
materials

Review

Potentiality of Nanoenzymes for Cancer Treatment and Other
Diseases: Current Status and Future Challenges

Rakesh K. Sindhu 1 , Agnieszka Najda 2,* , Prabhjot Kaur 1, Muddaser Shah 3,* , Harmanpreet Singh 1 ,
Parneet Kaur 1, Simona Cavalu 4 , Monika Jaroszuk-Sierocińska 5 and Md. Habibur Rahman 6,7,*
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Abstract: Studies from past years have observed various enzymes that are artificial, which are issued
to mimic naturally occurring enzymes based on their function and structure. The nanozymes possess
nanomaterials that resemble natural enzymes and are considered an innovative class. This innovative
class has achieved a brilliant response from various developments and researchers owing to this
unique property. In this regard, numerous nanomaterials are inspected as natural enzyme mimics
for multiple types of applications, such as imaging, water treatment, therapeutics, and sensing.
Nanozymes have nanomaterial properties occurring with an inheritance that provides a single
substitute and multiple platforms. Nanozymes can be controlled remotely via stimuli including heat,
light, magnetic field, and ultrasound. Collectively, these all can be used to increase the therapeutic as
well as diagnostic efficacies. These nanozymes have major biomedical applications including cancer
therapy and diagnosis, medical diagnostics, and bio sensing. We summarized and emphasized the
latest progress of nanozymes, including their biomedical mechanisms and applications involving
synergistic and remote control nanozymes. Finally, we cover the challenges and limitations of further
improving therapeutic applications and provide a future direction for using engineered nanozymes
with enhanced biomedical and diagnostic applications.

Keywords: nanozymes; nanomaterials; artificial; cancer diagnosis; therapeutics; biomedical

1. Introduction

Enzymes are considered natural biocatalysts which catalyze many biochemical reac-
tions with good catalytic efficiency, biocompatibility, and substrate specificity. Recently,
these reactions have been extensively used in various food industries and other biomedical
applications. Their use in the agri-food industry promotes proper processing, storage
activities and the functionalization of food products [1–6]. Enzymes play a significant role
in enhancing the safety of food products [7]. Nanotechnology is believed to have a major
part in advanced drug formulation, targeting a specific part of the body and controlled
release of the drug. Nanotechnology is stated to communicate with the barrier of physical
and organic sciences by putting forward nanospheres and structures in numerous scientific
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fields [8,9] other than nanomedicines and their delivery [10,11]. Nanotechnology engages
the therapeutic agents at nanoscale levels for the development of medicines that are nano.
Biomedicine including nanobiotechnology, biosensors, and tissue designing is done by the
nanoparticles [12]. Recently, nanomedicines have become very much refreshing as nanos-
tructures act as delivery agents by giving medication examples [13,14]. Using conveyance
nano-drugs for the treatment depends upon various properties of targeted drugs such as
biochemical functions [15]. Over the past few years, scientists have made an extraordinary
attempt in developing artificial enzymes for various types of applications. Consider the
examples that the chemical complexes based on porphyrin [16,17], hematin [18], cyclodex-
trin [19], hemin [20,21], and the specially designed biomolecules proteins successively
imitate the function of the naturally occurring enzymes [22,23].The intrinsic limitations
of the natural enzymes such as low stability, high cost, and storage difficulty have led to
the introduction of artificial enzymes that imitate the activity of the naturally occurring
enzymes [24]. As another sort of promising artificial enzyme, nanozymes have demon-
strated a wide range of uses because of their evident favorable circumstances, including
low cost, high stability, the large surface area for functionalization, high catalytic activity,
and tuneable activity [25]. Various obstacles and constraints of further developing ther-
apeutic applications are of significant interest, as well as a future direction for the usage
of modified nanozymes with better biomedical and diagnostic applications. Nanozymes
are defined as artificial nanomaterials possessing intrinsic enzyme-like activities. Scien-
tists have worked toward their enhancing utility as they have many advantages over
natural enzymes. Nanozymes are believed to act by mimicking the action of the natural
enzymes [26–28]. The concept of nanozyme has reformed our essential comprehension
of chemistry and biology, encouraging plenty of uses in the fields of biosensing, science,
and medication [26]. Nanozyme synthesis is an innovative technology since it connects
nanoparticles with biological activities and framework. Various assays have been imple-
mented for the enzymes of proteins that also implement nanozymes, which could also
have the potential for performing the catalysis of similar substrates. Due to such different
functions of nanozymes, they are used for the treatment of the environment, biosensing,
agents that act against microbes, cytoprotection of different cell biomolecules with manage-
ment, diagnosis of diseases, etc. [29–33]. Various sources, properties, mimicking types, and
analytical capabilities are shown in Figure 1 [1].

Figure 1. Sources, properties, mimicking types, and analytical capabilities of nanozymes.
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2. Types of Nanozymes

The nanozymes can be classified into different types (Table 1) based on the enzymes
whose actions they mimic. It was mentioned in a 2013 review that there are generally four
types of redox enzymes which include catalase, superoxide dismutase (SOD), oxidase, and
peroxidase [34].

