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Abstract: In today’s developing aircraft and automotive industry, extremely durable and wear-re-
sistant materials, especially in high temperatures, are applied. Due to this practical approach, con-
ventional materials have been superseded by composite materials. In recent years, the application 
of metal matrix composites has become evident in industry 4.0. A study has been performed to 
analyze the surface roughness of aluminum matrix composites named Duralcan® during end mill-
ing. Two roughness surface parameters have been selected: arithmetical mean roughness value Ra 
and mean roughness depth Rz regarding the variable cutting speed. Due to the classification of alu-
minum matrix composites as hard-to-cut materials concerning excessive tool wear, this paper de-
scribes the possibility of surface roughness prediction using machine learning algorithms. In order 
to find the best algorithm, Classification and Regression Tree (CART) and pattern recognition mod-
els based on artificial neural networks (ANN) have been compared. By following the obtained mod-
els, the experiment shows the effectiveness of roughness prediction based on verification models. 
Based on experimental research, the authors obtained the coefficient R2 for the CART model 0.91 
and the mean square error for the model ANN 0.11. 
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1. Introduction 
Nowadays, composites materials are used extensively by the automotive and aircraft 

industries because of their specific mechanical properties. One of the popular construction 
materials is metal matrix composites (MMCs), which offer higher hardness and wear re-
sistance than conventional monolithic materials. These multiphase materials containing 
matrix and reinforcement are characterized by specific strength and good wear resistance. 
Moreover, these reinforcing phases efficiently increase the modulus due to MMCs’ load-
bearing capability during mechanical loading [1,2]. One type of MMCs is particles rein-
forced metal matrix composites (PRMMCs), including various kinds of particles added 
into the metal matrices such as carbides, oxides, or nitrides. Compared to the other form 
of reinforcement such as whiskers, short fibers, and continuous fiber, the particles give 
better isentropic properties to distribute uniformly in the matrix phase. In addition, the 
reinforcement in the form of particles bears a higher load than the matrix, which strength-
ens it effectively (called the load transfer effect). Unfortunately, if the load on the particle 
strength is exceeded, the particle will crack. Therefore, PRMMCs are exposed to early 
fracture, and strength and ductility reduction. Thus, during the design and fabrication of 
composites with particles reinforcement, it is essential to consider particle size, aspect ra-
tio, and matrix strength to reduce particle damage [3]. 
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One of the most used industrial applications is aluminum matrix composites 
(AMCs), which consist of pure aluminum or aluminum alloy as a matrix. Aluminum al-
loys are one of the most common nonferrous metals used in commercial production, and 
these alloys, with reinforcement, can offer outstanding mechanical and tribological prop-
erties. The principal advantages of reinforcement in AMCs are the improvements in hard-
ness, tensile strength, impact strength, compressive strength, and wear resistance [4]. 
These types of composites are produced by in situ fabrication, rheocasting, and spray dep-
osition in semi-solid matrix conditions, but the most popular is solid- and liquid-state 
processing [5]. The most commercially used technique in liquid-state processing is stir 
casting, which is more cost-effective than solid-state methods. This method provides a 
relatively homogenous dispersion of reinforcements in a matrix [6]. One typical reinforce-
ment used in the aviation and manufacturing industry is silicon carbide (SiC) owing to its 
thermal characteristics and tribological properties. S. Sivananthan et al. [7] successfully 
adopted stir casting to fabricate AA 6061 alloy with 0–4 wt.% of SiC particulates. The SiC 
composite acquired better properties than AA 6061 alloy, and just four wt.% of SiC im-
proved hardness by 25% and tensile strength by 25.6% compared to AA 6061 alloy. The 
enhancement of mechanical properties was also observed by J. Jebeen Moses et al. [8], who 
produced AMC with SiC particulates of 5, 10, and 15 wt.%. They reported that AA 6061 
alloy with 15% volume fraction improved microhardness by 133.33% and ultimate shear 
by 65.2% compared to AA 6061 alloy. Moreover, such an approach allows homogenously 
distributing SiC particulates in the aluminum alloy matrix and limiting the risk of SiC 
segregation along the grain boundaries. 

