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Abstract: The composition of the Cr27Fe24Co18Ni26Nb5 high-entropy alloy was selected from the
FCC phase in a CrFeCoNiNb alloy. The alloy was melted in an argon atmosphere arc-furnace,
followed by annealing in an air furnace. The dendrites of the alloy were in the FCC phase, and
the eutectic interdendrites of the alloy comprised HCP and FCC phases. The microstructures and
hardness of this alloy were examined; the results indicated that this alloy was very stable. This
microstructure and hardness of the alloy almost remained the same after annealing at 1000 ◦C for 24 h.
The polarization behaviors of Cr27Fe24Co18Ni26Nb5 alloy in 1 N sulfuric acid and 1 N hydrochloric
acid solutions were measured. Both the corrosion potential and the corrosion current density of the
Cr27Fe24Co18Ni26Nb5 alloy increased with increasing test temperatures. The activation energies of
the Cr27Fe24Co18Ni26Nb5 alloy in these two solutions were also calculated.
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1. Introduction

The high-entropy alloy concept [1,2] is now well known for designing new alloys.
The four major characteristics of the high-entropy alloy concept are high entropy, sluggish
diffusion, severe lattice distortion, and cocktail effects [3]. Materials researchers use this
concept to smartly select appropriate elements to develop alloys for application fields [4].
This high-entropy alloy concept is also used to improve the corrosion resistance of metals,
which is a very important issue. For example, the Cu0.5NiAlCoCrFeSi alloy had lower
corrosion current densities than 304 stainless steel in H2SO4 and NaCl solutions [5], but
the pitting potential of Cu0.5NiAlCoCrFeSi alloy was lower than that of 304 stainless steel
in a NaCl solution. The CoCrFeNiTi alloy had a better pitting-corrosion potential than
conventional corrosion-resistant alloys, such as Ni-based superalloys duplex stainless
steels, in corrosion environments [6]. The FeCoNiNb and FeCoNiNb0.5Mo0.5 alloys had
dual-phased dendritic microstructures, but they exhibited good corrosion resistance in
comparison to 304 stainless steel in 1 M nitric acid and 1 M NaCl solutions [7]. The
CrFeCoNiSn alloy also exhibited a good corrosion resistance with respect to 304 stainless
steel in 0.6 M NaCl solution [8]. Moreover, the AlxCoCrFeNi (x = 0.15 and 0.4) high-entropy
alloys exhibited better thermal stability and corrosion resistance compared to HR3C steel
in a high-temperature and high-pressure environment [9]. The passivating elements, such
as chromium, nickel, and molybdenum, are usually selected to be the elements of coating
materials. Laser cladding, sputter deposition, and electro-spark deposition are frequently
used processes. Al0.5CoCrCuFeNi alloy coating the surface of AZ91D by laser cladding
successfully improved the corrosion resistance in 3.5 wt.% sodium chloride solution [10].
NbTiAlSiZrNx alloy thin films sputtered on 304 stainless steel exhibited good corrosion
resistance in 1 N H2SO4 solution [11]. Coatings of AlCrxNiCu0.5Mo (x = 0, 0.5, 1.0, 1.5,
2.0) alloys significantly improved the corrosion resistance of Q235 steel in 3.5% NaCl
solution and a salt spray corrosion environment [12]. Cold working and annealing could
also influence the electrochemical properties of 316 stainless steel, leading to an increase
and a decrease in breakdown potential, respectively [13]. Shi et al. summarized the
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corrosion-resistant properties of high-entropy alloys in different solutions and corrosion
environments and pointed out the methods for improving corrosion resistance [14].

In our previous study on CrFeCoNiNb alloys [15], the microstructures and corrosion be-
haviors of a CrFeCoNiNb alloy were investigated. The composition of Cr27Fe24Co18Ni26Nb5
alloy was selected from the FCC phase of the CrFeCoNiNb alloy. The microstructures,
annealing effect, and polarization behaviors of the Cr27Fe24Co18Ni26Nb5 alloy were inves-
tigated in the present work.

