Student’s t-HMM

The hidden Markov model is a dual stochastic model based on time series, which
covers two random chains. One is a stochastic process for the observation sequence chain,
and the other is a Markov process for the hidden state chain. Based on Bayesian inference,
it estimates the hidden state changes from the observation data. Its basic principle is
essentially the same as performance degradation evaluation, and the evaluation results are
highly interpretable. So, HMMs are widely used in the field of mechanical fault diagnosis
and PDA [31,32]. In this study, Student’s t-HMM, which has been proved to be highly
tolerant to outliers in real-world applications [27,33], was introduced for bearing PDA
based on the selected features. The graphical illustration of Student’s t-HMM is displayed
in Figure 3.
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The Student’s t-HMM is defined as a finite state-space hidden Markov model whose
observation emission distributions of each hidden state are modeled by Student’s t-mixture
models (SMMs). Suppose that one Student’s t-HMM has I hidden states, and the number
of the components of SMMs is J. Then, one Student’s t-HMM can be expressed by the
following parameters:

• π: the initial state probability distribution. π= {πi}, and πi = P(q1 = Si) for
1 ≤ i ≤ I.

• A: the state transition probability matrix. A= {a ij

}
, and aij = P(qt+1 = j|qt = i ) for

1 ≤ i, j ≤ I.
• Θ: the observation probability distribution parameter sets based on the Student’s

t-HMM. Θ= {Θi}, and Θi= {w ij, µij, Σij, νij}J
j=1 for 1 ≤ i ≤ I. Then, the probability

density of the observation ot emitted from the i-th hidden state can be calculated as

p(ot; Θi) =
J

∑
j=1

wijt(ot; µt, ∑ij, vij)

Then, one Student’s t-HMM can be described by π, A, and Θ. For convenience, the
notation λ = (π, A,Θ) is used to indicate the complete parameter set of one Student’s t-HMM.

3. Bearing PDA Based on SC-RMI and Student’s t-HMM

Raw sensory data exhibit rich degradation information along with many kinds of
disturbing information, so it can be quite challenging to obtain effective features with
strong trendability to reflect the degradation process in a meaningful way. Moreover, some
classical features like RMS lack a stable following trend with degradation process until
a few times before failure occurs. Consequently, degradation-sensitive feature extraction
and optimal selection from monitoring signals are quite important steps in PDA and
have a direct and important impact on the assessment results. According to these, a new
PDA framework based on SC-RMI and Student’s t-HMM was proposed. Firstly, spectral
clustering was utilized to cluster lifetime feature curves. The features with similar shapes
during the whole lifetime were clustered together, and features with different shapes
during the whole lifetime were separated from each other. To prevent the loss of effective
information, it was necessary to maintain the diversity of feature space. Meanwhile,
information redundancy undoubtedly exists among features in the same cluster. Therefore,
as the next procedure, optimal features based on RMI from each cluster were selected and
put together to construct the final feature set. Feature selection based on these two steps
can not only reduce the information redundancy caused by similar feature curves but can
also ensure the diversity of different degradation curves in a feature set. So, this feature
selection method is called SC-RMI for short. Finally, the selected features were put into
Student’s t-HMM for PDA, which covers the training and testing procedures. The main
steps are described as follows.
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Step 1: feature selection based on SC-RMI. Based on time-frequency domain feature
extraction methods, several lifetime feature curves could be obtained from the training
lifetime data. Firstly, spectral clustering was utilized to cluster the features with similar
shapes and trendabilities during the life cycle. Secondly, in order to fuse the degradation
information in different feature clusters and reduce the information redundancy of similar
features at the same time, RMI metrics were used to evaluate features, and features with
the largest RMI were selected from each cluster. Then, a degradation-sensitive feature set
was established with rich degradation information and less redundancy simultaneously.
This feature selection method is simply called SC-RMI.