2.1. Peroxidasemimics
2.1.1. Iron-Based

The Fe3O4 NPs, which are magnetic, have functions such as imitating the intrinsic
peroxidase, which was discovered in 2007 by the Yan group. It could lead to the oxidation
of the three colorless peroxidase substrates involving ortho-phenylenediamine, TMB, and
diazoamino benzene to the colored materials, which are comparable with H2O2. The MNP
nanozymes have the occurring mechanism, which is known as ping pong catalysis, and
is suggested in the kinetics studies. The higher as well as lower affinity of nanozymes
towards TMB and H2O2, respectively, compared to the HRP, has been well indicated by
the measured Michaelis–Menten constants [35]. Later on, peroxidase imitates linked with
Fe3O4 MNP were applied for detecting glucose and hydrogen peroxide [35,36].

2.1.2. Vanadium-Based

The first demonstration regarding the V2O5 nanowire-based peroxidase mimics was
done by a group named Tremel in 2011 [37]. After that, maximum attention was gained
by the peculiar vanadium haloperoxidase imitating the functions of V2O5 wires which
are nano along with their anti-biofouling and marine applications [38]. Various research
on vanadium disulfides and peroxidase, which is similar to vanadium, has been reported
since then [39–43].

2.1.3. Based on Noble Metal

There are various nanomaterials based on noble metals such as gold [44–55], silver [56–61],
platinum [62–75], Pd [76–78], and multi-metallic NPs which are known as peroxidase imitates
and are utilized for antibodies, therapy, and biosensing.

2.1.4. Carbon-Based

Carbon is another typical nanomaterial as peroxidase-like activities with pH, temp,
and hydrogen peroxide concentration dependent functions have been possessed by nan-
otubes which have a single wall and oxides of graphene [79,80]. Propelled by these findings,
there are various other carbon-based peroxidase mimics such as carbon dots [81–88], Fe/N
doped carbon [89–94], carbon nitrides [95–97], etc., which have been explored.

2.1.5. Based on Metal–Organic Framework

This framework which has diverse porous structures has been used widely for biomed-
ical applications. It can consist of coordinating ions or clusters of metals (e.g., Cu and iron)
comprising the organic ligands. 2D MOFs are believed to exhibit high functions of catalysis
as compared to the analogues of 3D, hence giving effective sensibility for the detection of
biomolecules [98].

2.2. Oxidase Mimics
2.2.1. Gold-Based

Even though the nanomaterials, which are metals, are generally utilized for showing
catalyzing responses, the disclosure of carbon-upheld Au or unbearable citrate-covered
AuNPs (along with 3.5 nm of normal distance) and glucose oxidase-copying exercises
were amazing and startling [99,100]. Further, according to the kinetics measurements, the
mechanism of EleyRideal was suggested for AuNP-based imitates of oxidase [101].
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2.2.2. Copper-Based

Nanoparticles that contain copper were have also been used as imitates of oxidase.
For example, Goximitating composites of Cu2O or polypyrrole were accounted for the
oxidative catalysis of glucose for creating hydrogen peroxidase in fundamental terms. Al-
though oxidation of rising glucose exercises the composites of Cu2O or polypyrrole, which
guarantee identification of glucose, the situation for this response ought to be additionally
improved in terms of physiological conditions for more extensive utilizations [102].

2.2.3. Molybdenum-Based

It has been reported by Tremeland co-workers that the molybdenum trioxide nanopar-
ticles can mimic sulfite oxidase for converting it into sulfate [103]. The high stability in water
and serum led to the development of ultra-smallMoO3 NPs (with 2 nm average diameter).

2.2.4. Based on Platinum

An important part is played by ferroxidases generally in the transfer and storage of Fe
in the cellular environment. Later on, some research linked with PtNPs as the imitates of
ferroxidase for oxidizing them were noted. Examples such as Zhang, Knezand collaborators
used apoferritin, which is a light chain as the platform for PtNPs to get ready. Nanozymes
such as these organized one scan control the homeostasis of the iron cell, which is profited
by the ferroxidase [104].

2.3. Catalase Mimics

Catalase is believed to decompose H2O2 into H2O and O2 effectively. Many nano-
materials such as metal oxides, metals and PB exhibit the type of activities linked with
catalase [105–112]. It was noted that nanoparticles had activities similar to catalase with
another catalyst-impersonating function, and pH or temp could have made the catalyst
impersonating action predominant. Pt and Pd were demonstrated for possessing the good
imitating functions of catalase compared to gold and silver [113]. Some metal oxide nano-
materials (such as ZrO3 and CoO4) and PB were also found to show catalase-mimicking
properties at higher pH [114,115].

2.4. Superoxide Dismustase (SOD) Mimics

The damage that occurred through oxidation to the living organization may be caused
by the species of dysregulated oxygen which is reactive. Naturally, SOD is believed to
eliminate the anion which is superoxide O2

−, ROS, throughout the dismutation response of
O2
− to hydrogen peroxide and oxygen. For surviving constraints linked with SOD, which

is common, an assortment linked with nanomaterials is utilized to imitate SOD [116–124].

2.4.1. Carbon-Based

C60[C(COOH)2]3, comprised of symmetry linked with C3, has been approved for
possessing more properties such as acting against oxidation [125]. The catalytic elimination
of the superoxide anion O2

− resulted in the antioxidation activity. Later on, the non-change
of C60-C3 and production of O2 and H2O2 from O2

− was confirmed by the mechanism
studies just like the SOD catalyzed reaction [126].

2.4.2. Cerium-Based

Nanoceria was classified as one of the first nanomaterials possessing SOD-mimicking
activity. These have been allocated to the shuttle of electrons between the mixed states
of oxidation [127,128]. The superoxide mechanism of action showing the cerium oxide’s
ability to scavenge has yet not been verified, but there are some studies showing more
SOD-mimicking activity by the high ratio of Ce3+/Ce4+ [129–131].



