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Abstract: The obvious advantages of laser paint removal technology make it a viable alternative to
traditional paint removal methods. Infrared nanosecond laser was used to remove paint from car
body. The microstructure, composition, surface roughness, hardness and ablative products of the
samples were analyzed. The effect of the process combination of laser defocus distance and ambient
atmosphere (ambient air, compressed air and inert atmosphere) on the substrate damage and the
paint removal effectiveness was explored, and the related mechanism was discussed. Defocus not
only changed the fluence of laser spot but also increased the spot diameter. The effect of defocused
laser paint removal on the paint and substrate was caused by the superposition of these two factors.
The results show that the laser with defocus distance of +4 mm effectively removed the paint in inert
atmosphere and has the least adverse effect on the substrate. The content of C element and organic
components on the substrate surface was the lowest, and its surface roughness and hardness was very
close to the uncoated substrate. Focused laser paint removal in ambient air caused the most serious
damage to the substrate. Its surface microhardness increased by 11 HV, and the influence depth
reached 37 µm. The mechanism of laser paint removal without auxiliary gas is the superposition of
laser plasma effect, laser gasification effect and thermal stress effect. In open atmosphere (compressed
air and inert atmosphere), the mechanism of laser paint removal is laser gasification effect and
thermal stress effect. This research can provide practical references and theoretical basis for the
large-scale industrial application of low/non-damage laser paint removal technology.

Keywords: laser cleaning; defocusing; compressed air; inert atmosphere; DC01 steel

1. Introduction

The surface of a vehicle is painted to avoid body corrosion, decorate and distinguish
between different uses. The repair, removal and replacement of the paint on the car body
are an important part of car maintenance, including peeling off the paint in specific areas
to expose the substrate.

Compared to the above paint removal methods, laser shows obvious advantages [1],
making it a viable alternative to traditional paint removal methods: (1) non-contact depaint,
so the substrate is not subject to external mechanical force, damage and chemical pollution;
(2) high accuracy and selectivity; (3) controllable and easy to achieve automation; (4) the
solid waste is much less than the initial amount of paint and is also green and environ-
mentally friendly. These advantages are particularly important in applications such as
high-end vehicles, rail vehicles and military vehicles where substrate integrity is more
strictly required, and it is necessary to ensure that the paint is removed accurately and
completely, while the adverse effects on the substrate are negligible.

Since A.L. Schawlow [2] first proposed the “laser eraser” to vaporize ink without
ruining the paper in 1965, and S.M. Bedair [3] determined the concept of laser cleaning
in 1969, great progress has been made in basic research and development of supporting
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equipment for laser cleaning. Nowadays, it has been successfully applied in military
aerospace and nuclear power and other cutting-edge or special fields [4,5].

Laser paint removal on metal substrates has been studied extensively. In view of the
characteristics of laser itself, such as the small spot size, the paint removal efficiency in
industrial applications is one of the focuses of users’ attention. Therefore, a considerable
number of studies have aimed at the efficiency, effectiveness and feasibility of laser depaints
technology [6], including the relationship between the laser depainting process and paint
removal rate (surface cleanliness), removal efficiency and repainted paint adhesion [7–9].
For example, Razab, M.K.A.A et al. [5] reviewed the potential and mechanism of pulsed Nd:
YAG laser for coating removal in automotive industry. Li, X et al. [10] used a 1064 nm Nd:
YAG nanosecond pulse laser to remove paint from the surface of Marine steel structures.
The influences of three groups of laser parameters (Average power, Repetition rate and
Scan speed) on surface cleanliness, surface roughness and adhesion of recoating of steel
structures were studied. The results showed that the surface treatment standard of SA2.
An excellent bonding strength of 20 MPa was achieved between the recoated coating and
the substrate, higher than the requirements of the shipyard. Kuang, Z et al. [11] used a
1064 nm nanosecond pulse laser to remove paint from the surface of aluminum alloy sheets
used for rail vehicles. By defocusing the laser and blowing inert atmosphere (argon) into
the treated area, sparks and combustion flames were effectively suppressed. The maximum
paint removal rate was 0.06 m2/min. Surface melting changed the surface roughness of the
substrate when it absorbed the extra energy of the laser beam. In Chen G X et al. [12], the
cleaning process was carried out with a single sealed CO2 laser (Rofin-Baasel, Multiscan
VS). The influence of laser parameters (laser power density and overlapping of neighboring
scan lines) on surface quality and depaint speed was studied. The results showed that
Nd: YAG laser ablation provides complete cleaning with high surface roughness due to
substrate damage. They also used Raman spectroscopy to track the amorphous carbon
on the treated samples and determined that the mechanism of laser paint removal was
thermal decomposition.