Nevertheless, aluminum-based silicon carbide composite (SiCp/Al) is also a hard-to-
cut material because of its high-hardness reinforcing particles, which could cause exces-
sive tool wear and deterioration of surface roughness. For high precision engineering ap-
plications, material removal rate, tool life, and workpiece surface roughness are necessary 
for machinability assessment. Nowadays, most researchers focus on the influence of var-
ious SiCp/Al composite parameters on its machinability. For example, P. Zhang et al. [9] 
analyzed the size particle effect on cutting force, cutting temperature, and chip shape un-
der different cutting parameters. The results show that cutting force is positively corre-
lated to feed rate and particle size. When the particles are between 10 and 30 μm and the 
cutting speed increases, the main cutting force decreases. On the other hand, when parti-
cle size increases to 40 μm, the cutting force firstly decreases and then increases. Moreo-
ver, the bending radius and length of the chip decrease as particle size increases. Other 
studies are focused on the machining condition effect on surface roughness, especially 
examining the influence of the cutting parameters [10,11]. Attention is focused on the sur-
face roughness to obtain a good fatigue life of machined parts. PRMMCs’ surface rough-
ness is complex because of voids, microcracks, pits, protuberances, grooves, or matrix 
tearing on the machined surface. Additionally, the irregular surface texture is observed 
due to particles in the matrix, and particle fracture affects the surface roughness [12–14]. 
Khare et al. [15] investigated the influence of cutting parameters and wt.% Al2O3/Gr on 
surface roughness during the end milling of Al/Al2O3/Gr composite. This study shows a 
significant feed rate, cutting speed, and wt.% Al2O3/Gr on surface roughness. In addition 
to cutting parameter influence, the optimization of machining conditions in the machining 
of MMCs is general in today’s studies [16,17]. The optimization of machining conditions 
in MMCs milling was studied by S. Karabulut et al. [18] to achieve a better surface finish. 
In this study, the machining parameter was optimized by Taguchi’s L18 (21 × 32), and an 
artificial neural network (ANN) model was used to estimate Ra’s arithmetical mean 
roughness value. Results show the best optimal parametric combination for AA7039/SiC 
and AA7039/B4C milling (cutting speed 488 m/min and feed rate 0.1 mm/tooth) and the 
most significant cutting speed impact on surface finish. Due to the poor machinability of 
MMCs and high processing costs, soft computing techniques and unconventional machin-
ing [19] have become a significant interest for researchers to determine performance pre-
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diction and optimization. Some of the soft techniques applied by researchers due to ana-
lyzing the machining of MMCs are ANN, response surface methodology (RSM), genetic 
algorithm (GA), Taguchi method, or finite computational element [20,21]. These tech-
niques are relatively cost-effective and could be applied in numerical and experimental 
approaches for modeling or simulating MMCs’ manufacturing and machining [22]. A nu-
merical model for analyzing the effects of PMMCs particulate size on damage mechanisms 
was developed by S. Gad et al. [23]. This paper’s computational finite element (FE) model 
was proposed to determine the elastoplastic behavior of A359/SiC particulate composite. 
They concluded that increasing SiC volume fracture (from 2 to 20%) leads to the increased 
modulus of elasticity, yield strength, and tensile strength. In addition, raising the partic-
ulate size in the matrix reduces the yield strength, ultimate tensile strength, and failure 
strain. These kinds of models could be helpful in the optimization of reinforcement pa-
rameters during the design phase. One of the new approaches to support decision making 
in MMCs casting was proposed by R. Sika et al. [24]. They designed Open Atlas of Casting 
Defects (OACD) to identify various defects of casting. Such a classification of defects in 
MMCs castings could be an appropriate tool to eliminate these defects using a support 
expert program. Soft techniques are also used to optimize surface roughness [25,26]. S. 
Karabulut [27] applied the Taguchi method to optimize cutting parameters, and ANN to 
predict surface roughness during milling of AA7039/Al2O3 metal matrix composites. Their 
experiments showed that the best cutting parameters for superior surface roughness were 
observed for a cutting speed of 488 m/min, feed rate of 0.1 mm/tooth, and axial depth of 
cut of 1 mm. They also developed an effective ANN prediction model for surface rough-
ness achieving determination coefficient R2 = 97.75%. G. Zhou et al. [28] proposed an ANN 
roughness prediction model for Al/SiC particulate composite material milling. They de-
veloped a learning method to solve the MMCs milling problems effectively, and a suc-
cessfully trained ANN model that could predict surface roughness with a 2.08% mean 
relative error. 