Materials 2021, 14, 5965 5 of 25

2.4.3. Melanin-Based

The nanoparticles which are melanin in nature comprise various free radicals which
scavenged the activities which have been implemented by a group of Shi [132]. The mixture
of the hydrochloride of dopamine along with NH3 in the ethanol and water led to the
synthesis of melanin nanoparticles. Further, their stability was improved by functionalizing
with amine-terminated PEG. Such types of PEGcMeNPs with an approximate diameter of
120 nm were shown to possess SOD-like activities for O2

− scavenging.

2.5. Hydrolase Mimics

The hydrolysis of the chemical bond is catalyzed by hydrolase. For example, the
bonds of nucleotides are hydrolyzed by nucleosidase. The phosphatase enzyme helps in
the catalysis of phosphate cleavage from the molecules [24].

2.5.1. Carbon-Based

Other than the previously mentioned peroxidase and SOD-imitating activity, ulti-
mately, nanozymes that are based on carbon are initially found to replicate the common
nucleases [133]. Aqueous-solvent fullerene worked with the corrosive carboxylics, known
as C60-1, and it was exhibited for catalyzing the phosphodiester cleavage obligation occur-
ring in DNA and illuminated through the light. Hence, by formulating the fullerenes and
the corresponding DNA, the effectiveness of a particular DNA’s cleavage site would be
increased [134,135]. Notwithstanding fullerenes, the oxides of graphene were additionally
utilized as hydrolase imitates [136–138].

2.5.2. Monolayer Functionalized AuNP-Based

AuNPs worked along with monolayers which are catalytic throughout the bonds
of gold and silver are amongst the very first nanomaterials imitating as hydrolases that
deserve acknowledgments. According to further studies, such performance has been
allocated to increased common HPNP concentration, the cooperation between more than
one center of metals and the stability being high [139–141].

2.5.3. Metal–Organic Framework-Based

Countless MOFs based on Zr are used as imitates of phosphor triesterase for the
occurrence of cleavage of the bond of phosphate ester of CWA which is abbreviated
as chemical warfare agent [142–150]. This was because of the similarity between their
structures.

2.6. Other Enzyme Mimics

Other than hydrolysis and redox reactions, many reactions attained huge impor-
tance [151–157]. For example, other than peroxidase and the imitates of hydrolase dis-
cussed prior, an action like hydrogenase would likewise be figured out, insofar as giving
MOFs photon ingestion specialists (porphyrin) and proton ingestion lessening operators
(PtNPs) [158–160]. Moreover, the synthesis of MOFs with carbonic anhydrase limits the
dangerous atmospheric deviation issue [161].

Furthermore, Chmielewski et al. revealed that the assembly of electrostatics, the pep-
tide parts of trimethylammonium working AuNPs, could advance the ligating of peptides
that are two in number, which resulted in inorganic implemented nanoparticles favorable
in the biopolymers polymerization [162]. Morse et al. also illustrated the monolayer AuNPs
functionalization which could mimic silicatein.



Materials 2021, 14, 5965 6 of 25

Table 1. Classification of nanozymes.

Sl. No Nanozymes Subtypes Features Reference

1. Peroxidase mimics

Iron-based

The Fe3O4 NPs, which are magnetic, have functions
such as imitating the intrinsic peroxidase. The MNP
nanozymes have the occurring mechanism which is

known as ping pong catalysis and is suggested in the
kinetics studies.

[35]

Vanadium-based

V2O5 nanowire-based peroxidase mimics were the first
demonstration done. Other research included the
peculiar vanadium haloperoxidase imitating the

functions of V2O5 wires which are nano, along with
their anti-biofouling and marine applications.

[37,38]

Based on noble metal
Multi metallic NPs of the noble metals (Pd,Ag,Pt)
which are known as peroxidase imitates and are
utilized for antibodies, therapy, and biosensing.

[44–48]

Carbon-based

They possess pH, temp and hydrogen peroxide
concentration dependent functions. These have been
possessed by nanotubes which have a single wall and

oxides of graphene.

[79,80]

Based on metal–organic
framework

2D MOFs are believed to exhibit high functions of
catalysis as compared to the analogs of 3D, hence

giving effective sensibility for the detection of
biomolecules.

[98]

2. Oxidase mimics

Gold-based
According to the kinetics measurements, mechanism of
Eley–Rideal was suggested for AuNP-based imitates of

oxidase.
[101]

Copper-based

Nanoparticles that contained copper were also used as
imitates of oxidase. For example, Goximitating

composites of Cu2O or polypyrrole were accounted for
the oxidative catalysis of glucose for creating hydrogen

peroxidase in fundamental terms.

[102]

Molybdenum-based
It has been reported that the molybdenum

trioxidenanoparticles can mimic sulfite oxidase for
converting it to sulfate beneath the terms of physiology.

[103]

Based on platinum

Some research linked with PtNPs as the imitates of
ferroxidase for oxidizing them were noted. Examples

such as, Zhang, Knez, and collaborators used
apoferritin which is a light chain as the platform for

PtNPs to get ready.

[104]

3. Catalase mimics ————–

There are many nanomaterials such as metal oxides,
metals, and PB which exhibit the type of activities

linked with catalase. Pt and Pd were demonstrated for
possessing the good imitating functions of catalase

compared to those of gold and silver.