In addition, some scholars have conducted in-depth studies on the mechanism of
laser paint removal on metal substrate surface [13]. For example, Jinghua Han et al. [14]
used a 1064 nm nanosecond pulse laser to remove epoxy polyester mixed paint from the
surface of aluminum substrate. The results showed that laser paint removal is mainly
affected by laser vaporization effect, thermal stress effect and laser plasma effect, and
the thermal stress effect is the largest. It also has the best paint removal effect and can
avoid damage to the substrate caused by vaporization and plasma effect. Zhao Hai Chao
et al. [15] used a 1064 nm pulsed laser to remove 50 µm thick polyacrylic resin primer
paint from the surface of an aircraft skin (LY12 aluminum alloy plate). The influence of
process parameters such as scanning speed, pulse frequency, scanning line interval and
laser power on paint layer stripping was studied. By analyzing the surface morphology and
the particles collected during depainting, three possible mechanisms of paint removal were
proposed: combustion reaction, thermal stress vibration effect and plasma shock effect.

The influence of laser paint removal process on metal substrate has also been stud-
ied [16–18]. For instance, Shamsujjoha M et al. [19,20] used a 1064 nm Nd: YAG nanosecond
laser pulse to remove the red epoxy paint from a high strength steel used in shipbuilding.
The effects of laser parameters on surface roughness, microstructure, hardness, repainting
adhesion, residual stress state and fatigue properties of the underlying substrate material
(carbon steel) were studied. The results showed that the underlying metal substrate was
melted and re-solidified. The melting depth was 1–5 µm. The surface appearance had
visibly changed. The adhesion of the repainted samples subjected to laser ablation coating
removal (LACR) was comparable or even superior to that of the abrasive blasted and
repainted samples. The residual stress was typically 242 ± 63 MPa in tension and confined
to the shallow depth of ~35 µm. Fatigue tests confirmed that the LACR-treated samples
performed just as well as abrasive blasted samples. Guodong Zhu [21] et al. used an Nd:
YAG laser with 1064 nm wavelength to remove BMS10-11 paints from the surface of the
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Boeing series aircraft skins. The effects of laser energy density on the surface depainting
effect, surface morphology, friction and wear properties, microhardness and residual stress
and corrosion performance were investigated. The results showed that compared with
mechanical lapping, laser lapping did not reduce the corrosion resistance and friction and
wear performance of aircraft skin, whereas after laser depainting, the aircraft skin surface
produced a certain plastic deformation and hardened, increasing the residual tensile stress.

According to the published literature, the current laser paint removal process cannot
completely avoid the damage to the substrate, and the theoretical research is not systematic
and thorough enough yet. The theoretical research on the effect of defocusing and auxiliary
gas on the metal substrate and paint layer is not systematic and in-depth. This research
aims to explore the laser paint removal process and related paint removal mechanism for
the non-destructive cleaning of car body substrates by the use of defocus and auxiliary
gas. Infrared nanosecond fiber laser is used to remove paint on the car body surface.
By analyzing the microstructure, composition, surface roughness, hardness and ablative
products of the samples, the effects of laser defocus distance and ambient atmosphere
(ambient air, compressed air and inert atmosphere) on the effectiveness and efficiency
of paint removal and the substrate damage were explored. The feasibility and related
mechanism of laser paint removal on the car body were discussed. The study can provide
practical reference and theoretical basis for the large-scale industrial application of low/no
damage laser paint removal technology.

2. Materials and Methods
2.1. Raw Materials

The samples with four-layer paint used in this study were cut from automobile body
coverings made in China, as shown in Figure 1. Figure 1b shows the top-view of the
sample. Figure 1c shows its cross-section, where the colors and thicknesses of each layer
are indicated, and the total thickness of the four-layer paint is about 160 µm ± 10 µm. Paints
are mixtures of resins, solvents, pigments and additives, as shown in Table 1. The bottom
layer of Figure 1c is the substrate. The material is DC01 cold-rolled low-carbon steel (carbon
content ≤ 0.12 wt%, melting point 1455 ◦C, thickness 1.8 mm). Corresponding to the central
rectangular area 1 of Figure 1b, this is the exposed substrate after all the paint layers are
removed by the laser, showing a bright metallic background color. In Figure 1c, there is a
primer layer on top of the substrate, and the material is epoxy paint, which corresponds to
area 2 in Figure 1b. The remaining 3 layers in Figure 1c are all acrylic modified resin paints.
From bottom to top, they are the midway layer (corresponding to area 3 in Figure 1b), the
colored paint layer and the varnish layer (corresponding to Figure 1b, Area 4).

Table 1. Components and physical properties of paint layers.

Paint Layers Varnish Colored Paint Intermediate-Paint Primer

Resin Acrylic resin Acrylic resin Acrylic resin Epoxy

Solvent Aromatic hydrocarbons,
Esters

Aromatic hydrocarbons,
Esters

Aromatic hydrocarbons,
Esters

Aromatic
hydrocarbons, Esters

Additive
Leveling agent,

Ehickener, Light
stabilizer, etc.

Leveling agent,
Dispersant, Light

stabilizer, etc.

Leveling agent,
Dispersant, Light

stabilizer, etc.

Leveling agent,
Dispersant, Light

stabilizer, etc.
Pigment None Blue organic Rutile titanium Black organic
Colour Transparent Blue White Brown

vaporization
temperature (◦C) 108–144 >100 108–202 100
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Figure 1. (a) Sample used for laser paint removal. (b) Top view of the sample. (c) Optical micrograph
of cross-section of the sample.