Step 2: PDA modeling based on Student’s t-HMM. In the application of PDA, a normal
Student’s t-HMM is usually constructed based on the degradation-sensitive feature training
set from the normal operation state. After the feature selection, the degradation-sensitive
feature set was established. Features extracted from data under the normal stage were
utilized as the training data for normal Student’s t-HMM modeling. All the algorithms
of ordinary HMMs could be applied. Detailed algorithms are provided in reference [34].
Then, a normal Student’s t-HMM could be obtained.

Step 3: performance degradation assessment. The model structure and parameters
(λ = (π, A,Θ)) of the normal Student’s t-HMM reflect the multi-state time series statis-
tical law of monitoring data under normal operation state. The degradation process of
equipment can be regarded as a deviation from the normal operation state. Then, the
testing feature set O is put into the normal Student’s t-HMM (λ) to calculate the likelihood
probability output P(O | λ). The likelihood probability output of the testing data in the
trained model is a measure of the membership degree of the state of the testing data to
the normal state. The closer the current equipment is to the normal operation state, the
greater the likelihood probability of the testing data output in the normal Student’s t-HMM.
Therefore, in the framework of equipment PDA based on Student’s t-HMM, the output
likelihood probability of the testing data in the normal state model is often recorded as the
performance indicator (PI).

The whole frame of the proposed method is shown in Figure 4. Sensitive features
were selected through SC-RMI as shown in the blue box and used in subsequent steps. The
parameters of the trained Student’s HMM calculated in the orange box were passed to the
green box for assessment.
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4. Experimental Verification

To verify the effectiveness of the proposed bearing PDA method, data sets of two bearing-
accelerated life tests were utilized

4.1. Case Study I: An Accelerated Life Test of Rolling Bearings
4.1.1. Experiment Introduction

An accelerated life test of rolling bearings was carried out with the support of the
Hangzhou Bearing Test & Research Center (HBRC). The diagram of the test rig is displayed
in Figure 5. The platform consists of an AC motor, a transmission system, a lubrication
system, a loading system, and a data acquisition system. Four bearings, type 6307, were
mounted on the testbed at the same time. The additional load P was 12.744 kN, which
accelerates the deterioration of the bearing. Three acceleration sensors, type PCB348A,
were placed on the shell of the test bearings. Five characteristic frequencies are displayed
in Table 2. The sampling frequency was 25.6 kHz, and 20,480 samples (i.e., 0.8 s) were
recorded per minute. During the whole test, bearings at Bearing 1 and Bearing 3 locations,
as shown in Figure 5, ran to failure first. These two bearings were marked as B1 and B2,
separately. So, data sampled from B1 and B2 are utilized in this section.
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Table 2. Characteristic frequencies of rolling element bearing 6307.

Type fr fbp fip fop fc

6307 50 Hz 102 Hz 246 Hz 153 Hz 19 Hz

4.1.2. Data Description

The total lifetime of B1 and B2 was 2469 min and 4431 min, respectively. When B1
failed at 2469 min, a new bearing was installed at the position of Bearing 1. At the same
time, B2 was found to be in the normal stage. Therefore, only 1962 minutes’ data after
replacing B1 were utilized to analyze B2. The RMS plots of B1 and B2 are shown in Figure 6.
Channel 3, which was more sensitive to the degradation process for both bearings, was
selected for the following analysis. From the perspective of the entire RMS life curve, the
two bearings can only be roughly divided into two stages: the normal stage and the failure
stage. The B1 bearing entered the failure stage around 2300 min. The early running-in stage
could be observed during the first 400 min and the failure stage started around 1850 min
for B2. More detailed degradation information could not be caught easily from the RMS plots.

In practical engineering, time domain and frequency domain statistical features are
commonly used in bearing condition monitoring. As a time-frequency analysis method,
wavelet packet transform (WPT) is the generalization of the wavelet transform and has
been used in several applications of signal processing. The distribution of wavelet packet
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decomposition node energies relates to the state of bearings. The wavelet packet decom-
position node energies and energy entropies are usually extracted as features. It is proved
in reference [35] that they have better monotonicity and trendability than traditional features.
Envelope spectral entropy and amplitude spectral entropy in information entropy are also used
to extract features. Finally, 41 commonly used features were extracted, as shown in Table 3.
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Table 3. 41-Dimension features.