[105–113]

4.
Superoxide

dismutase (SOD)
mimics

Carbon-based
C60[C(COOH)2]3 comprised of symmetry linked with
C3 has been approved for possessing more properties

such as acting against oxidation.
[125]

Cerium-based

Nanoceria was classified as one of the first
nanomaterials possessing SOD mimicking activity.

These have been allocated to the shuttle of electrons
between the mixed states of oxidation.

[127,128]

Melanin-based
The mixture of the hydrochloride of dopamine along

with NH3 in the ethanol and water led to the synthesis
of melanin nanoparticles.

[132]
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Table 1. Cont.

Sl. No Nanozymes Subtypes Features Reference

5. Hydrolase mimics

Carbon-based

Aqueous-solvent fullerene worked with the corrosive
carboxylic, known as C 60-1, and it was exhibited for

catalyzing the phosphodiester cleavage obligation
occurring in DNA and illuminated through the light.

[134,135]

Monolayer
functionalized AuNP

based

AuNPs worked along with monolayers, which are
catalytic throughout the bonds of gold and silver, are

amongst the very first nanomaterials
imitating as hydrolases that deserve acknowledgments.

[139–141]

MOF-based
MOFs based on Zr are used as imitates of phosphor

triesterase for the occurrence of cleavage of the bond of
phosphate ester of chemical warfare agent.

[142–150]

2.6.1. Single-Substrate Mechanism of Nanozymes

Such types of nanozymes only show a reaction with one substrate. Certain nanozymes
were revealed by imitating the action of enzymes while giving a platform which is water-
soluble. Basic functionalized groups are moored with cooperation onto different stages of
nanoscale for synergist responses. Afterward, multivalent components such as metal ions
came into consideration and have developed, expanding utilization in the biomedical field.
Representative nanozymes along with the one-substrate mechanism would be sorted into
a few types, dependent on responses and the sorts of enzymes occurring naturally.

This mechanism usually displays the kinetic profile which shows catalysis by Michaelis–
Menten, in which catalysis has two stages, that is, the authoritative and response stages.
While plotting the velocity of the reaction as a function of the concentration of substrate,
kcatand KM are commonly determined to characterize nanozyme movement.

The nanozymes showing a single substrate mechanism generally include:

• Hydrolase;
• Peroxidase;
• Superoxide dismutase;
• Oxidase;
• Catalase [26].

2.6.2. Nanozymes with the Multi-Substrate Mechanism

The advancement of nanotechnology and the comprehension of artificial enzymes
have amassed, and their mechanism of multiple enzyme-like activities has been recognized.
Representative nanozymes that follow one or more substrates or work differently under
different situations, such as pH esteems, hydrogen peroxide or glutathione concentrations,
and oxygenation levels, are listed in this section. These components may altogether impact
the practices of nanozymes, which are particularly valid for the organic microenvironment
at disease sites like cancer.

The multi-substrate mechanism can be depicted in:

• Metal-based nanozymes;
• Cu2O nanozymes;
• Nanoceria;
• Melanin nanoparticles;
• Prussian blue nanoparticles [26].

3. Synthesis of Nanozymes
3.1. Nanozyme Production

The nanomaterials which are catalytic possess different properties in comparison
with natural enzymes [163]. The activities of the nanozymes depend on the size of the
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particle, structure, and its shape which is affected by the coatings, charges, and external
fields [164,165].

3.2. Hydrothermal and Solvothermal Methods

The techniques which are very promising for synthesizing the nanomaterials are the
hydrothermal and solvothermal methods. Nanocrystals of low cost with well-controlled
dimensions can be obtained by utilizing the proposed methods [164,166].

A series of nano crystals which are spinel-type were synthesized by using the method
of solvothermal, where the solvent used was ethylene glycol. The obtained nanozymes
were utilized as enzyme mimics for the detection of hydrogen peroxide. For example,
two types of carbon-based nano catalysts with a size of 100–150 nm were synthesized by
utilizing a combination of two methods, a thermal method and a solid-state reaction, from
the zeolitic imidazolate framework-8 (ZIF-8) [167,168]. The carbon cubic nanomaterial with
the hollow structure was procured by chemically etching ZIF-8 along with tannic acid,
stuck to it by a calcination process. The carbon cubic nanomaterial with the porous surface
was acquired by direct pyrolysis [169].

Electrochemical observation of glucose and fructose formed on gold nanoparticles
(AuNPs) placed onto graphene paper has lately been presented. These nanostructures
were formed by two techniques: thermal and laser de-wetting processes [170]. Gold
nanostructures acquired by both methods exhibited major differences in their particle
morphology. Both types of AuNPs were investigated by their capacity to oxidize glucose
and fructose [171].

3.3. Chemical Reduction

Chemical reduction is a method which is used very frequently because of its rapidity
and simplicity. This tool enables the formation of NPs in which the morphology and the size
of particle distribution are managed by changing the molar concentration of the reactants,
the reductant type, and the reaction temperature [172]. The important factor in achieving
very high chemical reduction is choosing the suitable reductants. The reduction of metal
salts needs reactivity of the agent which causes reduction to the redox potential of the
metal. The procured particles are small if the reaction rate during the synthesis procedure
is too fast [173]. Nevertheless, if the reaction rate is too slow, particle aggregation may
happen [174]. The synthesis of hollow copper sulfidenanocubes (h-CuS NCs) was done
via the chemical reduction method [175]. This method has been utilized for the synthesis
of peroxidase (PO)-like nanozyme-based AuNPs along with Pseudomonas aeruginosa-
specific aptamer [176].