2.2. Laser Paint Removal

The schematic of the setup for laser paint removal is presented in Figure 2. The main
parameters of the nanosecond pulsed laser systems used (SP-100W-EP-Z, SPI Lasers UK
Ltd. Southampton, UK) are shown in Table 2. The samples were placed on the processing
platform. The laser beam was perpendicular to the sample surface. The laser treated
area for each condition was 10 mm × 10 mm. The defocus distance refers to the distance
between the samples surface and the focal plane of the laser beam, which was controlled
by adjusting the focal plane position along the optical axis (Z axis). The laser F-θ scanning
lens (lens focal length f = 254 mm) is mounted on the Z axis, which can be moved up and
down manually, so that the laser beam focal plane can be moved along the optical axis. The
laser beam scans along the X and Y directions. In order to ensure uniform energy coverage
on the laser-treated surface, the spot overlap rates were always consistent in the X and Y
directions during the laser treatment, and the Zigzag scanning method was adopted, as
shown in Figure 3. Silicon wafers (20 mm × 20 mm × 1 mm) were placed 8 mm above the
laser-treating area to collect sputtering and vaporized products.

The gas was blown to the laser-treating area in an open environment. The gas flow
was controlled within 8–10 Lpm through the pressure gauge. The distance between the air
outlet and the laser-treating surface was 15 mm. The angle between the airflow and the
laser-treating surface is 30◦. The purity of inert gas is 99.5%.

Based on this, many exploratory experiments were carried out by changing the laser
process parameters (pulse repetition frequency, scanning speed, spot overlap rate, energy
density and laser scanning path) to optimize the parameters for the paint removal. These
preliminary test results were visually evaluated under an optical microscope, and the
optimized parameters of the focused laser paint removal were determined by taking the
efficiency and effect of paint removal into consideration, as shown in Table 3. Due to the
thickness of the four-layer paint (about 160 µm ± 10 µm), the 100 W nanosecond pulsed
laser used in this work needs to scan three times to obtain a good removal effectiveness.
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Table 2. Laser processing parameters.

Characteristic Value Units

Wavelength 1064 nm
Maximum repetition

frequency 1000 KHz

Maximum scanning speed 20,000 mm/s
Maximum average power 100 W
Maximum pulse energy >1.0 mJ
Maximum peak power >6 KW

Pulse width range 12–500 ns
Beam diameter 7.5 mm

M2 (Beam quality factor) ≤1.6 –

Figure 2. Schematic of setup for laser paint removal.

Figure 3. Schematic diagram of laser spot overlap.
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Table 3. Laser processing parameters.

Laser Pass Pulse Repetition
Frequency (KHz) Scan Speed (mm/s) Spot Overlap Rate

(%) Pulse Width (ns) Energy Density
(J/cm2)

1st. 463 9260 60 100 10.9
2nd. 463 9260 60 100 10.9
3rd. 536 13,400 50 100 9.5

The laser spot diameters at different defocus planes are calculated based on the far-
field divergence angle and asymptote, as shown in Table 4 and Figure 4. The relationship
between the average laser energy density and the laser spot size can be described by
Equation (1) [22]:

E f =
Q

π × W2
f

(1)

where, E f is the average laser fluence, Q is the energy of the laser, and W f is the radius of
the laser beam.

Table 4. Spot diameter, fluence and overlap rate at different defocus surfaces.

Defocus Distance (mm) Scan Times 0 +1 +2 +3 +4 +5 +6 +7

Spot diameter (mm) - 0.05 0.079 0.109 0.138 0.167 0.197 0.226 0.255

Fluence (J/cm2)
1st
2nd 10.90 4.41 2.31 1.44 0.99 0.71 0.54 0.42

3rd 9.51 3.81 2.00 1.25 0.85 0.61 0.47 0.37

Figure 4. Schematic diagram of the size of light spot and defocus amount (∆L: change in defocus
amount, ∆D: change in spot diameter caused by change in defocus amount).

The schematic diagram of laser spot, focal length and focusing amount is shown in
Figure 5. Then the relationship between the spot diameter d, the focal length λ and the
defocus amount L acting on the sample surface can be expressed as

d =
L(D0 − D)

λ
+D (2)
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Figure 5. Defocus and spot size light path diagram. (D0: Incident laser beam diameter, D: Beam spot
diameter, d: The laser beam actually acts on the sample spot diameter, L: Defocus, l0: Focal length).

It can be seen from Table 4 that defocusing changes the energy density of the laser
spot radiated on the surface of the material and the radiation diameter of the spot. The
defocused spot is the combined result of the two superimposed effects. Therefore, it cannot
be obtained simply by optimizing the laser intensity at a focal point.

2.3. Characterisation and Tests

Optical microscope (Nikon, Tokyo, Japan) was used for metallographic observation.
The samples were cut with a band saw. The cross-sections of the samples were ground
with SiC paper as low as 2500 grade and then polished with diamond paste as low as
0.25 µm. They were then etched in a solution (3% nitric acid in ethanol) for 45 s to reveal
the microstructure.

