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Abstract: The purpose of this research was to investigate and improve the accuracy of the existing
slab-track mat (STM) specifications in the evaluation of the vibration reduction effect. The static
nonlinearity and dynamic mechanical characteristics of three types of STMs were tested, and then
a modified fractional derivative Poynting–Thomson (FDPT) model was used to characterize the
preload and frequency dependence. A modified vehicle–floating slab track (FST) coupled dynamic
model was established to analyze the actual insertion loss. The insertion loss error evaluated by the
frequency-dependent tangent stiffness increased with the increase in STM nonlinearity, and the error
obtained by the third preload tangent stiffness was usually greater than that of the second preload.
Compared with the secant stiffness, the second preload frequency-dependent tangent stiffness was
more suitable for evaluating STMs with high-static–low-dynamics (HSLD) stiffness. In order to
reflect the frequency dependence effect and facilitate engineering applications, it is recommended
that second preload tangent stiffness corresponding to the natural frequency of the FST be used
for evaluation. Furthermore, the insertion loss of the STMs with monotonically increased stiffness
decreased as the axle load increased, and the opposite was true for the STMs with monotonically
decreased stiffness. The vibration isolation efficiency of the STMs with HSLD stiffness was both
stable and better than that of the STMs with monotonic stiffness.

Keywords: slab-track mats; dynamic stiffness; preload dependence; frequency dependence; vibration
reduction evaluation

1. Introduction

The convenience and energy-savings of urban rail transit (URT) have driven an in-
crease in urban transportation-oriented development (TOD) construction. For instance,
46 cities in China have constructed 7142 km of URT lines, and the fastest operating speed
has reached 160 km/h. However, the high density rail transit network and the fast operat-
ing speed inevitably cause more obvious environmental vibrations and noise problems [1].
A common measure to decrease noise emissions and vibrations involves the installa-
tion of resilient elements in the railway track [2,3], such as rail pads [4], under-sleeper
pads (USM) [5], under-ballast mats (UBM) [6], crumb rubber [7], and slab-track mats
(STMs) [8–10]. The damping pad floating slab track (DPFST), one of the best measures to
reduce vibrations, has been widely used as the main track structure type in the vibration
reduction demand area of Guangzhou (160 km/h URT).

Optimizing the stiffness of the damping pad to reduce environmental vibration and
structural noise has been extensively studied. Vogiatzis and Kouroussis [11,12] established
a finite element (FE) model for the DPFST of the Athens Metro to study and improve
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the vibration reduction effect (VRE) of the track system. Jin [13] combined the vehicle–
floating slab-track (FST)-tunnel–soil coupled model and multi-island genetic algorithm to
optimize the stiffness of rubber STMs and improve the VRE. Xin et al. investigated the
effect of the stiffness of STMs on the dynamic performance of the transition zone between
the fixed slab track and the FST [14]. Liang investigated the influence of the DPFST on
structure-borne noise characteristics of a long-span steel truss cable-stayed bridge (LSTCB)
and found that the DPFST can reduce the overall sound pressure level by 10–13 dB(A) [15].
However, the linear constant Kelvin (KV) model used in the above-mentioned research
may not be accurate in evaluating the actual VRE because it cannot reflect its preload
dependence and frequency dependence. The relevant results show that the inclusion of the
rail pad nonlinearity into the modelling results in up to 6 dB differences in the peak over a
frequency range of 0–200 Hz compared to a linear model [16]. Ma et al. also found that the
mitigation effectiveness of the FST is influenced by the preload–track interaction behavior
in an experimental test [17].

Some theoretical models with a better performance have been widely used to accu-
rately reflect the impact of the polymer’s mechanical properties on the track’s vibration
characteristics. Wei et al. described the dynamic viscoelasticity and plasticity of a Vossloh
300 soft rail pad with a modified fractional derivative Zener (FDZ) model and a traditional
Berg friction model, and analyzed the influence on the high-speed vehicle–slab-track cou-
pled vibration [18]. Zhu et al. proposed a stochastic fractional derivative (SFD) model for
simulating the dynamic behavior of rubber bearings in the FST [19]. Cezary et al. tested the
frequency dependence of UBM and used an FDZ model to evaluate its insertion loss in a
two-layer reference system [20]. In addition to the more well-known frequency dependence,
temperature dependence, and amplitude dependence of the polymer materials [21–27], the
influence of the preload dependence is now being considered. Koroma et al. successively
proposed the modified KV model [28] and the Poynting–Thomson (PT) model [29] con-
sidering the preload dependence, which fit better with the measured dynamic stiffness
of the fastener pad under different preloads [23]. However, the more accurate the model
reflects the true characteristics of the material, the more difficult it is to test and characterize,
which means that the application is more inconvenient. Various countries have also issued
different evaluation methods for STMs to guide actual projects.

In China, the provisional technical regulation TJ/GW 121-2014 [30] indicates that the
train operation safety and VRE are evaluated by the secant stiffness of 3–5 Hz within the
range of from the dead load of the FST to the superimposed vehicle load. The original
intention of the specification is to facilitate testing and application and to homogenize the
differences in different preloads to roughly reflect the overall mechanical characteristics.
Under the guidance of this specification, the dynamic behavior design of many STMs in
China is undesirably getting increasingly closer to linearization. The international standard
DIN 45673-7:2010 [31] pays more attention to the mechanical properties under different
preloads and describes three dynamic stiffness test methods of STM in the range of 5–30 Hz
to evaluate different indicators. The first preloading stiffness under the dead load of STM
is used to verify the tuning frequency of the FST, and the second preloading stiffness
under the dead load and half of the live load is used to estimate the dynamic stiffening
ratio. The insertion loss can be calculated by the third preloading stiffness under the
dead load and full live load or the seconding stiffness [31]. Compared with the domestic
standard, the test methods of the DIN standard [31] are more comprehensive, but the
standard does not provide a clear method of use in specific applications. For example,
the standard does not mention the difference between the second preloading stiffness and
the third preloading stiffness in the evaluation of the VRE or which frequency stiffness is
used for analysis. In conclusion, the tangent stiffness focuses too much on the dynamic
mechanical behavior of single preloading and cannot reflect the actual preloading process
from small to large and then to small [32], while the influence of the secant stiffness on the
vibration reduction evaluation under different axle loads remains to be studied. Hence, the
evaluation differences of different standard methods should be compared and identified
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with the accurate VRE calculated by the fractional derivative Poynting–Thomson (FDPT)
model so as to improve and optimize the specific application method.