3.4. Sol–Gel Method

In the sol–gel method, a gel-like network containing liquid and solid phase is formed.
The crystallinity, morphology, and magnetic properties of the nanozymes can be managed
by choosing a suitable complexing agent, concentration and type of chemical additive,
and temperature conditions [177]. The synthesis of PtNPs polyaniline (PAni) hydrogel
heterostructures was produced with the sol–gel method [178]. Phytic acid was utilized as a
complexing agent. The PtNPs loaded into the hydrogel matrix act as active catalysts for the
oxidation of hydrogen peroxide. The acquired PtNP/PAni hydrogel had a 3D hierarchical
structure consisting of connected PAni nanofibers with diameters of approximately 100 nm).
The porous structure of the PAni hydrogel allows immobilization of concentrated enzyme
solutions. Since water-soluble molecules can penetrate through the hydrogel, the PtNPs
preserve their ability to catalyze glucose oxidation [179].

3.5. Co-Precipitation

Co-precipitation is a quick technique for the amalgamation of various sorts of nanocat-
alysts. Co-precipitation is a superb method to use when higher virtue and better sto-
ichiometric control arerequired. Dashtestani et al. utilized a mix of two strategies for
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nanocompositeunion: reduction of HAuCl4 chemically and co-precipitation of the acquired
gold nanoparticles with the copper (II) complex of cysteine (GNPs/Cu-Cys). The mix of
GNPs and the Cu-Cyscomplex expanded the electrochemical sign toward O2 [180,181].

3.6. Electrochemical Deposition

Electrochemical deposition is a minimal-effort strategy for acquiring metalnanocata-
lysts. In any case, it is normally utilized less regularly than synthetic decrease strategies.
The interaction is straightforward and incorporates a drenching of a conductive surface
into an answer containing particles of the material to be saved and the use of a voltage
across the strongelectrolyte interface. Throughout this strategy, a reaction of charge transfer
causes the deposition of film [182,183].

3.7. Polymerization and Polycondensation

Nanozymes can be acquired either by utilizing insoluble polymers or by cross-
connecting of a solvent polymer. Santhosh et al. blended composite center shell nanofibers
comprising gold nanopartilces on poly (methylmethacrylate) by the mix of an electrospin-
ning procedure, and furthermore, the in situ polymerization of aniline [184,185].

4. Nanozymes from Challenges to Opportunities

There has been a huge development observed in the field of nanozymes over the last
few years, as shown in Figure 2. There has even been a considerable increase in the number
of nanozymes along with the reaction. Enzymes are found to depict some of the basic
characteristics such as high substrate specificity and excellent activity. Besides this, there
are a variety of nanozymes which did not achieve the level of composure. Such limitations
are served as a better opportunity for advanced development and research [186].

Figure 2. Opportunities in the field of nanozymes.

Types of Nanozymes
Many studies are describing different types of nanozymes (e.g., Fe3O4 nanoparticles

were observed to possess peroxidase-like activity), indicating their ability to catalyze
the substrate oxidation by using hydrogen peroxide [187,188]. Due to the biocompatible
and magnetic qualities of Fe3O4, it is interesting and can be used in theragnostic in vivo
procedures [189]. Later on, it was observed that many nanoparticles possess the same
peroxidase-like activity [190]. Nanoceria consists of different types of enzyme mimics
such as superoxidase dismutase (SOD), oxidase, and catalase [191]. Gold NPs can mimic
glucose oxidase.
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4.1. Biosensors

Electrochemical, calorimetric, and fluorescence detecting are the traditional procedures
for the evaluation of estimated constituents through a corresponding difference in organic
systemization and are further broadly utilized for the recognition of biomolecules [192].
Among these, the ELISA, conventional calorimetric discovery, is utilized for distinguishing
exceptionally small amounts of the wanted substance [193]. The biosensors which are
based on nanozymes are effectively created to recognize ions.

4.2. Detection of H2O2

It is linked generally along with transduction of single and cell growth. Excessive
production of H2O2 may lead to an increased risk of many inflammatory infections such as
lung diseases, atherosclerosis, hepatitis, etc. [194,195]. The detecting of H2O2 is important
because of its significance in the field of biology and medicine. The iron oxide MNPs
working as imitates of peroxidase were used to initially detect hydrogen peroxide with the
chromogenic 2,2′-azino-bis (3-ethylbenzothiazoline-6-sulfonic acid) (ABTS) [196]. Various
peroxidase nanozymes have been designed for calorimetric detection of H2O2 [197,198].

4.3. Detection of Glucose

These have attained a lot of consideration in the last several years due to their
broad employments in clinical examination, biomedical sciences, food creation, and bi-
ology [199,200]. Glucose and comparative parts that can form hydrogen peroxide by the
synergist response could be detected as per particular peroxidase and oxidase mimics [201].
A method for direct physical adsorption development of electrochemical biosensing of
glucose was accomplished. This planned biosensing showed selectivity which was high
and had sample feasibility [200].

4.4. Metal Ion Sensing

Many studies focus generally on the uses for sensing [201,202]. During the underlying
work around there, a particular and sensitive sensor was created to identify Cu2+ utilizing
Cu2+. The magnetic and nanotube silica NPs of carbon were used to create the extremely
delicate sensors to discover the exceptionally low Cu2+ quantity [203]. In another examina-
tion, the platinum NPs (2 nm) with cow-like serum egg whites were created to examine
imitating peroxidase action. This was useful for building up specific and touchy sensation
for identification of Hg which has a straight identification of 0–120 nM of range [204].