Most past studies focus on optimizing cutting parameters and analyzing cutting 
forces, surface roughness, and tool wear in MMCs machining. Optimization and predic-
tion techniques are mostly used by the Taguchi method, ANN, or analysis of variance 
(ANOVA) to machining aluminum particulate composites. The scope of this paper in-
volves the application of Classification and Regression Tree (CART) and pattern recogni-
tion models based on ANN to predict surface roughness in Al/SiC particulate composites 
with 10% volume fracture. Adaptation of these kinds of soft techniques aims to under-
stand the machinability problem of hard-to-cut composites. In addition, analyzing surface 
roughness could be valuable for future researchers. 

2. Materials and Methods 
The end milling investigation was carried out using SiC particle-reinforced alumi-

num alloy composites called DuralcanTM. This material is manufactured by mixing the 
ceramic powder into molten aluminum, using a patented process. Then, the melt is 
poured into the foundry ingot, and products are formed using high-pressure die-casting. 
In this paper, the F3S.10S (AA359/SiC/10p) was applied to experimental studies. The range 
of mechanical and physical properties are shown in  Table 1;  Table 2. These composites 
have many uses in manufacturing in the automotive industry, such as brake rotors, brake 
calipers, brackets, and brake drums, etc.  
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Table 1. Typical physical properties of DuralcanTM F3S.10S. 

Density (g/cm3) Electrical Conductivity (%IACS) Specific Heat (cal/g·K) 
Average Coefficient of Thermal Expan-

sion (10−6/K) 
2.71 34.2 0.21 20.7 

Table 2. Mechanical properties of F3S.10S composite. 

Ultimate strength  
(MPa) 

Yield strength  
(MPa) 

Elongation  
(%) 

Elastic modulus  
(GPa) 

221 165 2.6 98.6 

The scanning electron microscopy (SEM) integrated with energy dispersive spectros-
copy (TESCAN MIRA3 FEG SEM, Brno, Czech Republic) was applied to evaluate the mor-
phology of AA359/SiC/10p composite. The metallographic microsections end EDM micro-
graphs of AMC are shown in Figure 1.  

 

 

Figure 1. Metallographic microsections of F3S.10S composite and EDS micrographs of SiC powder. 

The dry end milling experiments were conducted on a DECKEL-MAHO DMC70 V  
(Pfronten, Bayern, Germany) machining center integrated with a piezoelectric force sen-
sor. Furthermore, diamond-coated end mills were chosen to carry out research (diameter 
of cutting-edge d = 10 mm, number of edges z = 3). In Table 3, the research plan with one 
variable is presented.  

Table 3. Parameters of research plan. 

Cutting Speed vc  
(m/min) 

Spindle Speed n 
(rev/min) 

Feed per Tooth fz 
(mm/tooth) 

Axial Infeed Depth ap  
(mm) 

Radial Infeed Depth ae  
(mm) 

300 9544 
0.035 8 0.2 500 15,923 

900 28,662 

Three repetitions for each cutting speed were carried out. After each five milling pass, 
the cutting force components were measured in three directions (Fp for the axial direction, 
FfN for normal feed direction, and Ff for feed direction). One of the stages of the research 
was also the measurement of roughness parameters Ra (arithmetic mean roughness) and 
Rz (surface roughness depth), and tool corner wear VBC. For this purpose, the Hommel 

SiC 

Spectrum 1 
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Tester T500 (JENOPTIK Industrial Metrology, Villingen-Schwenningen, Germany) pro-
filometer measured length ln = 4 mm, and the elementary segment lr = 0.08 mm was ap-
plied to assess the topography of the machined surface. Figure 2 shows the scheme of the 
experimental end milling process.  