Ultra-high resolution field emission scanning electron microscope (FE-SEM, SU8010,
Hitachi, Tokyo, Japan, equipped with energy dispersive spectrometer (EDS)) was used
to characterize the microstructure. The chemical composition was determined by X-ray
photo-electron spectroscopy (PHI 5000 Versa Probe III UIVAC-PHI Company, Chigasaki,
Japan). An ultraviolet-visible spectrophotometer (Lambda750S, Perkin Elmer Co., Ltd.,
Waltham, MA, USA) was used to measure the absorbance of the samples in the ultraviolet-
visible-infrared range (300–1800 nm). The linear roughness Ra of the sample surface was
obtained by means of a three-dimensional surface white light interferometer (Contour
GT-K0, Bruker, Germany), and the measured data of five different parts of each sample
surface were averaged.

An automatic micro-Vickers hardness tester (HMV-G21, Shimadzu, Kyoto, Japan) was
used to measure the microhardness of the cross-sections of the polished samples in ambient
air at room temperature. The load was 200 g, and the loading time was 15 s. The measuring
points were arranged along the processing depth direction. The first measuring point
was 5 µm away from the processing surface along the depth direction, and the distance
between each measuring point after the second measuring point was 8 µm along the depth
direction. There are 5 depth measurement positions, and the average of the measurements
from 10 different positions at the same depth was taken.

3. Results and Discussion
3.1. Macroscopic Phenomenon

Table 5 records the phenomena that occurred during each group of laser paint removal
experiments. Figure 6 is a schematic diagram of laser paint removal at the focal point in the
ambient air, which produces plasma, flames, flying debris and smoke. During the focused
laser paint removal in inert atmosphere (Ar), there are no plasma, flame, debris splash,
smoke and other phenomena but only bright and dazzling spots. During the defocused
(defocus distance +6 mm) laser paint removal in ambient air, there are no plasma, debris
splash, smoke and other phenomena, but flame combustion is visible. During the defocused
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(defocus distance 0–+4 mm) laser paint removal in ambient air, plasma, flame, debris splash,
and smoke occurred. Based on previous experience and published literature studies, we
concluded that ionization occurred in the lacquer layer, and the removal mechanism of
paint was mainly laser plasma effect [23,24]. In other words, laser with high energy density
generated free electrons in the paint layers through the multi-photon effect or thermal
electron emission. Free electrons, as seed electrons, continuously absorbed laser energy
through inverse bremsstrahlung radiation, thus forming a high-density laser plasma [25].
The plasma had temperatures of more than a dozen eV and could radiate UV and soft
X-rays, which were absorbed by the paint layer, further ionizing and heating the paint
layer [26]. The plasma also expanded, forming a high-pressure shock wave to remove the
paint layer by sputtering [27,28]. In addition, the laser vaporization effect and thermal
stress effect had little influence, but they all contributed to the violent chemical reaction
and physical change.

During the defocused (defocus distance +5–+7 mm) laser paint removal in ambient
air, there was only flame. At this time, the energy density of the spot was lower than
that of the defocused (defocus distance 0–+4 mm) laser paint removal. It can be seen that
the plasma can be significantly suppressed by reducing the laser energy density to the
ionization threshold of the processed materials. During the laser paint removal in open
atmosphere (compressed air and inert gas, gas flow 8–10 Lpm), whether defocus or not,
there was no plasma, flame, debris splash, smoke, flame, etc.; only bright and dazzling
spots were seen. According to the preliminary judgment, the main mechanism involved in
this situation is the laser vaporization effect or thermal stress effect [29].

Table 5. Phenomenon during laser paint removal.

Atmosphere Defocus Distance (mm) Plasma Debris Splash Smoke Flame Dazzling Spot

air 0–+4 Yes Yes Yes Yes No
air +5–+7 No No No Yes No

Compressed air 0–+7 No No No No Yes
Inert gas 0–+7 No No No No Yes

Figure 6. Schematic diagram of focused laser paint removal in ambient air.

Figure 7 shows the photos of the samples after laser scanning once in ambient air.
It can be found that one layer of paint can be completely removed by laser when its defocus
distance was 0–+2 mm, and there are gray-white particles deposited in and around the
scanning area. With the increase of defocus distance, the amount of paint removed by
laser decreased gradually. This is because the energy density of laser spot decreases with
the increase of defocus distance; the influence of laser plasma effect on paint removal
decreased, and that of laser vaporization effect and thermal stress effect increased. The
top layer of transparent varnish was removed by laser when its defocus distance was
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+3–+7 mm; the blue paint layer and intermediate paint layer were peeled off. In this case,
due to the decrease of the energy density of the spot, the presequence laser pulse only
warmed the paint layer, and the subsequent pulse continued its transformation into heat
energy to ablate and vaporize the paint. In addition, the elastic thermal vibration produced
by light waves can also destroy the adhesion between the paint layers, that is, the van der
Waals forces or hydrogen bonds between the polymer chains, leading to the blue paint and
intermediate paint to exfoliate due to vibration [30].

Figure 7. Photos of the samples after laser scanning once in ambient air when defocus distances were 0–+7 mm.