To evaluate the VRE of the STMs conveniently and accurately, we improved the exist-
ing standard method by comparing the models that can reflect the actual dynamic character-
istics. A modified FDPT model was proposed (Section 2), which can reflect the temperature,
preload, and frequency dependence. A series of performance tests were carried out on the
dynamic properties of the STMs to be used in Guangzhou URT (Sections 3.1 and 3.2), and
the dynamic performance was characterized by the modified FDPT model (Section 3.3).
Next, an improved vehicle–FST coupled dynamic model by combining the FDPT model
was established to calculate the accurate VRE of STM (Section 4). Finally, the differences
between the different evaluation methods (including secant stiffness in the service load
range, tangent stiffness under the second and third preload, and actual preload- and
frequency-dependent stiffness) were compared and analyzed (Section 5). This research can
help optimize the existing evaluation methods and evaluate the VRE simply and accurately.

2. Modified FDPT Models

To describe pronounced nonlinear behavior depending on the preload and frequency,
the modified KV [28] and PT [29] viscoelastic models are successively used to make em-
pirical approximations for both the static and dynamic stiffnesses of the elastic elements.
Fractional calculus can better describe the memory and heredity of various materials
and processes, and has been widely used in nonlinear dynamics problems [33,34]. There-
fore, we propose a modified FDPT model that can theoretically characterize the dynamic
characteristics of STM with the temperature, preload and frequency.

The modified FDPT model is shown in Figure 1, where the acting force is P and
the corresponding displacement is x. This model can be divided into two parts: the
elastic spring part (K1) and the fractional derivative Maxwell (FDM) part consisting of the
spring (K2) and Abel dashpot (K2τγ) in series. In this section, the classical FDPT model
is first transformed into a temperature-dependent modified model, and then the preload-
dependent nonlinear static stiffness and the frequency-dependent dynamic stiffness are
respectively derived.

Figure 1. Modified fractional derivative Poynting–Thomson (FDPT) model for slab-track mats (STMs).

The time-domain constitutive equation of the classic FDPT model and the complex
stiffness obtained by Fourier transform (FT) are as follows:

P(t) + p1
dγ

dtγ
P(t) = q0x(t) + q1

dγ

dtγ
x(t) (1)

K∗(iω) =
K1 + (K1 + K2)(iωτ)γ

1 + (iωτ)γ (2)

where τ is the relaxation time of the linear viscoelastic material and γ is the derivative
order. It is worth mentioning that unlike the usual generalized fractional model, the
spring stiffness in the FDPT model is considered separately. K1 and K2 reflect the static
preload-dependent and dynamic frequency-dependent characteristics, respectively.
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According to the time-temperature superposition (TTS) [35] of polymer materials
and Williams–Landel–Ferry (WLF) equation [36], the temperature-dependent naturalized
complex stiffness of K*(iw,T) can be also written as the following equation. The specific
calculation procedure can be found in [32].

K∗(iω, T) =
(

ρ · T
ρ0 · T0

)
× K1 + (K1 + K2)(iωτ/α(T))γ

1 + (iωτ/α(T))γ (3)

In Equation (3), T0, T, ρ0, and ρ, are the reference temperature, the temperature of
interest (in units of K), and the corresponding densities, respectively. α(T) is the conversion
coefficient of the temperatures, in accordance with the following equation:

lgα(T) =
−C1(T − T0)

C2 + (T − T0)
(4)

When the glass transformation temperature (Tg) is regarded as the reference tem-
perature, C1 and C2 are 17.44 and 51.6, respectively. If another temperature is selected as
the reference temperature, C1

′ and C2
′ at the corresponding reference temperature can be

calculated by using Equations (5)–(7).

C1
′ =

C1 × C2

C2 + ∆
(5)

C2
′ = C2 + ∆ (6)

T0 = Tg + ∆ (7)

In the case of static loading, STM is assumed to be purely elastic with a single nonlinear
force–displacement curve. The nonlinear static force–displacement relationship can usually
be fitted to a polynomial function, and the tangent stiffness K1 under different preloads
can be obtained by derivation in the following form:

K1(P) =
dP(x)

dx
= a1x3 + a2x2 + a3x1 + a4 (8)

After obtaining the complex stiffness (K*) measured by the harmonic excitation and
the static nonlinear K1 obtained by fitting, the stiffness K2 associated with frequency
dependence under different preload conditions can be shown by the following equations:

K2(P) = K2
′(1 + β r) (9)

β = (P− Pr)/Pr (10)

where Pr and K2
′ are a reference preload and the corresponding stiffness value, respectively.

