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Abstract: Structural transformations in the adsorption layer caused by an electric potential are
investigated using the experimental data on the capacitance of a double electric layer for a rhenium
electrode in molten sodium, potassium and cesium chlorides at 1093 K. Likening the double electric
layer to a flat capacitor, as well as the effective length of the shielding of the electrode charge and
changes in the charge sign depending on the applied potential are estimated. It is found that near the
minimum potential of the capacitance curve, the shielding length decreases proportionally to the
square of the potential due to the deformation of the double layer. The deformation reaches critical
values at the potentials of −0.65, −0.38 and −0.40 V for the Re|NaCl, Re|KCl and Re|CsCl systems
respectively, and decreases sharply at more positive potentials. The analysis of the dependence of the
charge density on the electrode revealed the effect of shielding of potential-induced rhenium cations
by salt phase anions. The strong Raman-active Re–Cl stretching mode was observed at 292 cm−1.
This can be explained by the transfer of anions across the interface resulting in the formation of
ordered layers of ion associations (possibly, ReXn

(n − 1)−) on a positively charged surface.

Keywords: rhenium; alkali chlorides; potential; electrostatic adsorption; chemisorption

1. Introduction

Recently, two metals, namely rhenium and iridium, have attracted the attention of
researchers because of their two technologically important properties. Rhenium, being
the most refractory metal after tungsten, retains good plastic properties at a fairly high
temperature. The intensive oxidation at temperatures above 850 K is the key disadvantage
that limits the use of rhenium products in oxidizing environments. Iridium, on the contrary,
can be considered as a protective element against both thermal and chemical attacks, due
to its excellent chemical stability and resistance to oxidation [1–5]. Thus, it is reported
that rhenium samples with approximately 100 µm thick iridium coatings withstand tests
in an air atmosphere at 2273 K for 3 h and maintain good adhesive properties of the
coatings [2]. The combination of these properties makes the Ir-Re composite material very
promising for use in products and devices operating under extremely harsh conditions
at high temperatures (up to 2400 K) and chemically active atmospheres, in particular, for
manufacturing low-thrust engines using high-energy fuel [6–9].

Taking into account the problems of metallurgical processing when working with
refractory metals, the electrochemical deposition of compact iridium and rhenium layers, as
well as alloys based on them from molten electrolytes, is widely promoted in the scientific
literature. The results of these studies have shown that variation of the electrolyte composi-
tion [8–11], temperature [9–14] and current density [8,10–13] makes it possible to obtain
metallic coatings with a controlled structure, chemical and phase composition [10,12–17],
including seamless multilayer products (Ir-Re-Ir) of a desired shape [6,9]. As a rule, the
electrolytic formation of products composed of refractory metals is carried out in refining
baths, when a soluble anode is the source of the working metal.
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It is known that during the anodic dissolution of metals at certain temperatures and
current densities, the passivation of anodes takes place. It significantly complicates the
production of cathode deposits of the required structure [17]. The nature of the formation
of the passivation layer on the anode has not been precisely established yet.

This phenomenon might be explained by the behavior of salt phase ions at the elec-
trode surface in the region of anode potentials. The unusual state of anions was first
mentioned in [18–21] focused on the capacitance of a double electric layer on solid Pt and
Au electrodes in molten alkali chlorides. This “unusual state” was recorded as a maximum
on the anode branch of the capacitance curve. The authors explained such behavior by the
adsorption of the chlorine anion. In the follow-up studies on the gold electrode in molten
alkali chlorides, bromides and iodides [22–26], the anomalous course of the capacitance
curve could not be explained within the framework of electrostatic adsorption. Therefore,
it was assumed to take into account the chemical interaction between the anions and the
charge carriers on the electrode. However, this assumption was not supported by the re-
sults of other research methods. Nevertheless, the need to consider the interaction between
the salt phase ions and the electrode to explain the abnormal change in the capacitance
depending on the potential is indicated in a number of theoretical papers [27–29]. With
regard to the rhenium electrode, it is of interest to obtain the missing information about
the possible stages of anions’ adsorption at a charged metal surface. The present paper
is focused on the determination of transformations that occur at the interface of a solid
rhenium electrode and molten sodium, potassium and cesium chlorides based on the
analysis of the dependence of the double electric layer capacitance on the applied electric
potential, which was obtained by the impedance method. The behavior of the halide anion
at the charged electrode/electrolyte interface is described using the potential dependences
of the charge density of the electrode and the deformation of the double electric layer. A
two-stage adsorption model, which includes the anion transfer from the salt phase to the
electrode, is discussed. The results of spectroscopic studies of the electrode surface are
used to verify the model.