3.2. Paint Removal Effect

Figure 8 shows the photos of the samples laser scanned 3 times in ambient air and in
inert atmosphere (Ar). Based on the laser parameters used in this experiment, the paint
cannot be completely removed by laser when its defocus distance was greater than +5 mm,
so it is not be shown here. It can be seen that the metallic luster of the samples surface after
the focused laser paint removal was brighter than that of the unpainted substrate. With
the increase of defocusing distance, the metallic luster on the samples gradually darkened.
The appearance of samples laser treated in inert atmosphere (defocus distance +4 mm) was
very close to the unpainted substrate, and no paint residue could be found with naked
eyes. Some paint remains on the samples laser treated in ambient air (defocus distance
+4 mm). This is because when the defocus distance was +4 mm, the energy density of laser
spot decreased. In addition, the plasma, flame and smoke generated by laser paint removal
in ambient air shield part of the laser energy, resulting in the paint cannot be completely
removed. During the laser paint removal in inert atmosphere, the airflow reduced local
heat and blew away the smoke and ablation particles generated. Free electrons could not
accumulate, which weakened the laser plasma generation conditions, and then avoided
the substrate damage by violent reaction. Because there was no plasma, flame, smoke and
other shielding laser beam, laser energy could act fully on the paint. Furthermore, the
blowing force of strong air was equivalent to exerting a certain external force on paint layer,
which also accelerated the removal of paint.
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Figure 8. Photos of the samples laser scanned 3 times when defocus distances were 0–+4 mm: (a) in
ambient air, (b) in inert gas (Ar).

Figure 9 shows relative amount of C-C/C-H functional groups on samples measured
by XPS. The content of C-C/C-H, C-O, COO−, C=O on the samples laser treated in com-
pressed air and in inert atmosphere changed compared with that of the unpainted substrate.
The C-C/C-H content represents organic components, including residual oil, laser ablation
products such as carbides and paint residual organic carbon on samples. The results show
that the relative content of C-C/C-H bonds in the samples was more than 81% (the same
goes for unpainted substrate). The organic components detected on the unpainted sub-
strates came from trace oil stains. The content of organic components in the samples after
focused laser paint removal was the highest. That in the samples after laser paint removal
in inert atmosphere (defocus distance +4 mm) was the lowest, which was reduced by 1.88%
compared with the unpainted substrate. Therefore, the effectiveness of laser paint removal
in inert atmosphere (defocus distance +4 mm) was optimal.

Figure 9. Relative amount of C-C/C-H functional groups (at.%) on samples measured by XPS.

3.3. Surface Absorptivity

Figure 10 shows DC01 steel substrate measured by UV-visible spectrophotometer in
the UV-visible-infrared range (300–1800 nm). Figure 10 and Table 6 shows the absorbance
of samples laser treated in inert atmosphere with different defocus distances and unpainted
substrate. The laser scanned 3 passes when the defocus distance was ≤+4 mm, and it
scanned 4 passes when the defocus distance was +5 mm. The absorbance of the laser
treated samples changed to varying degrees. That of the laser treated samples (defocus
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distance ≤ +3 mm) decreased. Curve (5) in Figure 10 shows that the absorbance of the laser
treated samples (defocus distance +4 mm) was very close to that of unpainted substrate
(Curve (7) in Figure 10). This is mainly because the surface roughness and composition
of the laser treated samples changed to different degrees. The reflection and refraction
behavior of incident light change with the surface roughness, which leads to the change
of absorbance. The absorbance of the laser treated samples (defocus distance +5 mm)
increased greatly, and it can be seen that there was a blue-black film on the samples,
showing typical macroscopic characteristics of steel oxidation. This is because the samples
underwent one more laser scan passes than the other samples, and the metal substrate was
directly exposed to the high temperature irradiation of the high-energy laser beam for a
longer time, thus accelerating the oxidation and discoloration. As there was paint residue
on the laser treated samples (defocus distance ≥ +6 mm), it is not listed here.

Figure 10. Absorbance of samples laser treated in inert atmosphere and unpainted substrate.

Table 6. Absorbance of samples laser treated in inert atmosphere at wavelength 1064 nm.