4.5. Nucleic Acid Sensing

A few methodologies for the recognition of nucleic acids are created by the usage
of nanozymes [205,206]. A test was created to identify bacterial DNA utilizing Fe3O4
MNPs to examine the checking of microorganisms in faucet water [207]. The proclivity
towards different nanozymes is distinctive for abandoned DNA which is single as well
as twofold abandoned DNA. Calorimetric technique is produced for the discovery of
DNA through adjustment of peroxidase mimicking movement of “Au” nanoparticles on
graphene sheets [208].

4.6. Aptasensors

These are used for building aptasensors for the little molecules which are bioactive
and proteins [209,210]. Utilizing the AuNPs having peroxidase-like activity alongside high
particularity and acetamiprid’s affinity explicit S-18 aptamers, a calorimetric assay was
intended for pesticide quick checking [211]. The acetamiprid presence inside the sample
could communicate along the aptamer which prevents binding and also helps in recovery.

4.7. Pollutant Detection

Melamine, a nitrogenous natural compound that becomes toxic when taken and has
been illegally used in dairy products, was identified using a fast and efficient calorimetric
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approach [212]. The compound is found to work by repressing the reactant ABTS oxi-
dation by NPs with hydrogen peroxide, yet it emphatically responds with it and creates
compounds. The nanozyme-based strategies have been so far successful, straight forward,
and cost-accommodating for mineralizing and debasing the natural colors of mechanical
strategies. Most prominently, MNPs like peroxidase were considered to debase the natu-
ral pollutants. The degrading procedure gives a recognizable advantage on degradation
methodology for extraordinary strength and diminished expense. The MNPs/H2O2 can
effectively achieve the evacuation of 85% of phenolic mixes from the fluid arrangement in
3 h [213]. Degradation based on MNPs showed higher viability. It was discovered that 96%
of this color could be degraded inside 15 min utilizing improved conditions [214].

4.8. Nanozyme-Based Immunoassays

Many considerable efforts have been made for designing immunoassaying with the
help of nanozymes [215,216]. Various configurations were used for immunoassays utilizing
the nanozymes as the signaling parts. For example, the sandwich immunoassay and antigen
down (AD) immunoassay have been revealed [217]. Later on, various researchers executed
the standard sandwich immunoassay for identification by using nanozyme mimics of
peroxidase and oxidase [215]. For example, the preparation of imitates of peroxidase with
enhanced activity was conducted [218].

5. Nano-Enzymes Role in Diseases
5.1. Cancer Diagnostics and Therapy

To detect cancer cells, nanozymes are being implicated [219]. Various substrates that
are organic undergo catalytic oxidation which has been shown by cerium oxides NPs [220].
These were introduced for the immuno detection of cancer cells regarding the unique
capability of folate conjugation. According to various studies, the folate receptor which
is over-expressed onto the cancer cells is being detected selectively by folate. With the
dissimilarity of ELISA, immunoassays based on the oxide of cerium manifested various
benefits. However, these techniques which conventionally need the support of various anti-
bodies may have some limitations when antibodies are denatured on the cancer cell surface.
Secondarily, durability-like shortcomings are exhibited. Hence, when it is denatured, it
may result in losing its original catalytic activity. Many researchers have said that NPs of
cerium oxide are not considered as imitates of oxidase. Regardless of this, it is assisted
as the catalyst of oxidation. Further, some people learned about this by nanoprobes [221].
Other than this, the nanocomposite was introduced by nanoparticle development which is
gold [199]. Peroxidase can be mimicked by the nanocomposites which are formed.

The detection of cancer cells is implicated by nano-enzymes [219]. Figure 3 shows
the detection of cancer cells with calorimetric strategy by using PtNPs/GO nanozymes.
Regulation of gene process is majorly served by RNA interference [222,223]. A group
introduced nanozymes which are similar to machinery, based on the structural characteris-
tics and functional characteristics of this system which areused for the target RNA to be
cleaved [224]. In this particular technique, gold nanoparticles act as the keystone of the
nanozymes that offers a modification of DNA which are single-stranded oligonucleotides
and endonucleases that are non-specific. The resulting nanocomposites indicated RNA-
DNA nanoparticles. It was found that nanoparticles may inhibit virus replication and
gene expression silencing. Diseases with expressions of proteins such as infections caused
by viruses or cancers are associated with nanozymes. Photodynamic therapy employs
nanozymes under hypoxia [225]. Singlet oxygen is formed from the tumor tissues by or-
ganic metal frameworks based on photodynamic therapy [226,227]. Tumor tissues are also
having hypoxic conditions that are restricted by the therapeutic properties of photodynamic
therapy [228]. The new technique was introduced for the photodynamic therapy through
some modifications, and for this, oxygen was generated by the catalase mimics, which is
PtNPs. On to the surface of organic–metal frameworks where Pt NPs are assembled, the
production of oxygen which is single can be raised by the nanocomposites through the
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decomposition in the hypoxia’s tissue of hydrogen peroxide. Under the hypoxic environ-
ment, the cancer treatment is effectively served by nanozyme integrated organic–metal
frameworks [229]. Malignant tumors are treated with certain approaches, and one of the
promising approaches is apoptosis induced with nanozymes [230]. The treatment systems
which are presently used require the support of ROS and oxygen under conditions of
tumor. A successful nano-flower is biomimetic and was designed by assembly of various
nanozymes [231]. The PtCo-NPs in the acidic tumor produce toxic ROS by oxidase mimics,
whereas the MnO2 nanomaterials possess good catalase-like functions [232].