βr is an exponential function related to the preload.
The temperature-, frequency-, preload-dependent storage stiffness (K′), loss stiffness

(K”), and loss factor (tan δ) can be obtained as follows:

K′(ω, T, P) =
(

ρ · T
ρ0 · T0

)
×
[

K1(P) +
K2(P)[ωτ/α(T)]γ

[
cos(γπ/2) + [ωτ/α(T)]γ

]
1 + 2 cos(γπ/2)[ωτ/α(T)]γ + [ωτ/α(T)]2γ

]
(11)

K′′ (ω, T, P) =
(

ρ · T
ρ0 · T0

)
×
[

K2(P) sin(γπ/2)[ωτ/α(T)]γ

1 + 2 cos(γπ/2)[ωτ/α(T)]γ + [ωτ/α(T)]2γ

]
(12)

tan δ(ω, T, P) =
K2(P) sin(γπ/2)[ωτ/α(T)]γ

K1(P) + [2K1(P) + K2(P)] cos(γπ/2)[ωτ/α(T)]γ + [K1(P) + K2(P)][ωτ/α(T)]2γ
(13)



Materials 2021, 14, 452 5 of 22

3. Tests for the Load- and Frequency-Dependent Dynamic Properties of STMs

To compare the sensitivity of different damping pads to the test conditions (e.g.,
preload and excitation frequency), three kinds of damping pads to be used by Guangzhou
URT were adopted as the test objects—see Figure 2. The damping pads are numbered
STM-I, STM-II, and STM-III from left to right. The size of all STMs was 300 mm × 300 mm
× 25 mm (length × width × installed thickness). STM-I is a rubber-based pad with natural
rubber and synthetic rubber, and STM-II and STM-III are both polyurethane-based pads.
The tensile strengths of STM-I, STM-II, and STM-III are 15, 0.5, and 0.3 MPa, respectively,
and the compression permanent deformations of STM-I, STM-II, and STM-III are 4%, 5%,
and 5%, respectively.
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Figure 2. Testing samples: (a) STM-I; (b) STM-II; (c) STM-III.

The instrument is shown in Figure 3. The maximum load and maximum frequency
of the dynamic mechanical tester are 25 kN and 200 Hz, respectively. The sampling
frequencies of the force sensor and displacement sensor are both 5 kHz. The accuracies of
the measured force and displacement are 10 N and 2 µm. The harmonic loading mode can
be switched between the load control and displacement control. The instrument parameters
can meet the harmonic excitation with a particle velocity amplitude of 7 mm/s in the 30 Hz
range of the DIN 45673-7:2010 specification [31]. This equipment can not only test the
high frequency dynamic mechanical properties of materials but also combine high–low
temperature boxes or aging boxes to carry out long-term performance evolution tests.

Figure 3. Dynamic test equipment system: (a) from left to right are the industrial personal computer,
dynamic mechanical tester machine with a temperature control box, and hydraulic power pack;
(b) from top to bottom are the supporting steel plate, STM, and loading steel plate.

3.1. Test Load Parameter Analysis

During the test, the minimum load applied was the FST weight supported within
the sample area, and the maximum load was the sum of the minimum load and axle
load supported within the sample area when the vehicle ran above the track. It is worth
noting that when the speed reaches 160 km/h, the axle load needs to consider a certain
dynamic coefficient of 1.3. Three adjacent floating slabs were established by Ansys software
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(Figure 4), and the load borne by the test sample under the condition of no vehicle load
and vehicle load was calculated. The design parameters of the FST and the axle load of the
vehicle are shown in Table 1.

Figure 4. Finite element model of the vehicle–floating slab track (FST).

Table 1. Parameters of the finite element model.

Item Parameter (Unit) Magnitude Element

Rail
Density (kg/m) 60.64

Beam4Young’s modulus (GPa) 206

Fastener
Spacing (m) 0.60

Combin14Vertical stiffness (kN/mm) 35

STM
Spacing (m) 0.05

Combin14Vertical stiffness (N/mm3) 0.01–0.05

Floating slab

Length (m) 4.8
Width (m) 2.5

Thickness (m) 0.3 Solid45
Modulus (GPa) 36

Density (kg/m3) 2500

Applied load Spacing (m) 2.5
Wheelset axle load (t) 17 -

The maximum loads obtained by the different STMs’ stiffness were slightly different.
The stiffness of the STMs increases from 0.01 to 0.03 N/mm3, and the corresponding
maximum load increases from 4.0 to 4.2 kN. To facilitate testing, the minimum load and
maximum load were determined to be 0.8 and 4.1 kN, respectively.

3.2. Test Scheme

A series of experiments were carried out to scientifically test and characterize the
dynamic properties of the STMs (see Table 2). Case 1 was conducted to obtain the static
nonlinear force–displacement curve of the STMs. Case 2 was based on the standard DIN
45673-7:2010 [31] to test the dynamic stiffness with an interval of 1 kN within the load
range of 0–5 kN, and the test frequencies were 5, 10, 20, 40, 80, and 100 Hz. Case 3 was
based on the standard TJ/GW 121-2014 to test the dynamic stiffness at different frequencies
within the service load range.

Table 2. Test cases of the STMs.

Case Preload Excitation
Method

Excitation
Amplitude Dynamic Frequency

1 From 0 to 5 kN at
an interval of 0.5 kN Force control 0 kN 0

2 From 0 to 5 kN at
an interval of 1 kN Velocity control 7 mm/s 1, 5, 10, 20, 40, 80, 100 Hz

3 2.5 kN Force control 1.65 kN 1, 5, 10, 20, 40, 80, 100 Hz
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3.3. Test Results and Model Parameter Fitting

According to the test procedures, the static and dynamic characteristics of the test
samples of the STMs were tested.

3.3.1. Static Nonlinearity

Static loading with a nearly zero velocity was carried out on the STMs within the load
range of 0 kN to 5 kN at an interval of 0.5 kN. The measured data and fitting results of
the nonlinear force–displacement and stiffness–force curve are shown in Figure 5, which
confirms the good agreement between Equation (8) and the experimental data.

Figure 5. Test and fitting results: (a) nonlinear force–displacement curve; (b) Nonlinear stiffness–
force curve.