Feature Type Detailed Feature

Time-domain feature

F1: average value F7: Kurtosis factor
F2: standard deviation F8: Skewness factor

F3: square root amplitude F9: Crest factor
F4: root mean square F10: Margin factor

F5: peak F11: Impulse factor
F6: skewness

Entropy feature F12: envelope spectral entropy F13: amplitude spectral entropy

Frequency-domain feature F14–F25: full details are given in reference [36]

Time-frequency feature F26–F33: wavelet packet energy
F34–F41: wavelet packet energy entropy

4.1.3. Feature Selection Based on SC-RMI

After feature extraction, 41 dimensional original features of B1 could be obtained.
Sometimes there will be strong similarity among the extracted features, which means
that the fault information they contain is redundant. These features need to be grouped
according to their characteristics. Then, 41-dimensional life features extracted from the
B1 were clustered using the spectral clustering method. Since the cluster number is
an important preset parameter in spectral clustering, it affects the validity of the final
selected feature set. In this study, the Fisher discrimination criterion was utilized to
determine the optimal number of clusters. The number of clusters was determined when
the ratio of the between-class distance and the with-in distance was the largest. In this
experiment, the number of clusters was set to 12.

Figure 7 shows the feature clustering results after spectral clustering, and Figure 8
shows their corresponding correlation matrix. It can be seen that they almost overlapped
on the same curve, and their degradation information was similar for features in the same
cluster. At the same time, it can be seen that some features were sensitive in the severe
fault stage. Some features can reflect the early fault information, and some other features
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cannot even clearly reflect the fault state changes. This was closely related to their feature
extraction methods. For example, the features in Cluster 12 were mostly extracted by
time domain statistical methods, which are sensitive to the severe fault and insensitive
to the early fault. The features in Cluster 5 were extracted based on frequency domain
statistical methods, which are only sensitive to the early fault stage. The F37 in Cluster
8 is the node energy of a wavelet packet in a certain frequency band, which fluctuates
greatly in the degradation process and has no obvious trend characteristics. None of these
features can reflect the complete degradation process alone. Therefore, the features with
the largest RMI metrics were selected from each cluster to jointly form the sensitive feature
set. This procedure can greatly reduce the information redundancy in the high-dimension
feature. At the same time, it retains the diversity of features from different clusters, which
is conducive to the construction of PDA health indicators. Table 4 shows the selected
features from each cluster and their corresponding RMI values. For the three features with
the smallest RMI values that contain less degradation information and more interference,
they were not selected. Finally, the top nine sensitive features with high RMI values were
selected for further Student’s t-HMM training and assessment.
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Table 4. RMI Values of the selected features.

Feature Number 14 2 26 28 19 30

value 0.60 0.54 0.39 0.35 0.28 0.23

Feature number 31 25 22 37 17 1

value 0.16 0.13 0.12 0.07 −0.01 −0.10

4.1.4. PDA Based on SC-RMI and Student’s t-HMM

From the RMS diagram of B1, it can be roughly seen that the bearing maintained
stable operation in the first 100 min. Therefore, the first 100 min of bearing data were used
for normal model training. To better fit the current degradation stage, a model parameter
updating strategy was adopted when applying Student’s t-HMM modeling. According
to the principle of 3σ criterion, when the distribution of testing data is similar to that of
training data, their output PI values in the trained Student’s t-HMM fluctuate in a certain
range, which can be calculated based on 3σ criterion. Therefore, it can be considered as
the occurrence of a new stage at a certain time if 50 continuous PIs exceed the range of 3σ
criterion. However, considering the volatility of data, a 5% fault tolerance rate was set,
i.e., 5% points were allowed to fall outside the 3σ criterion. Based on whether the smooth
curve had a large continuous decline compared with the previous stable stage, the new
stage can be divided into two types: the stable stage and the continuous deterioration stage.
Only when the new stage was stable, the first 50 data points of the new stage were used to
update the Student’s t-HMM parameters, and the relative likelihood probability curve was
calculated since the new stage. Finally, a PI curve reflecting the degradation process of the
testing bearing can be obtained.

