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Abstract: In this work, loess-based materials were designed based on a multicomponent composite
materials system for ecofriendly natural three-dimensional (3D) printing involving quick lime, gyp-
sum, and water. The 3D printing process was monitored as a function of gypsum content; in terms of
mechanical strength and electrical resistance, in the cube-shaped bulk form. After initial optimization,
the 3D printing composition was refined to provide improved printability in a 3D printing system.
The optimal 3D fabrication allowed for reproducible printing of rectangular columns and cubes.
The development of 3D printing materials was scrutinized using a multitude of physicochemical
probing tools, including X-ray diffraction for phase identification, impedance spectroscopy to monitor
setting behaviors, and mercury intrusion porosimetry to extract the pore structure of loess-based
composite materials. Additionally, the setting behavior in the loess-based composite materials was
analyzed by investigating the formation of gypsum hydrates induced by chemical reaction between
quick lime and water. This setting reaction provides reasonable mechanical strength that is sufficient
to print loess-based pastes via 3D printing. Such mechanical strength allows utilization of robotic 3D
printing applications that can be used to fabricate ecofriendly structures.

Keywords: 3D printing; loess-based materials; rapid setting/hardening; mechanical strength

1. Introduction

The advent of the fourth industrial revolution has brought about advanced technolo-
gies such as artificial intelligence (AI), the Internet of Things (IoT), big data, and three-
dimensional (3D) printing technologies. Rather than being independently positioned, these
technologies are highly interconnected in a sophisticated manner. Since the pioneering
introduction proposed by C.W. Hull [1,2], 3D printing has continually evolved with few
limitations through the development of new materials and printing methodologies and
using plastics, metals, glasses, and ceramics as materials and fused deposition modeling
(FDM), stereolithography apparatus (SLA), selective laser sintering (SLS), and inkjet print-
ing as processes [3–6]. Recently, there has been success in scaling 3D printing size with the
help of either robotic systems or mechanical systems, which can expand the printing size
beyond the traditional 30 cm × 30 cm. The synergic integration of 3D printing capabilities
can open up new structural and/or aesthetic products with complex geometries. Appli-
cations are being expanded to new areas, including prototypes, art products, biomedical
devices/assistants, architecture, and space residence/infrastructure [7–12].

Despite the advances in materials and processing, plastic materials suffer from the ex-
treme environment encountered during 3D printing. These issues, including potential prob-
lems associated with VOCs (volatile organic compounds) and particles generated by 3D
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printers, have led researchers to search for new materials and novel 3D printing processes.
Styrene and formaldehyde in ABS (acrylonitrile butadiene styrene), methyl methacry-
late in PLA (polylactic acid), and caprolactam in nylon are typical materials that can
cause potential negative health effects when used with 3D printers [13–15]. Higher print-
ing temperatures can also produce a larger number of unhealthy particles. Research
efforts have led to safer filament materials and atmospheric control that separates the 3D
printing environment from the ambient one. Recently, cement-based materials and their
applications have been combined with the 3D-printing concept to fabricate ecofriendly
structural products [16–20]. However, there are no reports related to loess-based material,
even though 3D printing was attempted in natural materials such as wood and bio-inspired
ceramic materials [21,22]. Natural materials also represent a potential solution to problems
originating from existing 3D printing materials. Among these, loess-based materials are
well-known natural materials that have been employed worldwide in houses, in the form
of small-sized structures.

Impedance spectroscopy has been widely employed in cementitious materials since
it was first introduced by McCarter et al. [23]. Alternating current (AC)-impedance char-
acterization can resolve bulk information from electrode-associated phenomena. In par-
ticular, unlike electroceramics, cement-based material composites are dominated by the
ionic conduction associated with the three-dimensional geometric interconnections [24,25].
These interconnections evolve continually through the formation of a resistive hydration
product and narrowing of the ionic conduction pathway, leading to ever-increasing resis-
tance and decreasing capacitance [25–27]. However, loess-based material composites have
not been probed using impedance spectroscopy.