Although the force–displacement curve of STM-I in Figure 5a is approximately linear,
it can be seen from Figure 5b that the stiffness increased slightly. The difference between
STM-II and STM-III is that the former decreased gradually within the service load range,
while the latter first decreased and then increased. The mechanical properties of STM-III
are similar to those of the quasi-zero stiffness isolator with high-static and low-dynamic
stiffness. The two ends of the service load range are high in static stiffness to support
its own weight and accidental overload, and the main range of the service load is low in
dynamic stiffness to achieve vibration isolation. The fitting parameters a1, a2, a3, and a4 of
STM-I, STM-II, and STM-III are shown in Table 3.

Table 3. Four fitting parameters for static nonlinear characteristics.

Type a1 a2 a3 a4

STM-I 0.094 −0.572 1.304 0.725
STM-II 0.256 −1.323 1.381 1.848
STM-III −0.171 1.463 −3.398 2.936

3.3.2. Dynamic Stiffness of STMs

In order to avoid repetition, only part of the dynamic hysteresis loops within the ser-
vice load range are shown, because its load and displacement are larger and the hysteresis
loop area is more obvious (see Figure 6).

It can be observed that the frequency-dependent stiffness and loss factor of STM-I and
STM-II are basically the same, while STM-III not only has obvious frequency-dependent
stiffness but also a higher loss factor (that is, a larger dynamic hysteresis loop area).
According to these measured hysteresis loops, the stiffness at different preloads and
frequencies can be obtained. The test data and fitting results of secant stiffness and tangent
stiffness of the STMs are shown in Figure 7.
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Under different preloads, the stiffness of the STMs at a frequency approaching 0 is
basically consistent with the static stiffness in Figure 5b. Furthermore, the frequency-
dependent effect of the same STM under different preload conditions is basically the
same. In the range of 1–200 Hz, the stiffness increases in the slopes of STM-I and STM-II
(6.81 × 10−5 and 6.83 × 10−5, respectively) are relatively small. The frequency-dependent
effect of STM-III with strong nonlinearity in the service load range is obvious, and the
stiffness growth rate is 1.25 × 10−4. For STM-III, which has a relatively small static stiffness
in the load range of 2–3 kN, a moderately large frequency change effect can also effectively
suppress the dynamic displacement of the floating slab. It is worth noting that the secant
stiffness of STM-I and STM-II is between the preloaded tangent stiffness of 2 and 4 kN,
while the secant stiffness of STM-III is greater than the preloaded tangent stiffness of 1 and
5 kN.
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Figure 7. Test data and fitting result: dynamic storage stiffness of (a) STM-I; (b) STM-II; (c) STM-III.

The fitting process under a single preload can be directly calculated using Equation (2),
and the stiffness and preload force values with a reference preload of 0.5 kN are selected as
K2
′ and Pr in the fitting. The fitting parameters K2

′, r, τ, and γ are shown in Table 4.

Table 4. Fitting parameters in the FDPT model.

Type K2
′ (N/mm3) r τ (s) γ

STM-I 0.0146 0.0853 3 × 10−4 0.26
STM-II 0.0175 0.0699 6 × 10−5 0.28
STM-III 0.0245 0.0610 7 × 10−4 0.45

Using the modified FDPT model in Table 4, the preload- and frequency-dependent
dynamic performance of the STMs can be easily predicted, as shown in Figure 8. The
three-dimensional view and the contour map clearly reflect the difference in nonlinearity
and frequency dependence of the different STMs in the service load range.
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Figure 8. Predicted storage stiffness of STMs under different frequencies and various preloads at
20 ◦C: (a) STM-I; (b) STM-II; (c) STM-III.

4. Modified Vehicle–DPFST Coupled Dynamic Model Combined with the FDPT Models

In order to accurately evaluate the influence of the preload- and frequency-dependent
characteristics of the STMs on the VRE of the rail transit system, a vertical vehicle–DPFST
coupled dynamic model combined with the FDPT model for the STMs was used to investi-
gate a URT under construction in Guangzhou (see Figure 9). In the dynamics simulation,
Chinese CRH6 vehicles, CN60 rail, and prefabricated short floating slabs were used as the
research objects.

Figure 9. Vertical vehicle-damping pad floating slab track (DPFST) coupled dynamic model.
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4.1. Vehicle Dynamic Model

The railway vehicle was generally simulated as a multi-rigid-body model with two
suspensions. The degrees of freedom mainly included the up and down and nodding
movement of a vehicle body, two bogies, and four wheel sets. The differential equations of
the vehicle system can be found in [37]. The parameters of the CRH6 vehicle are shown
in Table 5. In order to investigate the impact of different axle loads on the VRE in the
subsequent calculations, the vehicle body mass was considered to be 25.7 t at no imposed
load and 57.2 t at full load.

Table 5. Parameters of the finite element model.

Item (Unit) Value

Length between truck centers (m) 15.7
Vehicle body mass (t) 25.7/57.2

Bogie mass (t) 4.84
Wheelset mass (t) 1.89

Vehicle body moment (kg·m2) 1.4 × 106

Bogie moment (kg·m2) 2.1 × 103

Primary suspension stiffness (kN/m) 1.3 × 103

Primary suspension damping (kN·s/m) 1.0 × 101

Secondary suspension stiffness (kN/m) 2.2 × 102

Secondary suspension damping (kN·s/m) 2.0 × 101

4.2. DPFST Dynamic Model

The DPFST dynamic model consisted of a rail, fasteners, slabs, STMs, concrete bases,
and subgrade. The floating slab was simulated as a free beam with discrete supports
according to the sample sizes of the STMs. The concrete base was laid on the subgrade,
which was simulated as a continuously supported free beam. The fasteners were simply
modeled with the Kelvin model, and the STMs were modeled by the FDPT model proposed
in this paper.