The PI results of B1 during the whole lifetime can be calculated based on the above
method. According to the PI results shown in Figure 9, the whole lifetime of B1 can be
divided into three distinct stages. The PI curve kept a stable fluctuation around a certain
value during Stage 1 for a long time. So, B1 in this stage was inferred to be under normal
running conditions. Then, around 1294 min, the PI value suddenly decreased and then
stabilized at a relatively low value. Although the PI value at this time had a significant
decrease from −98.6 to about −400, far beyond the normal 3σ range, it kept fluctuating
around a relatively stable value in the following period of Stage 2. It can be preliminarily
judged that early degradation occurred at the beginning of Stage 2, and the B1 was still
running smoothly. Different from the stable changes in the first two stages, the PI value
in Stage 3 decreased rapidly until the bearing failed at the end of time, which indicated
that the performance of the bearing had changed significantly in a very short time. This is
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not a possible phenomenon in the stable operation stage and the early failure stage, which
means that the bearing had entered the rapid deterioration stage and completely failed at
the end of this period.
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Figure 9. The PI results of B1 based on SC-RMI and Student’s t-HMM.

To verify the above assessment results, five special time points around the stage
transition points were chosen for further explanation. Their time plots and envelope
spectrum plots are displayed in Figures 10 and 11. At Time 1 and Time 2, no obvious shock
signal could be found in the vibration signal, and the amplitudes at the rotating frequency
and ball pass inner race frequency (BPIF) could not be observed. At Time 3 and Time 4, the
amplitudes of vibration were greater than those at Time 1 and Time 2, and the amplitudes
at rotating frequency and its harmonic frequency increased. However, the amplitudes at
BPIF were still not obvious. At Time 5, obvious periodic shock could be observed in the
time plot, and the amplitudes at the rotating frequency and BPIF were quite obvious. The
envelope spectrum covered the characteristics of the bearing inner race fault signal, which
means that obvious inner ring fault had occurred in the bearing. B1 did eventually fail
for the inner race fault, which was manifested by inner ring surface peeling and serious
reduction in surface roughness, as shown in Figure 12, in which the fault position was
located in the elliptical red frame. Therefore, PI obtained by the proposed method can
effectively evaluate the performance degradation process of B1.
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Figure 12. The failure bearing B1.

After assessing the degradation process of B1, these selected degradation-sensitive
features were applied to PDA of B2 for further verification. Similarly, the beginning
100 min’ data of B2, which was under the normal condition, were used for normal Stu-
dent’s t-HMM model training at the beginning. The final assessment results are shown
in Figure 13. The entire process of B2 can be divided into four stages. In Stage 1, initially,
PI kept at a relatively high level with large fluctuations affected by the replacement of B1.
Stage 1 is thought to be a normal stage. Around 836 min, the PI value suddenly decreased,
and then it kept stable in a relatively low value, which indicated the occurrence of early
degradation recorded as Stage 2. Then, around 1413 min, a similar situation occurred and
B2 ran into the next degradation state recorded as Stage 3. The degradation processes in
Stage 2 and Stage 3 seemed to be stable, and no obvious fault occurred in B2. Then, around
1871 min, the PI plot decreased rapidly in a very short time until B2 ran to failure. As in the
case of B1, the PI value of B2 in Stage 4 decreased rapidly until the failure was recognized
as the rapid deterioration stage.



Materials 2021, 14, 6077 15 of 24
Materials 2021, 14, x FOR PEER REVIEW 15 of 24 
 

 

 
Figure 13. The PI results of B2 based on SC-RMI and Student’s t-HMM. 