The current work focuses on the utilization and processing development of natural
materials, which exist as clean and nontoxic constituents in natural ecology systems. Loess-
based materials are selected as a model system for natural 3D printing. 3D printing
products should be mechanically self-supporting with appropriate compressive strength
resulting from their setting/hardening behaviors. The corresponding physical/chemical
features are characterized using a multitude of probing tools, i.e., X-ray fluorescence (XRF)
to determine the chemical composition, X-ray diffraction (XRD) for phase identification,
and mercury intrusion porosimetry (MIP) for pore structure characterization. The loess-
based materials are discussed in terms of use in nontoxic and ecofriendly 3D printing
technologies. We also detail some remaining technical hurdles.

2. Materials and Methods
2.1. Design of Loess-Based Composites

Loess-based materials were chosen as a core material for natural 3D printing applica-
tions. The constituents are composed of high-quality loess materials (Dongbang Powtech
Co., Gochang-gun, Korea), gypsum (Moongyo Gypsum & Engineering Co., Gimhae-si,
Republic of Korea), and quick lime (Baekkwang Mineral Products Co., Ltd., Seoul, Republic
of Korea). Before evaluating the properties of the loess-based composites, the constituent
materials were analyzed to allow for effective material design. The microstructure and
particle size were monitored using a scanning electron microscope (SU 8220, Hitachi, Japan)
and particle size analyzer (LS 13320, Beckman Coulter, Inc., Brea, CA, USA). The crystal
phases were analyzed by a high-precision X-ray diffractometer (Empyrean, PANalytical
B.V, The Netherlands) with 2θ scans at 1.3 s/step using Cu Kα radiation (λ = 1.54 nm).
The phase compositions were calculated using X’Pert HighScore Plus software based on
Rietveld refinements. An X-ray fluorescence spectrometer (ZSX Primus II, Rigaku, Japan)
was employed to analyze the material composition. Table 1 shows the composition zones
of loess-based composites using loess, quick lime, and gypsum powders for two target
systems: high viscosity for molding a cubic shape and low viscosity for 3D printing a beam
shape. To fabricate cubic specimens, a certain combination of powders was mixed using an
electric mixer, and the powders mixed with water to form a paste. The paste was poured
into a 50 mm × 50 mm × 50 mm ceramic mold and cured at 60 ◦C under 95% relative
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humidity. The specimens were removed from the mold after 24 h. In the current work,
24 h was selected as a reference curing time for a comparison of 3D-printed products to the
mechanical performance of cement-based materials.

Table 1. Composition design of loess-based composites for preliminary screening (referred to as the
bulk format) and the 3D printing format.

Targeted System
Composition (wt.%)

Viscosity
Loess Quick Lime Gypsum Water

Compressive Strength &
Impedance Spectroscopy 55–79 20 1–25 39–45 High

3 Point Bending Test
(3D printing) 55 20 25 55 Low

Beam-shaped specimens were fabricated using our custom-made 3D printer. The paste
with a low viscosity (with powder preparation the same as for the cubic specimen) was
poured into a cylinder container and mechanically crushed to remove bubbles. The cylinder
container was connected to a nozzle with a 4 mm diameter in a bottleneck-shaped struc-
ture for applying compaction pressure. Motorized pressure was applied to the cylinder
container to discharge the loess composite from the nozzle. Rectangular column-shaped
specimens of 15 mm × 15 mm × 245 mm were 3D printed and cured at 60 ◦C under 95%
relative humidity. To monitor the setting/hydration state of the loess-based materials and
cement-based materials, setting and hydration should be stopped properly. Therefore,
the loess- and cement-based materials were subjected to a three-day solvent exchange
process involving an organic solvent, i.e., acetone, and then dried in an electric oven for
24 h.