2. Materials and Methods

The nominal compositions of Cr27Fe24Co18Ni26Nb5 alloy in weight percentage were
Cr 24.22%, Fe 23.13%, Co 18.30%, Ni 26.34%, and Nb 8.01%. The alloy was melted in an
arc-furnace in argon atmosphere. The total weight of the alloy was about 120 g. Part of the
alloy was annealed at 1000 ◦C for different times. A scanning electron microscope was used
to observe the microstructures of the alloy. An X-ray diffractometer was used to examine
the crystal structures of the alloy; the scanning rate was 0.04◦/s and the scanning range
was 20–100◦. A Vickers hardness tester was used to measure the hardness of the alloy; the
loading force was 19.62 N (2 kg). The polarization behaviors of the alloy were measured
using an electrochemical analyzer. A saturated silver chloride electrode (Ag/AgCl, SSE)
was used as the reference electrode, and its potential was 0.197 V higher than that of the
standard hydrogen electrode (SHE) at 25 ◦C [16]. A platinum wire was used as the counter
electrode. The exposed area of the specimens was fixed at 0.1964 cm2 (diameter was 0.5 cm),
and all of the specimens were wet-polished using 1200 grit SiC paper. The scanning rate of
the polarization test was 0.001 V/s. Bubbling nitrogen gas was used to deaerate the oxygen
in solutions during the polarization test. The polarization test was conducted for 900 s.

3. Results and Discussion

Figure 1 shows the micrographs of the Cr27Fe24Co18Ni26Nb5 alloy in as-cast and as-
annealed states. The microstructures of the Cr27Fe24Co18Ni26Nb5 alloys were dendritic in
both the as-cast and the as-annealed states. The dendrites of the as-cast Cr27Fe24Co18Ni26Nb5
alloy were in the FCC phase, whereas the interdendritic regions exhibited a dual-phased
(FCC and HCP) eutectic structure, as shown in Figure 1a. The HCP phase was significantly
spheroidized and coarsened after annealing, as shown in Figure 1b, resulting in a reduction
in both the interphase area and the free energy of the alloy. Table 1 lists the chemical
compositions of the overall, FCC, and HCP phases in the Cr27Fe24Co18Ni26Nb5 alloy in
atomic percentage. The overall compositions of the Cr27Fe24Co18Ni26Nb5 alloy matched
the theoretical values. The FCC phase in the Cr27Fe24Co18Ni26Nb5 alloy had less Nb and
Co, but more Cr, Fe, and Ni. A possible reason was that the elements of niobium and
cobalt potentially formed a melt with a low melting point because of a eutectic reaction,
thus forming the HCP phase in the interdendrites of the alloy during casting, featuring
more Nb and Co. The Co–Ni binary phase diagram [17] shows that the melting point of a
Co–20.3Nb alloy is only 1237 ◦C.

Table 1. Chemical compositions of the phases in the Cr27Fe24Co18Ni26Nb5 alloy analyzed by
SEM/EDS in atomic percentage.

Phase Cr Fe Co Ni Nb

Overall 26.0 ± 0.8 24.1 ± 0.9 18.1 ± 0.8 25.8 ± 0.7 6.0 ± 0.5
FCC 27.5 ± 0.5 25.7 ± 0.6 17.7 ± 1.0 26.5 ± 0.8 2.6 ± 0.5
HCP 18.1 ± 1.6 15.4 ± 2.1 26.4 ± 2.1 19.7 ± 2.8 30.4 ± 4.3
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Figure 1. SEM micrographs of Cr27Fe24Co18Ni26Nb5 alloy in the (a) as-cast state, and (b) after annealing at 1000 °C for 24 h. 
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annealed states. Only two phases were detected: one was an FCC phase with a lattice con-

stant of 3.58 Å , and the other was an HCP phase with lattice constants of 4.80 Å  (a-axis) 

Figure 1. SEM micrographs of Cr27Fe24Co18Ni26Nb5 alloy in the (a) as-cast state, and (b) after
annealing at 1000 ◦C for 24 h.