Figure 3. PtNPs/GO nanozymes for detecting cancer cells with calorimetric strategy.

5.2. Neuroprotection

Various researchers have been developing the application for SOD imitates for guiding
free radical destruction [233,234]. Afterwards, the C60[C(COOH)2]3 was introduced as
an imitating agent of SOD, which shows therapeutic actions in knockout mice [235]. In
SOD2 mice not able to express the manganese SOD in mitochondria, the period of life
was increased. Nanoceria was introduced to imitate the SOD and also show various
functions of neuroprotection [236]. Confirmation was done about nanoceria that it can do
the aversion of the cells of the neurons present in the retina by the destruction of ROS [237].
In Alzheimer’s disease, RNS peptides and amyloid-beta are involved. The treatment for
this disease is missing for the antioxidants. Microscopic studies suggested that the neurons
internalize the nanoceria that is present. It can perform the RNS scavenging and hence
results in the protection of neurons that are degenerated. Studies have suggested that
nanoceria is used for the protection of the neurons from hyperphosphorylation or their
death [238].

5.3. Antioxidation

The cell metabolism has certain by-products which are O2, OH−, and H2O2 [239,240].
The ROS contributes to various signaling mechanisms and when the level of ROS is
considered low, they act as second messengers which are significant [241]. On the other
hand, if the ROS levels are exceeded, then they result in the damage of proteins, DNA,
lipids, and other various molecules. Moreover, for activating the apoptosis of cells, the
caspase can be induced by them [242]. Various pathological disorders are linked with ROS,
for example: kidney diseases, diabetes, arthritis, cancer, and atherosclerosis [243]. It is
known that ROS affects human health and life critically by participating in aging, human
diseases, and death. Hence, for maintaining the intracellular redox homeostasis, the levels
of ROS need to be regulated majorly. Within the cell system, various types of enzymes
are antioxidants, for example: catalase, glutathione peroxidase, SOD, etc. An important
function is being performed by the antioxidant enzymes which are maintaining the cellular
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redox balance. However, ROS overexpression can decrease the activities of enzymes which
are under pathological situations [244].

5.4. Anti-Inflammatory

Inflammation is the state which involves two types of inflammation: acute and chronic
inflammation [245]. The precursor to various diseases is certainly the response of inflam-
mation. Hence, the emergence of various associated disorders can be treated successfully
by treating inflammation, for example, diseases associated with heart and cancer. The
quality of increase in the ROS is notable in the tissue of inflammation. The inflammation
is alleviated by scavenging ROS along with their inhibition of diseases. From the time of
the formation, the Prussian blue has been working as blue dye [246]. The Prussian blue
has been employed as an antidote for thallotoxicosis in clinical trials because of its brilliant
biosecurity along with the biocompatibility as recommended by the FDA [247]. For the
treatment of cancer, the PB-NPs pay a role in photo thermal therapy, ultrasound imaging,
and magnetic resonance imaging [248,249]. The nanoparticles PB have been discovered
which possesses multi-enzyme-like functions, which can successively reduce the levels of
ROS which are inside the cell and also attain the cytoprotecting efficacy [250]. It was noted
that the feature of scavenging ROS was due to the attraction towards the hydroxide along
with the mimicking of the enzymes. The altered immune response against the infection
causes organ dysfunction, which is a great threat to life known as sepsis [251]. The systemic
inflammation occurred by the microbe local infection which is further accompanied by
fever, and because of host defense mechanisms, white blood cells increase in number [252].
If, within a short period, the treatment is not done, then the immune response becomes
disordered which would cause multiorgan dysfunction, pro-inflammatory cytokines, and
even death. Hence, if we inhabit the abnormal inflammatory response, then it would kill
the bacteria [253].

5.5. Anti-Aging

Data have suggested that aging is somewhat linked with major mechanisms of redox,
such as ROS detoxifying and the response of cells to the macromolecules which are dam-
aged oxidatively. Amice brain slice was set up for imaging, and the results showed that
its treatment with nanozymes slowed down the age associated with the damage within
the tested region. Using EPR techniques, it was known that the nanozymes were in action
inside the powerhouse of the cell, as the primary cellular source for ROS is reported to
be mitochondria. Nanozymes have an impact on age-linked loss of memory which was
determined, exhibiting nanozymes’ potential for securing the age-linked cognitive damage
in the mice [254].

6. Biomedical Application of Nanozymes

Nanozymes are found to show a greater significance in the field of biomedicine
as well as industry. Numerous nanozymes have just demonstrated serious adversaries
to the enzymes which are naturally occurring and which they imitate. The developing
disclosure and more profound comprehension of nanozyme systems have empowered
various applications linked with the biomedical industry.