2.2. Mechanical/Electrical Analysis Preparation

The pore structure was determined by mercury intrusion porosimetry (AutoPore 9520,
Micromeritics, Norcross, GA, USA), in which the specimen was prepared by stopping the
hydration reactions using acetone and an aspirator. A pressure ranging from 3.64 × 103

to 4.14 × 108 Pa was applied to the pores, corresponding to a maximum and minimum
pore size of 340 µm and 3 nm, respectively. The mechanical strength was evaluated
by measuring the compressive strength of the cubic specimens at a pressing speed of
4 mm/min. Impedance spectra were acquired using an impedance analyzer (SI 1260,
Solartron, UK) with an oscillating voltage of 0.1 V between 10 MHz and 1 Hz. A stainless
steel plate was employed as an electrode, and the distance between electrodes was 40 mm.
A three-point bending test was used on the 3D-printed, beam-shaped specimens to evaluate
mechanical tensile properties using a custom-made universal test machine at a pressing
speed of 0.1 mm/min.

3. Results and Discussion
3.1. Materials Analysis

Loess-based composite materials were designed considering chemical composition,
particle size morphology, and particle size distribution. The chemical compositions are
listed in Table 2; these were obtained via X-ray fluorescence analyses. In particular, the cur-
rent loess materials include large fractions of Al2O3 and SiO2, i.e., 31.70 and 54.0 wt%,
respectively, in addition to 9.93 wt% Fe2O3. Based on Table 2, the X-ray diffraction results
indicate that the loess materials were made up of quartz, cronstedtite, hematite, and sodium
dialuminum phyllo-decaoxodihydroxoalumotrisilicate. The quick lime was determined
to be composed of lime, portlandite, and calcite, while the gypsum was bassanite. High-
resolution electron microscopy images demonstrate irregular shapes in the loess and quick
limes, as shown in Figure 1a,b. However, the gypsum is featured with angular polygons
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(see Figure 1c). The particle sizes of gypsum are larger than those of loess and quick lime,
all of which have a critical influence on the rheology behaviors associated with 3D printing.

Table 2. Composition analyses of main constituents of the loess-based material composite for 3D printing applications; data
were extracted from X-ray fluorescence analyses.

Material

Component
Na2O MgO Al2O3 SiO2 SO3 K2O CaO TiO2 Cr2O3 Fe2O3 P2O5 SrO

Loess 0.104 0.747 31.7 54.0 0.114 2.06 0.196 1.15 0.0266 9.93
Quick Lime 0.812 0.0796 0.257 0.131 98.4 0.311 0.0205

Gypsum 0.454 0.565 55.7 0.387 42.7 0.19
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Figure 1. Field emission scanning electron microscopy images: (a) loess, (b) quick lime, and (c) gypsum.

3.2. Mechanical Test

Figure 2a,b shows the mixed powder and mortar specimens removed from a mold with
dimensions of approximately 5 cm × 5 cm × 5 cm. After curing for one day, the fabricated
loess-based bulk mixtures were subjected to the uniaxial compression test. The compressive
strength is plotted as a function of gypsum content, which functions as a core binder. Loess-
based composites showed lower strength as large-sized cubes of 5 cm × 5 cm × 5 cm.
Thus, the 3D printing shape was a rectangular column with dimensions of approximately
1.5 cm × 1.5 cm × 24.5 cm. Figure 2c,d shows the corresponding 3D printing process and
3D-printed specimens. Figure 2e,f shows a schematic description of the sample geometry
employed in three-point bending tests and an actual image of a specimen subjected to
the three-point bending test. The 3D-printed column specimens were subjected to the
three-point bending test in order for us to compare mechanical strengths. Without the
presence of gypsum, the loess-based composite did not exhibit reasonable mechanical
strength, as shown in Figure 3a. However, when gypsum was added to the loess-based
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composites, the mechanical strength reached an optimum of 23.9 MPa at 20 wt% gypsum.
Interestingly, the optimized loess-based composite mixture (e.g., 20 and 25 wt% gypsum
contents) showed highly reduced fragmentation compared to the high brittleness found
in the loess-based composite without gypsum. Ordinary Portland cement was used as a
reference system, where the water/cement (w/c) ratio was fixed to 0.40. The optimized
loess-based mixture had 63% of the maximum strength of the cement paste. Figure 3b shows
the curing time dependence of the 3D-printed loess-based composites; mechanical testing
was performed using three-point bending tests. As shown in Figure 3b, the maximum
load increased approximately linearly with curing time. The maximum mechanical load
was 6.2 N after 3 h of curing and increased to 39.2 N after 24 h of curing. No plastic
deformation was observed, and the samples only experienced elastic deformation following
mechanical rupture.
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Figure 2. Specimen preparations for bulk composition and 3D printing applications: (a)
powder mixture, (b) cubic specimen, (c) 3D printing process, and (d) 3D-printed specimen
with a rectangular column shape. (e) Schematic sample geometry and (f) image of the
actual three-point bending test of rectangular column specimens.
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of the 3D-printed specimen).