2. Materials and Methods
2.1. Preparation of Materials

Commercial powdery NaCl, KCl and CsCl (purity 99.5–99.8%) were preliminary kept
under vacuum for 5 h, first at room temperature, and then they were heated and melted
in pure helium to remove the adsorbed water. The fused salts were subjected to six-fold
zone melting in pure argon to remove chemical impurities [30] at the facility described
in [31]. According to [30], the concentration of residual impurities in the sample after such
purification is “less than ten particles per billion”.

The working electrode face, that was supposed to be in contact with the melt, was
treated as follows: it was polished to a mirror shine by a silicon carbide sanding paper,
washed with distilled water and acetone (purity 99.5%) and dried in air. This procedure
has proven itself well in electrochemical experiments with compact rhenium [2,3].

2.2. Cyclic Voltammetry

The electrochemical investigations were carried out using a potentiostat-galvanostat
Parstat 2273 (Princeton Applied Research, Oak Ridge, TN, USA) at the frequency of an
alternating signal of 10 kHz. Before each experiment, the dependence of the polarization
current on the applied potential was analyzed to determine the electrochemical cleaning of
the electrode surface and the potential interval free of any discharge-ionization processes.
All experiments were performed in an argon atmosphere.

2.3. Differential Capacitance Determination

The three-electrode experimental unit of the following design was used:

(i). A rhenium bar (99.99% purity) served as a working electrode with a surface area of
0.5 cm2,
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(ii). A glassy-carbon plate located at the bottom of the crucible with the sample melts was
used as a counter electrode,

(iii). A lead pool under the NaCl + KCl + 3 wt.% PbCl2 electrolyte in a quartz capsule
served as a reference electrode.

This unit together with the Pt/Pt-Rh thermocouple was located in a quartz tube
closed with a heat-resistant rubber stopper, which was used as a working cell (Figure 1).
The weighted portion of the studied salt was placed at the bottom of the quartz tube.
The heating component of the experimental unit included a tube resistance furnace. The
Pt/Pt-Rh thermocouple located in the immediate vicinity of the heating section was used
to automatically control the strength of the current in the windings. Such geometry of the
heating furnace allowed the temperature of the melts to be maintained within ±1 K, and
provided the 70 mm high zone of isothermal heating. The gas space of the cell after loading
the salts was sealed and evacuated to a pressure of 0.13 Pa, while the temperature was
gradually increased to 573 K, i.e., slightly below the melting point of the lead reference
electrode, for 10–12 h. The cell was then filled with purified argon.
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Figure 1. Electrochemical set-up. Working electrode (1), counter electrode (2), thermocouple (3),
reference electrode (4), glass joint (5).

2.4. Spectroscopy

The surface of the rhenium electrode after anode polarization was investigated by
means of the Raman scattering method using a “Leica DMLM” microscope of Raman
microscope-spectrometer Renishaw U1000 (Renishaw, New Mills, UK) equipped with an
Ar laser with a power density below 40 Wcm−2. The scattered radiation was collected at
an angle of 180◦ with respect to the direction of the laser beam.