The time plots and envelope spectra of four representative moments are shown in 
Figures 14 and 15. At Time 1, any fault shock characteristic could not be observed from 
both the time plot and the envelop spectrum. For signals at Time 2 and Time 3, they were 
quite similar to each other in both time plots and envelop spectra. The amplitudes at ro-
tating frequency and its harmonic frequency were quite outstanding compared with Time 
1, and the amplitudes at BPIF were still unclear. However, the amplitude distributions in 
the frequency domain were different between them. So, different degradation stages 
could be separated for Stage 2 and Stage 3. At Time 4, obvious periodic shock could be 
observed in the time plot, and the amplitudes at the rotating frequency and BPIF were 
quite obvious, which matched the characteristics of the bearing inner race fault signal. B2 
did eventually fail for the inner race fault, as shown in Figure 16, which was the failure 
mode similar to bearing B1. Therefore, the selected features were proved to be effective 
for the performance degradation process of B2 too. 

 
Figure 14. Time plots of four representative moments. 

200 400 600 800 1000 1200 1400 1600 1800 2000
Time/min

−1000

−500

0

Time 4

Stage 1 Stage 2 Stage 4Stage 3

Time 1 Time 2 Time 3

0 5000 10000 15000 20000
No.of points

−0.4

0.4
Time1:634min

0 5000 10000 15000 20000
No.of points

−0.4

0.4
Time2:1074min

0 5000 10000 15000 20000
No.of points

−0.4

0.4
Time3:1661min

0 5000 10000 15000 20000
No.of points

−0.4

0.4
Time4:1889min

Figure 13. The PI results of B2 based on SC-RMI and Student’s t-HMM.

The time plots and envelope spectra of four representative moments are shown in
Figures 14 and 15. At Time 1, any fault shock characteristic could not be observed from both
the time plot and the envelop spectrum. For signals at Time 2 and Time 3, they were quite
similar to each other in both time plots and envelop spectra. The amplitudes at rotating
frequency and its harmonic frequency were quite outstanding compared with Time 1, and
the amplitudes at BPIF were still unclear. However, the amplitude distributions in the
frequency domain were different between them. So, different degradation stages could be
separated for Stage 2 and Stage 3. At Time 4, obvious periodic shock could be observed in
the time plot, and the amplitudes at the rotating frequency and BPIF were quite obvious,
which matched the characteristics of the bearing inner race fault signal. B2 did eventually
fail for the inner race fault, as shown in Figure 16, which was the failure mode similar to
bearing B1. Therefore, the selected features were proved to be effective for the performance
degradation process of B2 too.
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Figure 14. Time plots of four representative moments.

4.1.5. Comparisons with Other Methods

To further verify the effectiveness of our proposed PDA method, it was compared
with the other two methods. One was to use full features for assessment, and the other
was to use RMI directly to select features for assessment without using spectral clustering.
Other feature extractions and parameter selection procedures were kept the same.
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Figure 16. The failure bearing B2.

As shown in Figure 17, the PI results of B1 obtained using the RMI-only method
for feature selection could not distinguish the early degradation stage. However, there
was a smooth curve in the severe degradation stage, which shows the applicability of
RMI in PDA. Both the fully-featured training model and our proposed method could
distinguish different stages, but the PI value of the fully-featured method essentially had
greater fluctuations, although it looks the opposite in Figure 17. For the B2 bearing shown
in Figure 18, it may experience a running-in period in the beginning because B2 data
were collected after replacing B1. This shows a relatively violent shock compared to the
normal operation stage in B1. However, it was difficult for us to directly distinguish it
from the normal stable operation phase due to the unobvious running-in period. Therefore,
the degradation curves obtained by the other two methods were difficult to distinguish
between the normal operation stage and the early degradation stage, let alone to observe
the weak failure changes that may occur in the early degradation stage. However, our
proposed method can sensitively capture the change in the bearing degradation stage,
which illustrates the robustness of our method.
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Figure 17. Comparison of three different methods of B1.
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Figure 18. Comparison of three different methods of B2.