The Cr27Fe24Co18Ni26Nb5 alloy was based on the compositions in the FCC phase of
CrFeCoNiNb alloy [15]. However, the Cr27Fe24Co18Ni26Nb5 alloy was a dual-phased alloy,
because the solid solubility of Nb in the alloy could change its composition. According
to our previous studies on CrFeCoNiNbx alloys [15,18], the Nb content in the FCC phase
of CrFeCoNiNbx alloys changes with the Nb content(x), as shown in Figure 2. The Nb
content in the FCC phase of the alloys increases with the Nb content, becoming almost
saturated at x = 0.6. In the present study, the Nb content of the alloy was only 5 at.%; thus,
its solid solubility in the FCC phase was reduced, again forming the HCP phase in the
Cr27Fe24Co18Ni26Nb5 alloy. However, the Cr27Fe24Co18Ni26Nb5 alloy is a five-element
alloy, not a binary alloy.
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Figure 3 displays the XRD patterns of the Cr27Fe24Co18Ni26Nb5 alloy in as-cast and
as-annealed states. Only two phases were detected: one was an FCC phase with a lattice
constant of 3.58 Å, and the other was an HCP phase with lattice constants of 4.80 Å (a-axis)
and 7.83 Å (c-axis). Heat treatment did not significantly influence the lattice constants
and the relative intensities of these two phases. For example, the Cr27Fe24Co18Ni26Nb5
alloy was very stable, even though it was annealed at 1000 ◦C for 24 h. Figure 4 plots the
relationship between the hardness of the Cr27Fe24Co18Ni26Nb5 alloy and the annealing
time; the annealing temperature was 1000 ◦C. The hardness of the Cr27Fe24Co18Ni26Nb5
alloy remained at approximately 250 HV. This also proves that annealing at 1000 ◦C had
almost no influence on this alloy. The volume fraction of the HCP phase was less than
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that of the FCC phase; therefore, the coarsening and spheroidizing of the HCP phase had
no apparent effect on the hardness of the alloy. The HCP and FCC phases had different
compositions and structures; however, the ratios of these two phases did not change
significantly. Therefore, the as-cast Cr27Fe24Co18Ni26Nb5 alloy was selected to test its
polarization behavior in 1 N H2SO4 and 1 N HCl solutions.
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The polarization curves of the Cr27Fe24Co18Ni26Nb5 alloy tested in deaerated 1 N
H2SO4 solution and 1 N HCl solution under different temperatures are shown in Figure 5a,b,
respectively. The curve with a potential lower than the corrosion potential (Ecorr) represents
the cathodic curve, whereby the alloy under this state would be protected; the curve with a
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potential higher than the corrosion potential represents anodic curve, whereby the alloy
under this state would be corroded. The cathodic line of the Cr27Fe24Co18Ni26Nb5 alloy
exhibited a Tafel slope (βc); βc = ∆E/∆logi, where E is the potential, and i is the current
density. The current density corresponding to Ecorr is the corrosion current density (icorr).
The current density of the alloy increases with the applied potential (overvoltage) before
decreasing upon passing the anodic peak and entering the passivation region. Figure 5a
displays the polarization curves of the Cr27Fe24Co18Ni26Nb5 alloy tested in 1 N H2SO4
solution. The corrosion potentials and corrosion current densities increased with test
temperature. Furthermore, the current densities of the anodic peaks (ipp) and passivation
regions (ipass) increased with test temperature. However, all of the passivation regions of
the Cr27Fe24Co18Ni26Nb5 alloy tested in deaerated 1 N H2SO4 solution retained complete
shapes in the temperature range of 30–60 ◦C. The polarization data, namely, the Tafel slope
(βc), corrosion potentials (Ecorr), corrosion current densities (icorr), passivation potential
(Epp, potential of the anodic peak), anodic critical current density of the anodic peak (ipp),
passive current density (ipass), and breakdown potential (Eb), of the Cr27Fe24Co18Ni26Nb5
alloy tested in deaerated 1 N H2SO4 solution under different temperatures are listed in
Table 2. The polarization curves of the Cr27Fe24Co18Ni26Nb5 alloy tested in deaerated 1 N
HCl solution under different temperatures are shown in Figure 5b. The corrosion potentials
and corrosion current densities of the Cr27Fe24Co18Ni26Nb5 alloy tested in deaerated 1 N
HCl solution increased with test temperature, similar to the results of the alloy tested in
deaerated 1 N H2SO4 solution. However, the anodic peaks of the Cr27Fe24Co18Ni26Nb5
alloy tested in deaerated 1 N HCl solution were larger than those of the alloy tested in 1 N
H2SO4 solution. A large anodic peak indicates that the alloy was harder upon entering the
passivation region in 1 N HCl solution. Moreover, breakdown of the passivation region
of the Cr27Fe24Co18Ni26Nb5 alloy started at a testing temperature of 50 ◦C, becoming
very clear at a testing temperature of 60 ◦C. This suggests that the Cr27Fe24Co18Ni26Nb5
alloy did not resist the attack from chloride ions at higher temperatures. The corrosion
potentials (Ecorr) and corrosion current densities (icorr) of Cr27Fe24Co18Ni26Nb5 alloy tested
in deaerated 1 N HCl solution under different temperatures are also listed in Table 2.