Unpainted Substrate Defocus
0 mm

Defocus
+1 mm

Defocus
+2 mm

Defocus
+3 mm

Defocus
+4 mm

Defocus
+5 mm

0.212 0.133 0.159 0.176 0.204 0.218 0.303

3.4. Characterization of Substrate

Figure 11 shows the micro morphology of the sample surface and cross section after
laser paint removal. In the ambient air and in an inert atmosphere (Ar), the top-views of
the sample after the paint removal when the defocus is 0 mm are as shown in Figure 11a–d.
Both show pits and ridges that flow and resolidify after the metal melts and are similar
in size. However, the top views of the two samples are not quite the same. After laser
paint removal in ambient air, the surface of the sample (Figure 11e) has a layer of loose,
rough and uneven remelted material, with large undulations in the depth direction and
uneven thickness, about 8–11 µm. The magnified SEM image (Figure 11e-1) shows that it
has formed an obvious grain refinement phenomenon. Because the laser processing speed
is very fast, the heating speed and quenching effect lead to the formation of martensite,
especially its grain refinement and the uniformity of the hardened zone. Martensitic or
austenitic stainless steels produce fine structures at high cooling rates. In laser transfor-
mation hardening, the cooling rate usually exceeds 1000 ◦C/s, the surface structure is
martensite, and the grain size is reduced to about 200 nm.
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Figure 11. Cont.
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Figure 11. SEM images of laser treated samples: (a,c) top-view (ambient air, focused), (e,e-1) cross-section (ambient air,
focused), (b,d) top-view (Ar atmosphere, focused), (f,f-1) cross section (Ar atmosphere, focused), (g) top-view (compressed
air, defocus distance +4 mm), (i) cross-section (compressed air, defocus distance +4 mm), (h) top-view (Ar atmosphere,
defocus distance +4 mm), (j) cross-section (Ar atmosphere, defocus distance +4 mm).

In the inert atmosphere, the remelted substance on the surface of the sample
(Figure 11g) after laser paint removal has small fluctuations in the depth direction, and the
thickness is much thinner, about 3–5 µm. The magnified SEM image (Figure 11f-1) shows
that it has also formed the phenomenon of grain refinement. The paint removal process
in the ambient air is mainly affected by the laser plasma effect. Due to the high energy
density of the laser spot at the focal point, after the substrate absorbs the laser energy, the
temperature rapidly rises to the melting point and melts. The high-pressure shock wave
generated by the plasma plume pulls part of the molten base metal out of the molten pool.
The ejected molten metal falls back to the surface of the sample and rapidly cools to form
the remelting layer in the Figure 11e [31]. The remaining molten metal in the molten pool is
squeezed to the edge of the molten pool by light pressure and vaporization pressure. After
the pulse, it quickly cools and solidifies, forming ablation pits and ridges. In the process
of paint removal in an inert atmosphere, no high-temperature and high-pressure plasma
are generated, and no violent physical and chemical phenomena such as splashing occur.
Only the molten metal is squeezed to the edge of the molten pool by light pressure and gas
pressure, and after cooling and solidification, shallow pits and ridges are formed.

The micro morphologies of the samples laser treated (defocus distance +4 mm) in
compressed air and in inert atmosphere are shown in Figure 11g–j. Both are almost identical
to the unpainted substrate. The substrate has no remelting and solidification phenomenon,
no ablation pits, etc.

Figure 12 shows the energy dispersive X-ray Spectroscopy (EDS) spectrum of the
unpainted substrate and samples laser treated in ambient atmosphere. Compared with
the unpainted substrate, the content of elements C and O in the samples laser treated
in compressed air and in an inert atmosphere increased slightly. The content of C in the
focused samples laser treated in compressed air was the highest, which increased by 10.76%.
That in the samples laser treated (defocus distance +4 mm) in inert atmosphere was the
lowest, only increased by 2.4%. The reason is that C-H, C-C, C=O and other chemical
bonds were broken and rearranged in the polymer molecular chain of acrylic resin and
epoxy paint under the action of chemical bond breaking and combustion mechanism [32]
during laser paint removal in compressed air and inert atmosphere. Ablation produced
amorphous carbon, carbides and paint residual organic carbon, in which larger particles
and smoke were blown away by strong airflow, and some micro/nano-particles attached to
the samples at high temperature. The energy density of focused laser spots was high, and
the substrate metal melted and then re-solidified, so there were more micro/nano-particles
attached, and more carbon migrated into the substrate. The reason for the lower C content
in the samples laser treated in inert atmosphere than that in compressed air may be that
the paint ablates more fully in compressed air, resulting in more amorphous carbons and
carbides. The content of organic components in the samples laser treated in compressed air
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and inert atmosphere was lower than that of the unpainted substrate, which may be due to
the removal of trace oil on the original substrate.

Figure 12. Representative EDS spectra of unpainted substrate and laser treated samples: (a) un-
painted substrate; (b) in compressed air, focusing; (c) in compressed air, defocus distance +4 mm;
(d) in inert atmosphere, focusing; (e) in inert atmosphere, defocus distance +4 mm.

3.5. Roughness

The reduced surface roughness may reduce the adhesion of the subsequent painting
and may not meet the requirements of the re-painting specification. If the surface roughness
is too high, the paint will be wasted, and the air may be trapped in troughs and cause bubble
defects. Figure 13 shows the surface roughness corresponding to the photos of the samples
laser scanned 3 times in Figure 9. Because of the residual paint on the samples laser treated
(defocus distance +4 mm) in ambient air, the surface roughness of the samples cannot be
accurately displayed, so it is not displayed here. The surface roughness of the samples
laser treated (defocus distance +4 mm) in compressed air and inert atmosphere was very
close to that of unpainted substrate. That of the focused laser treated samples increased the
most. They increased gradually with the reduction of the laser defocus distance.

Figure 13. Surface roughness of samples laser scanned 3 times: (a) in ambient air, defocus distance
0–+3 mm; (b) in compressed air, defocus distance 0–+4 mm; (c) in inert atmosphere, defocus distance
0–+4 mm; (d) unpainted substrate.