The vertical vibration equation for the rail can be written as

Er Ir
∂4Zr

∂x4 + mr
∂2Zr

∂t2 = −
Nf

∑
i=1

Frsi(t)δ(x− xi) +
4

∑
j=1

pjδ(x− xwj) (14)

where mr, Er and Ir are the mass, modulus, and rotational inertia of the rail, respectively;
Zr is the vertical displacement of the rail; xi and xwj are the positions of the i-th fastener
and the j-th wheelset, respectively; Nf is the total number of fastenings; δ(x) is the Dirac
delta function; Frsi is the vertical force applied to the rail by the i-th fastener, as shown in
Equation (14); and pj is the vertical force applied to the rail by the j-th wheel.

By applying Ritz’s method and normalized shape functions of Euler beams, the partial
derivative equation (Equation (14)) can be transformed into the time-dependent differential
equations, as follows:

..
qk(t) +

Er Ir

mr
(

kπ

lr
)

4
qk(t) = −

Nf

∑
i=1

Ffi(t)Yk(xi) +
4

∑
j=1

pj(t)Yk(xwj) (15)

where qk (t) is the kth generalized coordinate of the rail vertical deflection, lr is the simula-
tion length of the rail, and Yk(x) is the kth orthogonal function, defined as follows

Yk(x) =
√

2
mrlr

sin
kπx
lr

(16)
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The differential equations of the floating slab supported by the STMs can be written
as follows:

Es Is
∂4Zs

∂x4 +
Ms

Ls

∂2Zs

∂t2 =
Np

∑
i=1

Ffi(t)δ(x− xi)−
Ns

∑
g=1

Fsg(t)δ
(

x− xg
)

(17)

where Ms, Es, Ls and Is are the mass, modulus, length, and rotational inertia of the floating
slab, respectively; Np and Ns are the total number of fasteners and STMs on each slab,
respectively; and Fsg is the vertical supporting force applied to the floating slab by the gth
STM, as shown in Equation (18). The detailed derivation process of the supporting force of
the fractional-order model is detailed in Reference [24].

Fsg(t) = G1Zs(xi, t) + G2

Nsg−1

∑
m=1

Am+1Zs(xi, t−m∆t)− G3

Nsg−1

∑
m=1

Am+1Fsg(t−m∆t) (18)

in which 
G1 = K1(P)+[K1(P)+K2(P)]τγ(∆t)−γ

1+τγ(∆t)−γ

G2 = [K1(P)+K2(P)]τγ(∆t)−γ

1+τγ(∆t)−γ

G3 = τγ(∆t)−γ

1+τγ(∆t)−γ

(19)

where Nsg is the total number of the past integral steps (generally, 160), which makes
the calculated support force take into account the loading history process. The fractional
parameters G1–G3 are functions of K1(P) and K2(P), which makes the FDPT model not
only reflect the frequency dependence of the STMs but also consider the influence of the
imposed preload. ∆t is the integral step and Am is the mth Grünwald–Letnikov coefficient,
defined as follows:

Am+1 = Γ(m−γ)
Γ(−γ)Γ(m+1) (20)

Similarly, the dynamic equation of the floating slab can be transformed into a second-
order differential equation

..
Tn(t) +

Es Isβ4
nls

Ms
Tn(t) =

Np

∑
i=1

Ffi(t)
Ms

Xn(xi)−
Ns

∑
g=1

Fsg(t)
Ms

Xn(xg) (21)

where Tn(t) is the nth generalized mode coordinate of the floating slab, and Xn is the nth
modal function, defined as follows:

X1 = 1
X2 =

√
3
(

1− 2x
ls

)
,

Xn = (chβnx + cos βnx)− Cn(shβnx + sin βnx), nα2,
(22)

where Cn and βn are constants of the free beam function.
The differential equation of continuously supported concrete base is similar to Equation (21),

and the second-order differential equation is directly given

..
Yn(t) +

CcLc

Mc

.
Yn(t) +

Kc + Ec Icβ4
nLc

Mc
Yn(t) =

Ns

∑
g=1

Fsg(t)
Mc

Xn(xg) (23)

where Mc, Ec, Lc, and Ic are the mass, modulus, length, and rotational inertia of the concrete
base, respectively.
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5. Comparative Analysis of the Vibration Reduction Effect and Evaluation Methods

For investigation into the influence of the different evaluation methods on the train-
induced vibrations and the VRE of the FST, some calculation cases were designed, as shown
in Table 6.

Table 6. Calculation cases of the frequency and preload dependence.

Type Case Preload (kN)
KV Model
(N/mm3)

FDPT Model

K1
(N/mm3)

K2
′

(N/mm3) r τ
(s) γ

STM-I

1 0.8–4.1 0.0230 - - - - -
2 0.8–4.1 - 0.0195 0.0345 - 3 × 10−4 0.26
3 2.5 - 0.0182 0.0328 - 3 × 10−4 0.26
4 4.1 - 0.0221 0.0319 - 3 × 10−4 0.26
5 0.8–4.1 - K1(P) in Table 4 0.0146 0.0853 3 × 10−4 0.26

STM-II

6 0.8–4.1 0.0243 - - - - -
7 0.8–4.1 - 0.0198 0.0342 - 6 × 10−5 0.28
8 2.5 - 0.0221 0.0369 - 6 × 10−5 0.28
9 4.1 - 0.0142 0.0368 - 6 × 10−5 0.28

10 0.8–4.1 - K2(P) in Table 4 0.0175 0.0699 6 × 10−5 0.28

STM-III

11 0.8–4.1 0.0170 - - - - -
12 0.8–4.1 - 0.0222 0.0480 - 7 × 10−4 0.45
13 2.5 - 0.0088 0.0512 - 7 × 10−4 0.45
14 4.1 - 0.0185 0.0520 - 7 × 10−4 0.45
15 0.8–4.1 - K3(P) in Table 4 0.0245 0.0610 7 × 10−4 0.45