Materials 2021, 14, 5924 5 of 8 
 

 

Figure 4. Plot of hardness of Cr27Fe24Co18Ni26Nb5 alloy as a function of annealing time; the annealing 

temperature was 1000 °C. 

The polarization curves of the Cr27Fe24Co18Ni26Nb5 alloy tested in deaerated 1 N 

H2SO4 solution and 1 N HCl solution under different temperatures are shown in Figure 

5a,b, respectively. The curve with a potential lower than the corrosion potential (Ecorr) rep-

resents the cathodic curve, whereby the alloy under this state would be protected; the 

curve with a potential higher than the corrosion potential represents anodic curve, 

whereby the alloy under this state would be corroded. The cathodic line of the 

Cr27Fe24Co18Ni26Nb5 alloy exhibited a Tafel slope (βc); βc = E/logi, where E is the poten-

tial, and i is the current density. The current density corresponding to Ecorr is the corrosion 

current density (icorr). The current density of the alloy increases with the applied potential 

(overvoltage) before decreasing upon passing the anodic peak and entering the pas-

sivation region. Figure 5a displays the polarization curves of the Cr27Fe24Co18Ni26Nb5 alloy 

tested in 1 N H2SO4 solution. The corrosion potentials and corrosion current densities in-

creased with test temperature. Furthermore, the current densities of the anodic peaks (ipp) 

and passivation regions (ipass) increased with test temperature. However, all of the pas-

sivation regions of the Cr27Fe24Co18Ni26Nb5 alloy tested in deaerated 1 N H2SO4 solution 

retained complete shapes in the temperature range of 30–60 °C. The polarization data, 

namely, the Tafel slope (βc), corrosion potentials (Ecorr), corrosion current densities (icorr), 

passivation potential (Epp, potential of the anodic peak), anodic critical current density of 

the anodic peak (ipp), passive current density (ipass), and breakdown potential (Eb), of the 

Cr27Fe24Co18Ni26Nb5 alloy tested in deaerated 1 N H2SO4 solution under different temper-

atures are listed in Table 2. The polarization curves of the Cr27Fe24Co18Ni26Nb5 alloy tested 

in deaerated 1 N HCl solution under different temperatures are shown in Figure 5b. The 

corrosion potentials and corrosion current densities of the Cr27Fe24Co18Ni26Nb5 alloy tested 

in deaerated 1 N HCl solution increased with test temperature, similar to the results of the 

alloy tested in deaerated 1 N H2SO4 solution. However, the anodic peaks of the 

Cr27Fe24Co18Ni26Nb5 alloy tested in deaerated 1 N HCl solution were larger than those of 

the alloy tested in 1 N H2SO4 solution. A large anodic peak indicates that the alloy was 

harder upon entering the passivation region in 1 N HCl solution. Moreover, breakdown 

of the passivation region of the Cr27Fe24Co18Ni26Nb5 alloy started at a testing temperature 

of 50 °C, becoming very clear at a testing temperature of 60 °C. This suggests that the 

Cr27Fe24Co18Ni26Nb5 alloy did not resist the attack from chloride ions at higher tempera-

tures. The corrosion potentials (Ecorr) and corrosion current densities (icorr) of 

Cr27Fe24Co18Ni26Nb5 alloy tested in deaerated 1 N HCl solution under different tempera-

tures are also listed in Table 2. 