Different metrics of PIs obtained by these three methods are provided in Table 5,
among which the calculation formulas for trendability and robustness can be found in [1].
The trendability in Table 5 was obtained by using the Spearman coefficient. For the B1
bearing, the proposed method performed better in RMI and trendability metrics. The only
RMI method showed better on robustness metrics. RMI was more sensitive to the data in
the later stage, so it tended to have better robustness. However, this may lead to its failure
in early fault stage division. For the B2 bearing, these three metrics values of the proposed
method were the largest. In conclusion, the proposed method achieved better results than
the other two methods in these three metrics.
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Table 5. Three different metrics of PIs by different methods.

Bearing Number Different Methods RMI Trendability Robustness

B1
Proposed method 0.78 0.87 0.91

All features 0.77 0.87 0.87
Only RMI 0.47 0.41 0.94

B2
Proposed method 0.81 0.95 0.93

All features 0.40 0.48 0.79
Only RMI 0.53 0.71 0.88

4.2. Case Study II: The Public XJTU-SY Bearing Data Set
4.2.1. Experiment Introduction and Data Description

This article adopted the XJTU-SY data set of the accelerated life test for rolling bear-
ings [37]. The bearing testbed is shown in Figure 19. This platform can conduct accelerated
degradation tests of bearings to provide real experimental data that characterize the degra-
dation of bearings during the whole operating life. Fifteen rolling bearings of LDK UER204
were tested under three different working conditions. The material of LDK UER204 is
GCr15, which has a high and uniform hardness after quenching and tempering, a high wear
resistance, contact fatigue resistance, and good hot workability. It is often used in bearing
production. The detailed parameters are given in Table 6. The failure of the bearings in
the test was caused by different types of faults like inner race wear, outer race wear, outer
race fracture, etc. Figure 20 displays the photos of normal and typical failure bearings.
To acquire the run-to-failure data of the tested bearings, as shown in Figure 18, two PCB
352C33 accelerometers were placed on the housing of the tested bearings and positioned at
90◦ to each other, i.e., one was placed on the vertical axis and the other one was placed on
the horizontal axis. The sampling frequency was 25.6 kHz, and 32,768 samples (i.e., 1.28 s)
were recorded every 1 min. Besides, the accelerated degradation tests of bearings were
stopped when the amplitude of the vibration signal was higher than 20 g. Correspondingly,
the time when the amplitude of the vibration signal exceeded 20 g was considered as the
failure time of the tested bearing.
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Bearings with an outer race fault during failure under running condition 1 were
selected for verification, which included Bearing 1-1, Bearing 1-2, and Bearing 1-3. Specifi-
cally, Bearing 1-1 was used to select degradation-sensitive features based on SC-RMI. All
these three bearings were further used to verify the effectiveness of the proposed PDA
method. Figure 21 shows the horizontal vibration signal of these three bearings.
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Table 6. Parameters of the tested bearings.

Parameter Value Parameter Value

Outer race diameter 39.80 mm Inner race diameter 29.30 mm
Bearing mean diameter 34.55 mm Ball diameter 7.92 mm

Number of balls 8 Contact angle 0◦

Load rating (static) 0.88 Load rating (dynamic) 12.82 kN
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Figure 20. Photos of tested bearings: (a) normal bearing; (b) inner race wear; (c) outer race wear;
(d) outer race fracture.
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Figure 21. Horizontal vibration signal of three bearings.

4.2.2. Feature Selection Based on SC-RMI

The 41-dimensional original features were extracted according to the feature extraction
used in case study I. The number of clusters was set to nine according to the Fisher
discrimination criterion. Figure 22 shows the feature clustering results after spectral
clustering, and Figure 23 shows the corresponding correlation matrix of Bearing 1-1. It can
be seen that the curves of features in the same cluster are similar or even overlapped, which
indicates the effectiveness of spectral clustering in feature clustering. Some features were
suitable for PDA, while others were not. The poor metrics may also contain key degraded
information. For example, there was an obvious stage division in Cluster 7, which is useful
for PDA. We can tolerate these features if it does not affect the final trendability of PI.
Moreover, too many similar features will cause the PDA results to be overly affected by
a single type of feature, thus losing the diversity of features. So, SC-RMI was utilized for
feature selection in PDA. Table 7 shows the selected features from each cluster and their
corresponding RMI values. It can be seen that the RMI value of feature F1 from Cluster 8
was far less than the other values. At the same time, F1 contained little degradation stage
information and fluctuated greatly compared with other features. So, F1 was removed.
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Finally, the top eight sensitive features with high RMI values were selected for Student’s
t-HMM training and assessment.
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Table 7. RMI of Bearing 1-1 optimal features.