3. Results

Figure 2 presents voltammograms for the rhenium electrode in the potassium chloride
melt at 1093 K and scan rates of 5, 10 and 50 mV/s. The shape of the curve does not change
significantly at the rates lower than 10 mV/s. A noticeable hysteresis at high scan rates can
be associated with the inhibition of the adsorption–desorption process. Voltammograms
for other studied systems have a similar appearance. Based on these studies, we selected
the operating range of potentials, where neither active anodic dissolution of rhenium nor
cathode deposition of alkali metal was observed.
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Figure 2. Voltammograms for Re electrode in molten KCl (1093 K). The scanning rate is 5 mVs−1 (1),
10 mVs−1 (2) and 50 mVs−1 (3).

The primary results are shown in Figure 3 in the form of the dependences of the
capacitance, C, of the double electric layer (DEL) on the applied potential, E. At the
potential of the cathode minimum, Em, apparently, the sign of the charge of the electrode
surface changes, as it is predicted by the Gouy-Chapman-Stern (GCS) theory. In its physical
sense, Em is similar to the zero-charge potential (ZCP), determined by the electrocapillary
measurements [32]. This statement is based on the experimentally obtained data on
the properties of DELs on gold, silver and copper electrodes in salt melts at different
temperatures [22,23,33,34]. However, it is necessary to keep in mind the well-known fact
that Em shifts towards negative values relative to ZCP as the frequency of the alternating
signal imposed on the base voltage increases [35,36]. Until now, the value of the potential,
at which the sign of the charge of the rhenium surface changes to the opposite, has been
unknown. The potential is found to shift in the positive direction when the temperature
increases, as in the case of ZCP of liquid and solid metals in ionic melts [32,37].
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In the vicinity of the C-E curve minimum, the capacitance increases as the electrode
potential shifts both in the negative direction and (up to a certain point) towards positive
values, which is fully consistent with the GCS theory [38]. It is significant that on the
anode branch of the C-E curve, the capacitance increases as the potential shifts towards
positive values, forming a clear “dome” at Ec. At more positive potentials, the capacitance
decreases sharply and reaches a minimum value, after which it begins to grow again. The
experimental curves resemble those obtained for platinum and gold electrodes in the alkali
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halide melts [19–21,24,25,38]. Such an anomaly was not observed on the silver and copper
electrodes [25,26].

4. Discussion

The reason for the anomalous behavior of the interfaces in salt melts lies, apparently, in
the peculiarities of the salt phase ions on the electrified metal surface. Conventionally, the
interface between metal and the condensed salt may be associated with a flat capacitor with

C = εε0/L (1)

here, ε is the dielectric constant of the medium, ε0 is the permittivity of the free space and
L is the effective length of the double electric layer in the direction perpendicular to the
electrode surface, including its dense and sign-oscillating parts [39].

Assuming that the value L covers the entire thickness of the salt part, where the sum
of charges compensates completely for the charge of the electrode, it seems reasonable to
consider it as the Debye shielding length. For a 1-1 electrolyte charging,

L = (εε0kT/e2ρ)1/2, (2)

where k is the Boltzmann constant, T is the absolute temperature, e is the electron charge
and ρ is the ion packing density. At first approximation, it can be assumed that the
increase in capacitance, when the potential is displaced relative to Em, is associated with
the deformation of ions and interparticle bonds in the DEL field [40,41]. For the anode
branch of the experimental curves, the change in the layer length:

∆L = (LEm − LE), (3)

is estimated, where LE and LEm are the effective lengths of DEL at the current potential and
at the minimum point of the capacitance curve, respectively. It is assumed that ε = 1. It is
difficult to say now how this assumption relates to reality, since nothing is known about
the value of ε; still, less information is available about its dependence on the field strength
in DEL.

The calculation results are shown in Figure 4 in the form of the logarithmic depen-
dences of the deformation coefficient of DEL:

δ = ∆L/LEm (4)

at 1093 K on the reduced potential:

(E − Em)/Em. (5)
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(with potentials more positive than the Ec) and in the range of potentials from Em to Ec (�) at 1093 K.

As can be seen, there is a potential region where the thickness of DEL decreases as the
potential shifts in the positive direction. The observed effect may be caused by an increase
in the polarization of ions and chemical bonds as the strength of the electric field between
the DEL plates increases.