  

(a) (b) 

Figure 5. Polarization curves of the Cr27Fe24Co18Ni26Nb5 alloy tested in (a) deaerated 1 N H2SO4 solution; and (b) deaerated 

1 N HCl solution under different temperatures. 
Figure 5. Polarization curves of the Cr27Fe24Co18Ni26Nb5 alloy tested in (a) deaerated 1 N H2SO4 solution; and (b) deaerated
1 N HCl solution under different temperatures.

Figure 6 shows the Arrhenius plot of relationships between corrosion current den-
sity of the Cr27Fe24Co18Ni26Nb5 alloy and the test temperature in the two solutions. The
relationship between corrosion current density and testing temperature satisfied the re-
lationship of icorr = Aexp(−Q/RT), where icorr is the corrosion current density, A is a
constant, Q is the activation energy, R is the gas constant, and T is the temperature. There-
fore, the activation energy Q could be calculated by plotting lnicorr vs. 1/T, as shown in
Figure 6. The activation energies of corrosion of the Cr27Fe24Co18Ni26Nb5 alloy in 1 N
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H2SO4 solution and 1 N HCl solution were 27.7 and 52.9 kJ/mol, respectively. Thus, the
Cr27Fe24Co18Ni26Nb5 alloy tested in 1 N HCl solution had a larger activation energy.

Table 2. Polarization data of the Cr27Fe24Co18Ni26Nb5 alloy tested in deaerated 1 N H2SO4 and deaerated 1 N HCl solutions.

Solution Items 30 ◦C 40 ◦C 50 ◦C 60 ◦C

1 N βc (V·cm2/A) 0.178 0.177 0.187 0.200
H2SO4 Ecorr (V vs. SSE) −0.280 −0.272 −0.246 −0.233

solution icorr (µA/cm2) 23.7 47.0 54.2 67.3
Epp (V vs. SSE) −0.200 −0.192 −0.186 −0.181

ipp (µA/cm2) 29.3 52.9 39.4 34.3
ipass (µA/cm2) 10.1 12.1 11.6 10.0
Eb (V vs. SSE) 0.981 0.972 0.960 0.955

1 N βc (V·cm2/A) 1.17 1.34 1.31 1.37
HCl Ecorr (V vs. SSE) −0.343 −0.312 −0.302 −0.265

solution icorr (µA/cm2) 47.1 105 212 302
Epp (V vs. SSE) −0.196 −0.188 −0.180 −0.156
ipp (mA/cm2) 0.152 0.315 0.971 1.82
ipass (µA/cm2) 9.78 10.8 23.5 23.7
Eb (V vs. SSE) 1.009 1.001 0.994 0.233

Materials 2021, 14, 5924 6 of 8 
 

 

Table 2. Polarization data of the Cr27Fe24Co18Ni26Nb5 alloy tested in deaerated 1 N H2SO4 and deaerated 1 N HCl solutions. 

Solution Items 30 °C 40 °C 50 °C 60 °C 

1 N βc (V·cm2/A) 0.178 0.177 0.187 0.200 

H2SO4 Ecorr (V vs. SSE) −0.280 −0.272 −0.246 −0.233 

solution icorr (μA/cm2) 23.7 47.0 54.2 67.3 

 Epp (V vs. SSE) −0.200 −0.192 −0.186 −0.181 

 ipp (μA/cm2) 29.3 52.9 39.4 34.3 

 ipass (μA/cm2) 10.1 12.1 11.6 10.0 

 Eb (V vs. SSE) 0.981 0.972 0.960 0.955 

1 N βc (V·cm2/A) 1.17 1.34 1.31 1.37 

HCl Ecorr (V vs. SSE) −0.343 −0.312 −0.302 −0.265 

solution icorr (μA/cm2) 47.1 105 212 302 

 Epp (V vs. SSE) −0.196 −0.188 −0.180 −0.156 

 ipp (mA/cm2) 0.152 0.315 0.971 1.82 

 ipass (μA/cm2) 9.78 10.8 23.5 23.7 

 Eb (V vs. SSE) 1.009 1.001 0.994 0.233 

Figure 6 shows the Arrhenius plot of relationships between corrosion current density 

of the Cr27Fe24Co18Ni26Nb5 alloy and the test temperature in the two solutions. The rela-

tionship between corrosion current density and testing temperature satisfied the relation-

ship of icorr = Aexp(−Q/RT), where icorr is the corrosion current density, A is a constant, Q 

is the activation energy, R is the gas constant, and T is the temperature. Therefore, the 

activation energy Q could be calculated by plotting lnicorr vs. 1/T, as shown in Figure 6. 