Case 1 in Table 6 is the basic case, in which the parameter adopts the 4 Hz secant
stiffness within the load range required by the specification TJ/GW 121-2014. Case 2 further
considers the frequency dependence of the secant stiffness. Because DIN 45673-7:2010 does
not specify the frequency of the second preload and third preload tangent stiffness, the
frequency-dependent tangent stiffness is used for comparative analysis in Cases 3 and 4. In
Case 5, the modified FDPT model is adopted to reflect the preload change state of the STMs
to accurately calculate insertion loss. Cases 1–5 shown in Table 6 were designed to explore
the differences in existing evaluation methods so as to refine more accurate and suitable
evaluation methods for different STMs. In this research, a six-car train with a speed of
160 km/h was used for simulation analysis to fully excite the vibrations of the DPFST. The
track irregularity was modeled by the Association of American Railroads 5th class spectra,
with wavelengths of 0.1−30 m.

The VRE is usually evaluated by the insertion loss ∆La between the DPFST and the
monolithic track in the 1/3 frequency band from 1 to 200 Hz, defined as follows:

∆La = 10lg

(
n

∑
i=1

10
VLq(i)

10

)
− 10lg

(
n

∑
i=1

10
VLh(i)

10

)
(24)

VLq(i) and VLh(i) are the frequency division vibration level (dB) of the vertical vibra-
tion acceleration of the monolithic track and the DPFST at the ith center frequency in the
1/3 octave band. The frequency weightings in the 1/3 octaves refer to ISO 2361-1:1997 [38].

5.1. Vehicle Dynamic Model Evaluation of the Vibration Reduction Effect for STM-I

To avoid repetition, the calculation results under the full load of the vehicle are
illustrated. The vertical displacements of the rail and floating slab obtained by different
evaluation methods in Cases 1–5 are shown in the Figure 10. It is clear that the dynamic
displacement difference of the rail and floating slab in Cases 1–5 is very small. The
calculation results (Cases 2–5) considering the frequency dependence of the STMs may be
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about 0.1 mm smaller in Case 1, but both meet the safety limit of 4 mm for rail and 3 mm
for the floating slab [39].

Figure 10. Vertical dynamic displacement: (a) rail; (b) slab in Cases 1–5.

The time-domain vertical acceleration and vibration acceleration levels (VALs) of
the slab with STM-I and concrete base in Cases 1–5 are shown in Figures 11 and 12. The
maximum vibration accelerations of the concrete base in Cases 1–5 are 3.52, 2.60, 2.52, 2.76,
2.71 m/s2, respectively. It can be found that the vibration acceleration of the slab without
considering the frequency dependence of STM-I is the smallest among all the results,
and the acceleration of the concrete base is the largest (i.e., Case 1). The time-domain
acceleration results obtained by considering the frequency dependence of STM-I in Cases
2–5 show only minor differences.

Figure 11. Vertical vibration acceleration: (a) slab; (b) concrete base in Cases 1–5.

Figure 12. Vibration acceleration levels: (a) slab; (b) concrete base in Cases 1–5.
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It is evident from Figure 12 that the DPFST effectively suppresses vibration in almost
the entire frequency band compared to the monolithic track, and yet the natural frequency
vibration of the DPFST is amplified. In addition, the frequency-dependent characteristics of
STM-I not only affect the vibration characteristics of the floating slab itself, but also amplify
the vibration of the concrete base below 100 Hz, especially in the range of 20–31.5 Hz.
The vibration acceleration results of the concrete base calculated by the KV model and
the FDPT model are consistent with the conclusion of one study [16] in both the time and
frequency domains.

In Case 1, due to the fact that the frequency- and preload-dependent characteristics
of STM-I are not considered, the natural frequency of the floating slab is relatively low,
which is mainly reflected in the value of 20 Hz. Although Cases 3 and 4 consider the
influence of frequency characteristics, the stiffness under different preloads also has a slight
difference in the vibration in the range of 20–31.5 Hz at the 1/3 octave frequency. The
greater the stiffness of the STMs, the greater the vibration energy of the higher frequency
within the resonant frequency range of the system. Since the stiffness of STM-I increases
monotonically, compared with the second preload parameter (Case 3), the VALs of the slab
obtained by the third preload parameter are slightly higher at the 1/3 octave frequency
of 31.5 Hz and slightly lower at the 1/3 octave frequency of 20 Hz. When the preload
dependence is further considered in the Case 5, the lower stiffness nonlinear segment
between the first preload and second preload of STM-I is introduced into the calculation.
Therefore, the VAL of the slab decreases at the 1/3 octave frequency of 31.5 Hz and increases
at the 1/3 octave frequency of 20 Hz compared with Cases 3 and 4. The above influence is
also reflected in the VALs of the concrete base, which is also the reason for the difference in
the insertion loss calculated by different stiffness evaluation methods. The insertion losses
obtained by different evaluation methods for STM-I under the conditions of empty load
and full load are shown in Table 7.

Table 7. Insertion loss of the FST with STM-I under different load conditions (dB).