Mercury intrusion porosimetry (MIP) has been used with cementitious and natu-
ral materials to extract quantitative data related to pore structures, where pore-based
paths are interconnected in a highly tortuous, 3D manner (or with equivalently low in-
terconnectivity) [28–30]. Furthermore, MIP characterization provides porosity values
based on the amount of mercury that intrudes into the porous structures. MIP character-
ization was applied to the current loess-based composite system, as shown in Figure 4.
Figure 4 shows the pore structure obtained from the loess-based materials in the form
of either the bulk cube or 3D-printed rectangular column-shaped specimens; these are
compared to cement-based materials as a reference system. The analyzed porosity infor-
mation is summarized in Table 3. The loess-based materials exhibited 41.84% and 50.69%
porosity for the bulk cube-shaped and 3D-printed rectangular specimens, respectively.
However, the cement-based materials showed lower porosity of 19.94% and 24.43% for
w/c = 0.31 and w/c = 0.4, respectively. As expected, a larger amount of water indicated a
larger fraction of porosity. Furthermore, the cement-based specimens exhibited three peaks
(or critical diameters) at 27.9, 181.2, and 553.2 nm and at 24.2, 181.4, and 1331.8 nm for
w/c = 0.31 and 0.4, respectively, whereas the loess-based materials exhibited two peaks at
12.2 and 100.7 nm and at 20.1 and 139.4 nm for the bulk cube and 3D-printed rectangular
column-shaped specimens. The high porosity of the loess-based composites is attributed
to the water removal from the gypsum dehydrate and the remaining unreacted water.
In the loess-based composites, the bulk cube-shaped specimen of Figure 5a exhibits a
less open structure than that of the 3D-printed/hardened materials shown in Figure 5b.
The cement-based materials of Figure 5c,d appear to be denser than those of Figure 5a,b.
These observations were corroborated by the mercury intrusion porosimetry results shown
in Figure 4, as mentioned above.
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3.3. Electrical Test

Impedance spectroscopy was applied to the monitor setting (or hardening) in the
loess-based composites. This was performed because impedance-based characterizations
have been reported for hydration monitoring in cement-based materials [23–27]. In the
cube-shaped specimens, the amount of gypsum was intentionally varied between 0 and
25 wt%. The corresponding impedance spectra are shown in Figure 6a,d at curing times
of 1 and 24 h. Since the loess-based composites can be described as an ionic system, the
impedance spectra are divided into high-frequency bulk responses and low-frequency,
electrode-related responses; the former portion is controlled by ionic conduction through
the 3D pore solution, and the latter portion is dominated by the charge transfer between the
abovementioned ionic solution and the electronic electrodes. The corresponding impedance
and capacitance Bode plots are shown in terms of absolute impedance and capacitance in
Figure 6b,e and Figure 6c,f, respectively. At 1 h, the solution chemistry of the loess-based
material composites was not stable, which may be due to an incomplete chemical equilib-
rium of the quick lime and gypsum; this indirectly indicates that ionic species continue to
form in the loess-based materials. This belief is corroborated by the decreasing resistance
observed upon the addition of gypsum. However, the capacitance reached a maximum
value at 10 wt% gypsum and decreased with additional gypsum. At a curing time of 24 h,
impedance increased with increasing gypsum, and the capacitance reached its maximum
value at 10 wt% gypsum. The resultant bulk resistances are summarized in Figure 7a.
The bulk resistance increased with longer curing times and increased significantly when
gypsum was added to the loess-based materials. Initially, at around 1 h, the resistance val-
ues were similar, in the hundreds of ohms range. However, a longer curing time (e.g., 24 h)
led to much higher resistance values, by at least 10-fold compared to the initial values.
Interestingly, the capacitance exhibited two regimes before and after 5 h of curing, as shown
in Figure 7b. At less than 5 h, the capacitance changed dramatically with time. However,
after 5 h, the capacitance either decreased with curing time or reached a constant value.
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Table 3. Porosity of loess-based composite and ordinary Portland cement paste extracted from
mercury intrusion porosimetry measurements.