The activation energies of corrosion of the Cr27Fe24Co18Ni26Nb5 alloy in 1 N H2SO4 solution 

and 1 N HCl solution were 27.7 and 52.9 kJ/mol, respectively. Thus, the 

Cr27Fe24Co18Ni26Nb5 alloy tested in 1 N HCl solution had a larger activation energy. 

 

Figure 6. Arrhenius plot displaying the relationship between corrosion current density and testing 

temperature of the Cr27Fe24Co18Ni26Nb5 alloy tested in deaerated 1 N H2SO4 and deaerated 1 N HCl 

solutions. 

The morphologies of the Cr27Fe24Co18Ni26Nb5 alloy after polarization in these two so-

lutions are shown in Figure 7; both cases showed a uniform corrosion morphology. Both 

the FCC and the HCP phases in the Cr27Fe24Co18Ni26Nb5 alloy were corroded after polari-

zation in 1 N H2SO4 solution at 30 and 50 °C, as shown in Figure 7a,b, respectively. How-

ever, the FCC phase was severely more corroded than the HCP phase. Figure 7c,d show 

Figure 6. Arrhenius plot displaying the relationship between corrosion current density and testing
temperature of the Cr27Fe24Co18Ni26Nb5 alloy tested in deaerated 1 N H2SO4 and deaerated 1 N
HCl solutions.

The morphologies of the Cr27Fe24Co18Ni26Nb5 alloy after polarization in these two
solutions are shown in Figure 7; both cases showed a uniform corrosion morphology.
Both the FCC and the HCP phases in the Cr27Fe24Co18Ni26Nb5 alloy were corroded after
polarization in 1 N H2SO4 solution at 30 and 50 ◦C, as shown in Figure 7a,b, respectively.
However, the FCC phase was severely more corroded than the HCP phase. Figure 7c,d
show the morphologies of the Cr27Fe24Co18Ni26Nb5 alloy after polarization in 1 N HCl
solution at 30 and 50 ◦C, respectively. The FCC phase was also severely corroded, but the
HCP phase did not display any corrosion and kept its original shape. Therefore, the FCC
phase was the major corroded phase of this alloy in both solutions.
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Figure 7. Morphologies of the Cr27Fe24Co18Ni26Nb5 alloy after polarization in (a) deaerated 1 N H2SO4 solution at 30 ◦C,
(b) deaerated 1 N H2SO4 solution at 50 ◦C, (c) deaerated 1 N HCl solution at 30 ◦C, and (d) deaerated 1 N HCl solution
at 50 ◦C.

4. Conclusions

The microstructure and corrosion behavior of the Cr27Fe24Co18Ni26Nb5 alloy were
studied. This alloy had a dendritic structure with two phases, FCC and HCP. The den-
drites were in the FCC phase, whereas the interdendrites exhibited a dual-phased eutectic
structure. The Cr27Fe24Co18Ni26Nb5 alloy maintained its structure and hardness after
annealing at 1000 ◦C for 24 h. All polarization curves of the Cr27Fe24Co18Ni26Nb5 alloy
displayed complete shapes in the temperature range of 30–60 ◦C in 1 N H2SO4 solution,
but a breakdown of the passivation region of the Cr27Fe24Co18Ni26Nb5 alloy in HCl so-
lution was observed at 50 ◦C. The Cr27Fe24Co18Ni26Nb5 alloy showed uniform corrosion
morphologies in both 1 N H2SO4 and 1 N HCl solutions. The corrosion activation energies
of the Cr27Fe24Co18Ni26Nb5 alloy in 1 N H2SO4 and 1 N HCl solutions were 27.7 and
52.9 kJ/mol, respectively. However, the FCC phase in the Cr27Fe24Co18Ni26Nb5 alloy was
severely more corroded than the HCP phase.
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