Axle Load Case 1 Case 2 Case 3 Case 4 Case 5

Empty load 17.5 13.4 13.4 12.8 15.3
Full load 17.2 13.2 13.1 12.5 14.0

Table 7 shows that the secant stiffness of STM-I does not consider the notion that the
frequency dependence causes the insertion loss to be overestimated. Since the stiffness
increases with the increasing frequency, the insertion loss calculated in the Case 2 using the
frequency-dependent secant stiffness is smaller than in Case 1. The nonlinearity of STM-I
is manifested as a monotonic increase in stiffness: the greater the preload selected by the
evaluation method, the higher the frequency-dependent tangent stiffness and the smaller
the insertion loss. Therefore, the evaluation effect of Case 3 is inferior to that of Case 4.
Coincidentally, due to the weak nonlinearity of STM-I, the mechanical parameters used
in the characterization of secant stiffness and tangent stiffness show minor differences,
meaning the results of Cases 2 and 3 basically the same. Case 5 additionally considered the
preload dependence of STM-I, the change of dynamic mechanical parameters with the axle
load during operation reflects the process of stiffness from small to large, so the insertion
loss is greater than Cases 3 and 4. Moreover, based on this feature of the FDPT model, Case
5 can accurately reflect the difference in the insertion loss caused by different axle loads.
The insertion loss of Case 5 is reduced by 1.3 dB when the vehicle is fully loaded, while the
attenuation of Cases 1–4 is the same—only 0.3 dB.

In contrast, the evaluation error in Case 4 is relatively large, regardless of whether
the vehicle is empty or fully loaded, because the force that STM-I bears is less than, or has
just reached, the third preload (see Figure 13). Therefore, using the third preload stiffness
to evaluate the VRE is too conservative for STM-I, especially when the vehicle is under
no load.
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Figure 13. The supporting force of STM-I under (a) no load and (b) full load of the vehicle.

5.2. Vehicle Dynamic Model Evaluation of the Vibration Reduction Effect for STM-II

The subsequent sections focus on the differences in the VRE of the STMs obtained
by different evaluation methods; thus, the figures of the dynamic displacement that meet
the requirements of safe operation are omitted. The maximum dynamic displacement
of the slab in Cases 6–10 under the full load of vehicle was 2.7 mm. The time-domain
vertical acceleration and vibration acceleration levels (VALs) of the slab and concrete base
in Cases 6–10 are shown in Figures 14 and 15.

Figure 14. Vertical vibration acceleration: (a) slab; (b) concrete base in Cases 6–10.

Figure 15. Vibration acceleration levels: (a) slab; (b) concrete base in Cases 6–10.

The maximum vibration accelerations of the concrete base in Cases 6–10 are 3.69,
2.27, 2.53, 1.95, and 2.18 m/s2, respectively. Similarly, when using STM-II, the impact
of different evaluation methods on the DPFST is mainly reflected in the frequency band
near the natural frequency, especially at the 1/3 octave frequency of 31.5 Hz. Since the
stiffness of the third preload of STM-II is less than that of the second preload, the maximum
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frequency division vibration levels (VLmax) of Cases 8 and 9 are mainly concentrated at
31.5 and 20 Hz, respectively. Compared with Case 9, the nonlinear segment with higher
stiffness before the third preload is considered in Case 10; thus, the VAL at 31.5 Hz is
higher than Case 9 but lower than that in Case 8 when only considering high stiffness. The
insertion losses obtained by the different evaluation methods are shown in Table 8.

Table 8. Insertion loss of the FST with STM-I under different load conditions (dB).

Axle Load Case 6 Case 7 Case 8 Case 9 Case 10

Empty load 17.8 14.1 13.4 16.9 12.8
Full load 17.5 13.8 13.1 16.6 13.7

The effect of the frequency-dependent stiffness on the insertion loss is almost uniform
for all of the STMs; thus, the insertion loss of Case 6 is the largest. The secant stiffness
weakens the difference between different preloads of STM-II, meaning that the result of
Case 7 is between that of Case 8 and Case 9. However, considering the nonlinear segment
with the higher stiffness before the third preload, the actual VRE of Case 10 is less than
that of Case 9. Moreover, unlike STM-I, the insertion loss of STM-II increases by 0.8 dB
when the vehicle is fully loaded. This is because the increased load makes the lower
stiffness segments of STM-II perform better. It can be concluded that the insertion loss
error obtained by the third preload evaluation method is not negligible, but different from
the evaluation for STM-I, and, thus, the VRE of STM-II will be overestimated.

5.3. Vehicle Dynamic Model Evaluation of the Vibration Reduction Effect for STM-III

The maximum dynamic displacements of the rail and slab in Cases 11–15 under the
full load of vehicle are 2.6 and 1.8 mm respectively, which is basically the same as the
results of STM-I and STM-II. Figure 16 shows the time-domain vertical acceleration of the
slab and concrete base in Cases 11–15.

Figure 16. Vertical vibration acceleration: (a) slab; (b) concrete base in Cases 11–15.

The maximum vibration accelerations of the concrete base in Cases 11–15 are 2.82,
3.52, 2.32, 3.12, and 2.45 m/s2, respectively. Despite the fact that the frequency dependence
is considered in Cases 12–15, the true strong nonlinearity of STM-III results in a significant
difference between the maximum vibration acceleration in Case 15 and the results of other
evaluation methods (Case 12–14). The VALs of the slab and concrete base in Cases 11–15
are shown in Figure 17.
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Figure 17. Vibration acceleration levels: (a) slab; (b) concrete base in Cases 11–15.

As described in Section 3.2, the frequency dependence effect of STM-III is more
obvious, so the vibration in the wider frequency range of 20–100 Hz in the Cases 12–15 has
a larger amplification compared with the Case 11. It is worth mentioning that the VLmax of
Cases 12 and 14 are about 7 dB larger than Cases 13 and 15, which is very important for the
insertion loss. Table 9 shows the insertion losses obtained by different evaluation methods
for STM-III under the conditions of empty load and full load.

Table 9. Insertion loss of the FST with STM-I under different load conditions (dB).