 
Figure 2. Schematic of the experimental set up. 

3. Results  
3.1. Analysis of Surface Roughness 

The analysis of Ra and Rz parameters was investigated in various cutting speeds to 
determine the relations between the surface roughness and cutting forces. MMC ma-
chined surfaces at different cutting speeds are given in Figures 3–5. 
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Figure 3. Machined surface profile of the AA359/SiC/10p, vc = 300 m/min, tc = 3.65 min. 

 
Figure 4. Machined surface profile of the AA359/SiC/10p, vc = 500 m/min, tc = 1.82 min. 

 
Figure 5. Machined surface profile of the AA359/SiC/10p, vc = 900 m/min, tc = 1.22 min. 

To present the measured value of surface roughness during the end milling of Du-
ralcanTM, the Ra and Rz parameters in cutting time function are shown in Figures 6 and 7. 
The uneven rise of surface roughness could be caused by the unbalanced distribution of 
SiC particles in the matrix. As a result, the SiC particles are tearing from the matrix, and 
the machined surface quality is not satisfactory. Moreover, excessive tool wear causes mi-
crocracks and pits on the AMC surface. The relationship between the surface roughness, 
cutting speed, and tool corner wear (VBC) is presented in Figure 8. 
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Figure 6. The Ra parameter in function of cutting time. 

 
Figure 7. The Rz parameter in function of cutting time. 

 
 

 
(a) (b) 

Figure 8. Three dimensional surface plot, (a) Ra dependence on VBC and vc, (b) Rz dependence on 
VBC and vc. 

3.2. Analysis of Cutting Forces 
Analysis of the cutting force’s components in the time domain and the frequency 

domain was conducted to recognize the correlation between surface roughness parame-
ters and measured signals. During the tests, root mean square values (RMS) based on the 
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time domain were selected. Additionally, tool revolution frequency (Ffr) was identified in 
the frequency domain. The tool’s revolution frequency was calculated for three cutting 
speeds 

𝑓𝑓𝑓𝑓 =  
𝑛𝑛

60
∙ 𝑧𝑧  (1) 

where n is the spindle speed (rev/min) and z is the number of edges. 
An exemplary relation between the Ra and diagnostic measures at various cutting 

speed is presented in Figure 9.  

  
(a) (b) 

  
(c) (d) 

Figure 9. Three dimensional surface plot, (a) Ra dependence on Fpfr and FfNfr, (b) Ra dependence on FpRMS and FfRMS, (c) Rz 
dependence on FfNRMS and FpRMS, (d) Rz dependence on FpRMS and FfRMS. 

The R2 coefficient determines the matching of mathematical function to the results of 
the test.  

Figure 10 presents an exemplary correlation between the selected cutting compo-
nents (diagnostic measures) and surface roughness. The low coefficient R2 indicates the 
possibility of using more complex models than regression.  
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(a) (b) 

Figure 10. Surface roughness parameter as a function of cutting force measures (a) time domain, FfRMS, (b) frequency do-
main Fpfr. 

3.3. Diagnostic Model Based on Classification And Regression Tree (CART) 
One of the classifications and predictive methods is CART, which creates the possi-

bility of representing the knowledge after the learning process. This kind of method is 
easy to implement in the diagnostic procedures to develop an independent expert system. 
In this paper, the CART and Chi-squared Automatic Interaction Detector (CHAID) Tree 
was proposed to predict the surface roughness based on cutting forces. The structure of 
the CHAID tree with three interior nodes and four final nodes for Ra prediction is pre-
sented in Figure 11. 