6.1. Nanozymes Acting by Themselves

They were found in calorimetric and biosensing assays for immediate substitutes
of natural enzymes. They comprised extra functions regularly which were not offered
by the natural enzymes. As it is among the most utilized strategies for the detection of
biomarkers, ELISA ordinarily utilizes horseradish peroxidase (HRP) for oxidizing 3,3′,5,5′-
tetramethylbenzidinel (TMB) for color improvement and ensuring measurement. In any
case, HRP is restricted for a scope of pH, concentration, and temp because of its instability
in worse conditions and significant expense. HRP in the biosensing processes can be
challenged by various categories of the nanozymes which include nanoceria, (MNPs), (GO),
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and other peroxidase-imitating nanozymes. Furthermore, they have invaluable natural
functions that would additionally encourage research [26]. Nanozymes permit biosensing
applications custom-fitted for their particular properties, giving essential refinement using
attraction [255]. MoO3 nanozymes were discovered for the detoxification of cells done
valuably by imitates of sulfite oxidase. The absence of this imitate was related to the
neurological harm and youth demise [256].

6.2. Synergistic Nanozymes

Although nanozymes were originally found for the free action of enzyme, attempts
in recent times have already been conducted more profoundly. Revising basic attributes
linked with an environment, for example, H2O2 concentration, pH, and oxygenation levels,
may shed light on nanozyme exhibitions. Therefore, the subsequent therapeutic and
diagnostic role of nanozymes can be better adjusted.

In light of the inherent peroxidase-imitating functions of GO, Qu, and other members,
a method was set up for the estimation of the concentration of glucose [80]. Zhong and
others furthermore built up the catalytic cascade utilizing AuNP nanosheets; hence, the
previous includes Goximitating function and can go about as a natural peroxidase [257].
MOF fills in for layout to develop and accept hydrogen peroxide.

Xia and co-workers built up the system of nanozyme which is 3 in 1, which includes
detection and catalysis utilizing CD/AUNP [258]. Further, in 2017 Shi, Chan, and co-
workers led to the development of therapy by using graphene oxidase for the in vitro
treatment of neoplasm [259].

6.3. Remote Control Nanozymes

These are the types of nanozymes which are controlled and are responsible for syner-
gistic effect.

Thus, these functions were present with accentuation in techniques for improvement
concerned with the future with superb transience and exactness. Light has been described
as the utilized strategy for controlling the synergist response. It may very well be delivered
with high precision and controllability. Different effects of the nanozymes can be triggered
by tuning the wavelength. Prinsand co-workers led to the development of light-regulating
AUNP nanozymes for the hydrolysis of RNA [260].

Inflammation is commonly linked with reactive oxygen species (ROS). Propelled by
common photosynthesis and the way by which hydrogen gas may lead to the reduction
of •OH to H2O, a multi component framework has been gathered by Chia, Sung, and co-
workers to create hydrogen gas in nearness to the site of inflammation in mice [261]. Heat is
considered to be another stimulant for triggering them. Nieand others built up the method
of amplifying signal-free enzymes. They used Au capsules as imitates for calorimetric
assay of the disease [262]. Further, Qu and co-workers designed a heat-recovering rationale
entryway by utilizing nanoceria as a signal transducer [263]. Other than heat and light,
nanozymes utilized ultrasound as the boost. Yeh and others detailed a hydrogen peroxide-
encapsulated Fe3O4-PLGA polymer nanozyme framework for malignancy treatment [264].

7. Future Perspectives for Nanozymes

Intending to peruse nanozymes, one has to have a vital source of innovation through
productively conquering disadvantages of enzymes which are natural, and accompanying
proposals are offered. There is a requirement of the advancement of fresh nanozymes com-
prised of high movement and customary examination functions; further has exploration
followed a technique of screening of sound action dependent on the nuclear arrangements
which were conceived for catalyzing the response of enzyme. The process to prepare
normal composites for identifying the present significant limitations by adjusting syner-
gistic effects for facilitating electron transfer between composite materials during redox
reaction has also been started. Bioinspired synthesis of nanozymes additionally gives
an alternative to prepare non-toxic nanozymes by successfully going around the utiliza-
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tion of poisonous synthetic compounds in traditional substance combination, accordingly
quickening their use in therapeutic application. At last, the turn of events of novel surface
designing innovation could specifically target the substrates by nanozymes and would be
of great significance [23]. More of these developments would open up new avenues for
single-stage sensors and theragnostic, which could be helpful in various biosensing and
biomedical applications. The vast majority of the nanozymes are accounted for to show
their synergist movement by redox action by surface iotas. Be that as it may, the reactant
movement might be additionally improved by controlling the center of the nanozymes by
doping with some uncommon earth components. Such procedures would add more redox
“problem areas” for synergist action and along these lines upgrade the action of nanozymes.
In contrast to characteristic catalysts, the size and synthesis of most nanozymes are not
uniform, except for fullerene-based nanozymes. Further, group to-cluster variety fit as a
fiddle of nanoparticles/nanozymes, and consequently adjustments in physicochemical
properties, requires expanded spotlight on improving the union convention to create the
monodispersed nanozymes with molecularly exact designs [264].

8. Conclusions

The enzyme-mimicking properties of nanoparticles have proved to be significant in
medicine, industry, and healthcare. Certain types of nanozymes such as peroxidase mimics,
superoxide mimics, catalase mimics, etc., have contributed to various applications and
emerging opportunities. Different mechanisms of nanozymes such as single substrate and
multi substrate have been studied. Nanozymes were found to have various options in
the field of biosensors, apt sensors, glucose and hydrogen peroxide detection, nanozyme
based immunoassay, etc. Other than this, nanozymes have also played a great role in
the healthcare system in cancer diagnosis and treatment, anti-aging, neuroprotection, etc.
Further, biomedical applications such as self-acting nanozymes, synergistic nanozymes,
etc., have also been considerably studied, which lead to various therapeutic effects.
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