Feature Number 23 2 15 19 12 22 18 16 1

Value 0.88 0.87 0.87 0.85 0.65 0.59 0.5 0.38 0.1
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The data of the first 50 min of Bearing 1-1 were used for Student’s t-HMM model
training, and the PI results during the whole lifetime are displayed in Figure 24a. In about
75 min, the bearing began to enter a rapid deterioration stage and maintained a stable
degradation process until failure. The envelope spectra of four representative moments
are shown in Figure 24b. The spectra of Time 1 and Time 2 were similar, and the envelope
spectrum mainly included the rotation frequency component of the bearing. At this time,
amplitudes at the outer race fault frequency and its multiple frequency were not obvious.
From Time 3 to Time 4, the multiple frequency components of the bearing outer race fault
became more and more obvious. This was consistent with the PI results of Bearing1-1.
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4.2.3. Comparisons with Other Methods

The selected features of Bearing 1-1 were used for the PDA of Bearing 1-2 and Bearing
1-3 for further verification. At the same time, PDA based on the method with all features
and the method with feature selection only by RMI were carried out for comparison. Except
for the different methods of feature selection, other parameters and techniques were kept
the same. PI curves calculated by these three methods are plotted in Figure 25. For Bearing
1-2, the PI curve obtained by the proposed method achieved better performance. The PI
curves obtained by the other two methods contained more fluctuations, especially during
60 min to 80 min. For Bearing 1-3, the results of the proposed method were still better
than the other two methods. Unexpected excessive mutations existed in PI curves since
around 120 min. Three different metrics were calculated for PIs of these three methods,
which are shown in Table 8. The proposed method achieved better results than the other
two methods in three metrics. In addition, the method with all features had a larger
amount of calculation, and the method with feature selection only by RMI could not ensure
the diversity of feature sets. With the help of SC-RMI, the proposed method not only
made full use of the diversity of features but also reduced the interference of redundant
information. Therefore, the bearing PDA based on SC-RMI and Student’s t-HMM can
achieve better performance.

Table 8. Three different metrics of PIs by different methods.

Bearing Number Different Methods RMI Trendability Robustness

Bearing 1-2
Proposed method 0.90 0.98 0.92

All features 0.70 0.84 0.92
Only RMI 0.83 0.95 0.89

Bearing 1-3
Proposed method 0.91 0.94 0.91

All features 0.86 0.95 0.88
Only RMI 0.89 0.93 0.89
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5. Conclusions

An effective bearing performance degradation assessment method based on SC-RMI
and Student’s t-HMM was proposed in this study. Spectral clustering was firstly used
to cluster high-dimensional features, which showed outstanding performance in similar
lifetime curve clustering. Rank mutual information, which is more suitable for trendability
estimation of long time series, was utilized to select optimal features from each cluster.
Based on the cooperation of these two techniques, features with good trendability for
the bearing degradation process and less redundant information can be selected. Finally,
Student’s t-HMM was utilized for the degradation process modeling and assessment, which
showed strong robustness in PDA. The verification by accelerated bearing degradation
experiment and the public XJTU-SY dataset showed the superiority of our proposed
method with the advantages of sensitivity to degradation, good trendability, and strong
robustness. In particular, the performance indicator obtained based on the proposed
method had a good trendability in the fault deterioration stage, which is very valuable for
later remaining useful life prediction. In addition, the proposed method of this study can
contribute to the development of equipment intelligent maintenance in the era of big data
and intelligent manufacturing.
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