3.6. Microhardness

Figure 14 shows the microhardness of the unpainted substrate and that of the laser
treated samples at different depths from the treated surface. Compared with the unpainted
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substrate, the microhardness of laser treated samples increased near the treated surface
(5 µm away from the treated surface). The microhardness of the samples focused laser
treated and the samples laser treated (defocus distance +3 mm) in ambient air was the
largest (more than 11 HV), and gradually decreased until a depth of 37 µm with the
increase of depth. However, the microhardness of the samples laser treated (defocus
distance +4 mm) in inert atmosphere did not significantly increase. This is because the
metal on the samples focused laser treated melted and re-solidified to form a 5–11 µm
remelting layer (Figure 11e,f). As the laser pulse action time was very short (ns), both
metal melting and resolidification occurred in a very short time, which is equivalent to
surface quenching. The resolidification layer was martensite, which is hard. Meanwhile,
a high-density plasma jet explosion was generated during laser paint removal, and the
peak stress of the impact stress wave (high pressure shock wave) was much higher than
the dynamic yield strength of the substrate material [33], leading to work hardening [34,35]
of the material and increasing the microhardness. This process is equivalent to laser
shock strengthening, resulting in residual compressive stress deep into a depth of 37 µm.
However, there is no obvious remelting layer on the samples laser treated (defocus distance
+4 mm) in inert atmosphere and no plasma generated during the process of paint removal.
As a result, there was little change in microhardness compared to the unpainted substrate.
In addition, the increase in carbon content may also lead to an increase in surface hardness.
Compared with the unpainted substrate, the content of C element on the laser treated
surfaces increased (Figure 12). Because of the chemical potential gradient, it can be assumed
that alloying elements were redistributed in the steel through diffusion processes. The
atomic ratio of iron to carbon is about 0.2, and the diffusing element carbon is much smaller
than the steel matrix unit, so carbon can move between the iron matrix vacancies, resulting
in interstitial diffusion [36].

Figure 14. Microhardness depth profile of t unpainted substrate and laser treated samples:
(A) unpainted substrate; (B) in ambient air, focused; (C) in ambient air, defocus distance +3 mm; (D)
in inert atmosphere, focused; (E) in inert atmosphere, defocus distance +4 mm.

3.7. Characterization of Particles Collected on Silicon Wafers

A mixture of particles from several microns to several hundred microns, vapors,
clusters and ionized nanoclusters generated during the process of evaporation or ionization
of pain [37,38], which diffused outwards and deposited on the surface of the silicon
wafer [39], as shown in Figure 15. The collected particles, ranging in size from micrometers
to nanometers, can be seen in a variety of shapes, including flakes, clumps, and spheres.
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Figure 16 shows the energy dispersive X-ray Spectroscopy (EDS) spectra of Figure 15a–m.
Figure 15a–f represents the particles collected during laser paint removal (in ambient
air, defocus distance 0 mm), and the EDS spectra of Figure 16a–g corresponds to it. In
Figure 15a surfaces are smooth and complete with clear and flat edges, and no signs of
melting or ablation are found, indicating that they had cracked before melting. EDS
analysis showed that their content of C and O was no different from that of the original
paint, which could be judged as the paint fragments peeled off due to the thermal stress
effect. Those are paint pieces that peeled away from the cracks due to thermal stress effects.
The micron agglomerates in Figure 15b have irregular shapes and smooth surfaces. EDS
showed that their C content decreased a little and oxygen increased a little. They were
identified as melted paint particles. Figure 15c shows the micro-clusters composed of
several paint nanoparticles, whose C content significantly decreased and oxygen greatly
increased. Those are clusters of paint nanoparticles generated by thermal ablation that
attract, combine and aggregate with each other. The content of C of paint microspheres in
Figure 15d decreases sharply, while their content of oxygen increases sharply. They were
produced by ablation or ionization [40,41]. Nano-spheres in Figure 15f were formed by
condensing gaseous molecules formed by the paint decomposition and combustion on
the surface of silicon wafers. EDS spectra of the black pellets in Figure 15e showed that
the main component was Fe, in addition to 29.42% oxygen, and the content of C was very
small. They were identified as small iron balls condensed after the substrate metal melted
and splashed out. This is evidence of substrate damage.

Figure 15i–l shows the particles collected during focused laser paint removal in inert
atmosphere. Most of them are flakes or spherical particles, which are mostly the result of
chemical bond breakage caused by photo-thermal ablation of the paint [32], and no micron
agglomerates similar to those produced by paint melting in Figure 15b are found.

Figure 15n shows the micron paint flakes collected during laser paint removal (in
inert atmosphere, defocus distance +4 mm). EDS analysis showed that their content of
C and O was no different from that of the original paint, which could be judged as the
paint fragments peeled off due to thermal stress effect. Local heat absorption caused the
paint film to tense and buckle and then cracks to form around the bending areas, which
subsequently caused the affected parts of the film to peel off. No small black iron ball was
found in the particles collected during laser paint removal in inert atmosphere.