Axle Load Case 11 Case 12 Case 13 Case 14 Case 15

Empty load 19.1 14.4 18.1 15.1 18.4
Full load 18.7 14.0 17.7 14.7 18.2

Compared with other STMs, the most significant difference between different evalua-
tion methods for STM-III is that the frequency-dependent secant stiffness can no longer
approximately reflect its true VRE. In addition, compared with STM-II, the third preloading
did not overestimate its VRE of STM-III, but rather underestimated it. Another interesting
finding is that the VRE of STM-III has little change in the no-load or full-load conditions,
which is also what we hope to achieve under different axle loads. Compared with most
STMs whose force–displacement curve is approximately linear (i.e., STM-I and STM-II),
this type of STM with high-static–low-dynamic (HSLD) stiffness in the service load range
is a good choice for improving the efficiency of vibration isolation.

5.4. Improvement of the Evaluation Methods

From the results of the above three STMs, it can be concluded that the insertion loss
calculated by using the second preload frequency-dependent tangent stiffness is the closest
to the real result. In order to facilitate its application, it is practical to adopt a single
frequency parameter that can accurately reflect the vibration characteristics of the floating
slab track and the VRE. Therefore, we proposed an improved calculation method for the
second preload evaluation method, which uses the corresponding stiffness at the natural
frequency to replace the frequency-dependent stiffness. It is worth mentioning that this
natural frequency is not the tuning frequency under no load, but the natural frequency
considering the P2 resonance during vehicle operation [40,41]. The stiffness used in the
natural frequency calculation is the frequency-dependent stiffness of the second preloading,
and the total mass is the sum of the mass of unsprung wheelsets and the mass of the FST
system. Until the natural frequency is consistent with the frequency corresponding to
the stiffness used in the calculation, the result is the true natural frequency of the DPFST
under load [42]. The natural frequencies of the DPFST corresponding to the three types
of STMs are 23.8, 24.2, and 20.0 Hz, and the stiffness corresponds to 0.0294, 0.0301, and
0.0211 N/mm3, respectively. As the vibration level of an empty vehicle is low and the
vehicle is almost always in a loaded state, we evaluated the VRE of the vehicle under full
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load according to the method proposed in this article. The vertical VALs of the concrete
base and insertion loss calculated by the new method for the three types of STMs are shown
in Figure 18 and Table 10.

Figure 18. Vibration acceleration levels of the concrete base: (a) STM-I; (b) STM-II; (c) STM-III.

Table 10. Comparison of the insertion loss of the optimization method (dB).

Type New Method Modified FDPT Model

STM-I 14.5 14.0
STM-I 14.2 13.7

STM-III 17.8 18.2

It is precisely because the parameters at the natural frequency can more accurately
reflect the natural vibration characteristics of the DPFST that the VALs of the concrete base
calculated by using the new method are relatively close to the actual results (especially the
VLmax that has a greater impact on the insertion loss).

It is obvious that the maximum error between the result of the new method and the
actual insertion loss calculated by considering the preload and frequency dependence is
only 0.5 dB, which meets the error requirements of the engineering design. On the whole,
this single parameter evaluation method at the natural frequency under the second preload
is the most practical and accurate method at present.
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6. Conclusions

A series of performance tests were conducted to study the preload dependence and
frequency dependence of different STMs. The FDPT model was used instead of the KV
model to accurately calculate the actual VRE obtained from the vehicle–DPFST coupled
dynamic model. Next, the differences in the existing STM specifications in the evaluation
of the VRE were analyzed. Finally, based on the above analysis, an accurate and practical
single parameter evaluation method for guiding engineering design was proposed. The
four main conclusions are as follows:

• In specification TJ/GW 121-2014 [30], the method of using the secant stiffness to
evaluate the VRE must consider the influence of frequency-dependent characteristics
of STMs; otherwise, the VRE will be significantly overestimated. The secant stiffness
homogenizes the stiffness difference caused by different preloads in the service load
range. For the STMs with monotonic stiffness, the evaluation error of this method
decreases with the increased axle load. However, the homogenization effect of the
secant stiffness has a relatively large evaluation error for the STMs with HSLD stiffness
characteristics, because this evaluation method cannot reflect the nonlinear character-
istics in the stiffness caused by load changes. The test method of the specification DIN
45673-7:2010 focuses on the difference under different preloads.

• The disadvantage of DIN 45673-7:2010 [31] is that in addition to not specifying which
frequency stiffness is used to evaluate the VRE, the difference between the second
preload and the third preload tangent stiffness in evaluating the VRE is not clarified.
Moreover, with the tangent stiffness under a single preload, it is difficult to represent
the actual mechanical state of the STMs changing with the axle load during the train
operation. The insertion loss error obtained by the frequency-dependent tangent
stiffness is reflected in the underestimation of the STMs with monotonically increased
stiffness, the overestimation of the STMs with monotonically decreased stiffness, and
the error increase with the increased preload used in the evaluation. The second
preload frequency-dependent secant stiffness and the tangent stiffness have a small
difference in the evaluation of the VRE of the STMs with monotonic stiffness, but only
the frequency-dependent tangent stiffness is more accurate for the STMs with HSLD
stiffness characteristics.

• Among the above different evaluation methods, the evaluation method using the
second preload frequency-dependent stiffness of the DIN 45673-7:2010 [31] is the
most accurate. However, for the convenience of engineering applications, it is most
practical to use the second preload tangent stiffness at the natural frequency of the
DPFST under the load to evaluate the VRE. The new method proposed can be used to
guide the revision and improvement of the specification DIN 45673-7:2010 [31].

• In terms of the VRE of the different STMs, the insertion loss of STM-I with a monoton-
ically increased stiffness decreases slightly with the increase in axel load, while the
insertion loss of STM-II with a monotonically decreased stiffness improves with the
increase in axel load. The VRE of STM-III with HSLD stiffness characteristics is both
better and stable. This advantage of STM-III comes from the lower stiffness under the
second preload. In addition, this also coincides with the evaluation and design idea of
using the second preload tangent stiffness to evaluate the VRE.
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