Since the interionic Coulomb interactions in the studied salts are ordinarily represented
by a universal pair potential [42], the entire array of points on the ascending curves is
approximated by a single equation:

δ = [(E − Em)/Em]α. (6)

It is found that the exponent α is equal to 2.11 (the authenticity of approximation, R2,
is 0.9905). A similar quadratic dependence is determined for the oscillation frequencies
of the sulfate and phosphate anions adsorbed on platinum and gold as a function of the
applied potential, due to the deformation of the covalent S–O and P–O bonds in an electric
field [43,44]. Figure 4 shows that the compression of DEL reaches the limit values at the
potential of the anode maximum, Ec. Starting with this potential, the layer length increases
sharply, which is likely to be caused by a decrease in the electric field strength in DEL due
to the redistribution of ions in the same oxidation state between DEL plates.

To substantiate this hypothesis, we present an analysis of the change in the charge
density, σ, of the electrode for the anode branch of the curve as a function of the potential.
In Figure 5, the charge values detected by integrating the experimental capacitance curves
of the studied systems at 1093 K are plotted relative to E − Em. According to the GCS
theory, this dependence should satisfy the exponential equation:

lnσ ≈ (E − Em) (7)

in the potential range from Em to Ec (the potential of the dome top of the capacitance
curve). In reality, this equation turned out to be completely inapplicable for describing the
experimental curves. With an approximation R2 = 1, the experimental σ-E dependences in
these potential regions are transmitted by quadratic equations:

Re-NaCl σ = 5.517E2 + 48.494E + 0.0091
Re-KCl σ = 40.668E2 + 107.69E + 0.0728
Re-CsCl σ = 28.882E2 + 118.07E + 0.0569
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The extrapolation of these dependences to the region of potentials more positive than
Ec showed that the real charge density, σ, is less than the extrapolated value, σex. The
difference between these values, ∆σ, which increases as the potential shifts relative to Ec
(Figure 5, inset), indicates a change in the nature of the DEL charging. Considering the
systems with potassium and cesium chlorides, the charge density decreases by 5 µC cm−2

as the potential shifts by 150 mV in a more positive direction than Ec. In principle, this shift
may be caused by the process of rhenium anode dissolution. However, the experimentally
observed zero-polarizing currents near Ec (see Figure 2) contradict this hypothesis. To
fulfill the local electroneutrality condition, the charge density on the rhenium electrode
in the anode region, σ, which is caused by the excess Gibbs energy of cations, zFГRe

z+,
is supposed to be completely shielded by charges of the opposite sign located in the salt
part of DEL, which are formed by the excess Gibbs energy of halogen anions, −zFΓCl

−.
The displacement of the potential in the positive direction leads to an obvious increase
both in ГRe

z+ and in ΓCl
−, as well as to an increase in the interaction energy between the

phases. It is the inclusion of this interaction in the Monte Carlo and molecular dynamics
calculations [27–29] that makes it possible to predict the experimentally observed dome-
shaped capacitance curves for positively charged electrodes. However, the approach used
to describe the DEL properties in the mentioned papers can hardly predict the formation of
complex salts from metal cations and halide anions at the metallic surface [17]. Perhaps this
may be explained by the type of the interparticle interaction at the phase contact. Therefore,
the pair potential presented in [29] includes the Coulomb ion-electrode attraction and
Lennard-Jones repulsion, whereas the interaction model presented in [27] includes the
induction of dipoles on the ions of the salt phase, as well as the polarization of metal
atoms by molten salt ions. Further development of the theory might require the quantum
chemical analysis.