Specimen w/s = 0.39 w/s = 0.55 w/c = 0.31 w/c = 0.4

Porosity (%) 41.84 50.69 19.94 24.43
w: water, c: cement, and s: solid (loess + quick lime + gypsum).
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Figure 6. Effect of gypsum content on (a,d) impedance spectra, (b,e) |Z| vs. frequency, and (c,f) capacitance vs. frequency;
(a–c) at 1 h and (d–f) at 24 h.



Materials 2021, 14, 293 9 of 12

Figure 7. Effect of gypsum content on (a) bulk resistance and (b) capacitance (at 106 Hz) as a function of curing time.

3.4. Discussion

After setting, the corresponding mixtures were analyzed via high-sensitivity X-ray
diffraction to determine the relationship between hardening and phase evolution in com-
posite materials. The relevant X-ray information of the bulk and 3D-printed loess-based
composite materials is shown in Figure 8, along with the constituent phases. The de-
tected phases were low quartz (SiO2: 98-009-0145), bassanite (CaSO40.5H2O: 98-007-3263),
portlandite (Ca(OH)2: 98-020-2222), cristobalite beta (SiO2: 98-006-3316), and kaolinite
(Al2SiO5(OH)4: 98-222-0790). Table 4 shows the phase information after hardening/setting,
indicating large fractions of bassanite (CaSO40.5H2O) and portlandite (Ca(OH)2). In ad-
dition, significant amounts of quartz and kaolinite were detected: 23.3 and 42.0 wt% for
loess-based bulk mixtures and 31.8 and 50.7 wt% for 3D printing mixtures, respectively.
The optimized composition mixture for 3D printing exhibited a much larger fraction of
bassanite than portlandite, while the bulk mixture included similar amounts of bassanite
and portlandite. Finally, as shown in Figure 9, the 3D printing process was optimized
for cube-shaped specimens with dimensions of 2 cm × 2 cm × 2 cm. The average com-
pression strength was 7.7 ± 0.93 MPa (see Figure 9c). Although the mechanical strength
was lower than that of the bulk loess-based composite materials, it might be possible to
further enhance its strength. The particle size distribution of loess is denoted as a single
mode; however, gypsum and quick lime are characterized by two or three modes and have
a dissimilar size range. The dissimilar particle size distribution should be considered in
the future. The formation of bassanite in the loess-based composite materials contributes
to their mechanical strength, allowing for loess-based 3D printing for ecofriendly and
structural applications. Furthermore, the bassanite is believed to originate in the removal
of water from gypsum dihydrate (calcium sulfate dihydrate) upon pore solution exchange
involving organic solvents. Our future work will investigate refined setting chemistry and
improvements in materials and processing in terms of strength and setting time, with the
aim of optimizing the 3D printing capability on a larger scale.
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4. Conclusions

In this work, loess-based materials were designed and optimized successfully in the
forms of a cube and rectangular columns for ecofriendly applications using 3D printing.
The feasibility of loess-based materials was evaluated in terms of mechanical, microstruc-
tural, and electrical factors. The realized 3D-printed products demonstrate adequate
mechanical strength based on the experimental compressive strength of 7.7 MPa of the
2 cm × 2 cm × 2 cm cubes. This strength likely originates in the formation of gypsum
hydrates. Impedance spectroscopy confirmed the formation of high-resistivity compos-
ites, leading to an increase in resistance. Mercury intrusion porosimetry characterization
indicated that the porosity of loess-based composite materials was lower than that of
conventional cement paste. Additionally, the critical diameters increased, which is related
to the pore percolation pathway formed in 3D networks.
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