Figure 17 compares the contents of C, O and Fe elements of primer particles collected
by silicon wafers. Figure 15g shows micron agglomerates of primer particles collected
during focused laser paint removal in ambient air, with irregular shape, and two parts
with distinct morphologies can be seen. The lower left half has a rough surface with
small cracks; the lower right half has a smooth surface, similar to Figure 15b. The EDS
spectra of Figures 16g1 and 16g2, respectively, shows that iron was detected in its lower left
part, with more oxygen content and less C content, which was judged to be the substance
separated from the substrate. No iron was detected in the lower right part, and the contents
of C and O were similar to those in Figure 15b, which was judged to be epoxy primer
with incomplete ablation. Figure 15h shows micron primer agglomerates collected during
laser paint removal (in ambient air, defocus distance +3 mm) without the cracks shown
in Figure 15g. Compared with the primer particles collected during focused laser paint
removal in ambient air (Figure 16g1), the content of iron and oxygen was reduced, and
the content of C was increased. Figure 13i shows micron primer flakes collected during
focused laser paint removal in inert atmosphere, flat and thick, without cracks on the
surface. Compared to the primer particles collected during focused laser paint removal in
ambient air (Figure 16g1), the content of iron and oxygen was reduced more, the content
of iron was reduced by 70%, and the content of C content increased by 47%. Figure 15m
shows the primer nanoclusters collected during laser paint removal (in ambient air, defocus
distance +4 mm), which are composed of several nano-spheres generated by thermal
ablation that attract each other and gather together. The content of iron was the least, only
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0.52%. Compared to the primer particles collected during focused laser paint removal in
ambient air (Figure 16g1), the iron content was reduced by 82.3%.

Figure 15. SEM images of particles collected by silicon wafer: (a–g) in ambient air, defocus distance
0 mm; (h) in ambient air, defocus distance +3 mm; (i–l) in inert atmosphere, defocus distance is 0 mm;
(m–o) in inert atmosphere, defocus distance +4 mm.

This is because the photons energy was absorbed by the paint and the substrate
in the laser irradiation area and converted into heat during the extremely short time of
laser pulse action, making it heat up and cool rapidly, with local rapid expansion and
contraction within a short period of time. The absorbance, thermal conductivity, specific
heat capacity and thermal expansion coefficient of the substrate and the primer are very
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different, resulting in a large difference in temperature and volume changes between
the two and in considerable thermal stress and acceleration, so that the ablated primer
particles were ejected from the sample together with part of the substrate metal. There
were randomly distributed defects in the substrate. These were the places where the
stress concentrated and the cracking occurred. Therefore, the surface of the side where
the micron agglomerate (Figure 15g) detached from the substrate surface is rough and has
small cracks. During paint removal in inert atmosphere, the content of the C element in
the ablative products increased greatly, which was due to the strong air flow (Ar gas flow
rate of 8–10 Lpm) blowing away the particles and smoke produced in time. The residence
time of the ablated particles on the laser irradiation area decreased, which made most
particles burn incompletely. Moreover, the content of Fe in the ablative products greatly
decreased because there was no plasma, and violent physical and chemical phenomena
such as splashing occurred during laser paint removal, which reduced the damage to
the substrate.

Figure 16. Cont.
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Figure 16. Representative EDS spectrum of (a–e), (g)1, (g)2, (h), (i), (m)1, (m)2 in Figure 15.
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Figure 17. Content of C, O and Fe elements of particles collected by silicon wafers. 1st group:
in ambient air, focusing; 2nd group: in ambient air, defocus distance +3 mm; 3rd group: in inert
atmosphere, no defocusing; 4th group: in inert atmosphere, defocus distance +4 mm.

4. Conclusions

The process combinations of laser defocus and open atmosphere (ambient air, com-
pressed air and inert gas) were used to remove four-layer paint from the surface of an
automobile’s body, which minimized the adverse effect on DC01 steel substrate. The main
conclusions are as follows:

1. The content of the C element and organic component in the samples laser treated (de-
focus distance +4 mm) in inert atmosphere was the lowest, and the organic component
was reduced by 1.88% compared with the unpainted substrate. Their surface microto-
pography, roughness and hardness were very close to that of the unpainted substrate.

2. With laser paint removal (in ambient air, defocusing distance 0 mm), the damage to
the substrate is the most serious. The paint is removed at the focus of the laser; a
remelted surface layer is formed on the surface of the substrate; the metallographic
structure is changed; the crystal grains are refined, and the surface roughness is
increased. The microhardness increases by more than 11 HV, and gradually decreases
as the depth increases until it is 37 µm.

3. In an open atmosphere (compressed air and inert gas, the gas flow is controlled at
8–10 Lpm) laser paint removal, only bright spots are seen when the paint layer is
removed. Laser vaporization effects and thermal stress effects play a major role.

4. In laser paint removal in an open atmosphere (compressed air and inert gas, the gas
flow is controlled at 8–10 Lpm), the airflow can reduce local heat, make more energy
act on the paint layer and accelerate the removal of the paint layer; by removing the
ablation products, the generation of laser plasma and the shielding of the laser are
avoided, and the damage of the substrate by the violent reaction is avoided. At the
same time, the high-pressure gas blown during cleaning at the focal point can change
the surface morphology and chemical composition content of the substrate, and the
morphology and element content of the ablation product will also change.
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