The energy of the capacitor cannot reach infinite values, so that the strengthening
of the interaction between Ren+ and Cl− ions can generally promote the ions’ transition
through the energy barrier across the interface and, thereby, reduce the total energy of the
system. It can be assumed that the deficit of the positive charge density shown in Figure 5 is
caused by the transfer of a part of the charges, −FACl

−, from the salt part of DEL, −zFΓCl
−,

to the electrode. The charges transferred by the anions cause the appearance of a negative
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component of the capacitance in the region of potentials that are more positive than Ec. The
total charge per unit surface of the electrode should be represented as:

Q = zFГRe
z+ − FACl

−. (8)

The reproducibility of the capacitance curves with altered polarization indicates the
reversibility of ion transport in the studied range of potentials.

To identify the form of existence of chlorine ions in the adsorption layer, the chemical
nature of rhenium should be taken into account. According to the literature data, rhenium
exists mainly in the form of Re (III) and (IV) in chloride melts [45–47], with Re (III) being
more stable in the NaCl melt, and Re (IV) being more stable in KCl and CsCl. It can be
expected that some chemical compounds of rhenium with the chlorine anion may form at
the surface of the rhenium electrode.

The principal possibility of the existence of chemical compounds on a positively
charged metal surface is proved by direct spectroscopic methods using a gold electrode in
halide salt solutions [48–51]. Considering a positively charged surface of the gold electrode,
the following facts are established: (i) vibration modes responsible for the coupling of
chlorine ions with gold are detected, (ii) the fixed frequency lines refer to the valence
vibrations of the [AuCl2]− grouping and (iii) the process of formation and disintegration
of groupings is reversible with respect to the potential.

Unfortunately, the technical problems of setting up such experiments at high tempera-
ture have not been overcome yet, mainly due to the lack of suitable construction materials
and equipment. Nevertheless, we tried to determine the form of the existence of the
chlorine anion on rhenium by the ex situ spectroscopic studies of the electrode after anodic
polarization at room temperature. Figure 6 shows the Raman spectrum of the studied elec-
trode surface after anodic polarization in the potassium chloride melt. The Raman-active
mode detected at 292 cm−1 is explained by the Re–Cl stretching vibration [52]. According to
the theory of hybridization of atomic orbitals, the presence of Cl− ligands should promote
the mixing of s-, p-, and d-orbitals of rhenium, leading to the formation of four hybrid
dsp2 orbitals [53]. As a result, it can be expected that [ReCl4]− complex anions, having
the form of a flat square or [Re2Cl8]2− clusters [54,55], are formed on the electrode. At a
certain anode current density and temperature, these complex anions can acquire the form
of RReCl4 salts (here, R is an alkali cation), which leads to the passivation of the electrode.
Thus, the Ec potential may be considered a critical point of transition from an electrostatic
adsorption to a chemical one.
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A quantitative theoretical analysis of the mechanism of ion transfer at the elec-
trode/electrolyte interface requires a strong quantum-mechanical calculation. To develop
recommendations for optimizing the process of rhenium anode dissolution, it is proposed
to study the temperature dependence of the transition from one type of adsorption to
another.

5. Conclusions

The values of the differential capacitance of the double electric layer (DEL) on a solid
rhenium electrode in molten sodium, potassium and cesium chlorides were obtained in
a wide range of potentials using the method of impedance spectroscopy. Along with the
classical minimum potential, the maximum potential was found in the anode region of the
potential dependence of the capacitance. It is assumed that in the vicinity of the minimum
capacitance, the behavior of DEL is mainly influenced by the electrostatic polarization
of the ions under the action of Coulomb forces. It was shown that this effect is directly
proportional to the square of the applied potential for all studied salts. At the critical
potential Ec, the maximum electric field strength was reached. Therefore, the transfer of a
part of anions from the salt phase to the electrode becomes energetically advantageous.

The analysis of the dependence of the charge density on the electrode revealed the
effect of shielding of potential-induced rhenium cations by salt phase anions.

The product of the interaction between rhenium cations and transferred chlorine
anions was recorded by ex situ spectroscopic studies. Of course, a rigorous analysis of the
effect of ion polarization on the electric field of DEL at the adsorption stage requires both
detailed in situ Raman spectroscopic studies and the corresponding quantum-mechanical
calculations, which may be implemented in the future.
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