 
Figure 11. Structure of CHAID tree for parameter Ra. 

The CHAID method consists of trees where each node contains a split condition, and 
its purpose is optimal prediction, especially in regression problems. The cutting speed, 
cutting forces, and tool wear were entered as inputs. Based on the selected input data, the 
validity analysis was carried out. The study shows that the FfNRMS diagnostic measure has 
the most significant impact on surface roughness Ra (Figure 12). The data set was divided 
into two subsets: training and testing. The test subset aims to assess the model’s generali-
zability and accounts for 30% of the input data. To check the effectiveness of the predicted 
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model, the measured and indicated value was compared. A spread graph of this value is 
presented in Figure 13. 

 
Figure 12. Validity of input parameters on surface roughness (CHAID). 

 
Figure 13. CHAID validation model. 

Different types of models were carried out to select the best predictive model with 
the most significant efficiency. Another analysis was developed using CART with four 
interior nodes and five final nodes. The model consists of many simple models built on 
subsamples drawn from the training set for CART trees. Earlier, the case weights were 
determined that increased the probability of being drawn to the next set of these cases that 
generated the most significant error. The structure of CART is presented in Figure 14.  
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Figure 14. Structure of CART. 

The effectiveness of the prediction model was checked, similarly to CHAID analysis, 
and the comparison of the predicted and observed values of Ra is shown in Figure 15. The 
mean square error (MSE) was estimated to compare measured and expected surface 
roughness based on the new experimental data. For this CART model, MSE for the verifi-
cation model is 0.026.  

 
Figure 15. CART validation model. 

3.4. Diagnostic Model Based on Artificial Neural Network (ANN) 
With a view to select the best surface roughness predictive model, a Multilayer Per-

ceptron (MLP) was also developed. For this analysis, the number of random samples was 
assumed at 70% for the training set, 15% for the test, and 15% for the validation set. The 
input data were cutting force components, cutting speed, and tool wear, the same as in 
CART models. In Table 4, the characteristic parameters of the MLP model are shown. In 
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this model, ten hidden layers were assumed. In this case, the validity analysis was per-
formed and showed that the FpRMS diagnostic measure has the most significant impact on 
surface roughness Ra (Figure 16). Based on the new experimental data, the MSE is 0.11, 
and the comparison of predicted and observed values of Ra is shown in Figure 17. 

Table 4. Structure of MLP model. 

Educational Quality Testing Quality Validation Qual-
ity 

Validation Error 
(Sum of Squares) 

Activation Function 
in Hidden Layer 

Activation Function 
in Output Layer 

0.91 0.89 0.94 0.005 logistic logistic 

 
Figure 16. Validity of input parameters on surface roughness (ANN). 

 
Figure 17. ANN validation model. 

4. Conclusions 
The results of surface roughness studies on AA359/SiC/10p composites during end 

milling were presented. The possibility of implementing the computing techniques to pre-
dict the surface roughness parameter during the machining of hard-to-cut composites are 
observed, and the following conclusions have been drawn:  
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1. The prediction of surface roughness based on the cutting forces is conceivable. Still, 
it is necessary to implement another type of model rather than regression because of 
the low determination coefficients (R2Ra = 0.67, and R2Rz = 0.32) due to excessive tool 
wear and pits on the Duralcan™ surface.  

2. The application of ANNs to predict surface roughness gives a satisfactory effect and 
the possibility to achieve a diagnostic system based on cutting force’s measures. The 
mean square error for the verification model is 0.11.  

3. The decision tree method is a basic predictive model, which might be achieved in 
milling metal matrix composites. The applied CART model gives better results than 
MLP, whereby the best effect was observed for the CART verification model (R2 = 
0.91).  

4. In summary, computing techniques such as machine learning or artificial intelligence 
are straightforward methods that could be used to predict surface roughness during 
the machining of particle-reinforced aluminum alloy composites. 
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