
 
 

 

 
Materials 2021, 14, 244. https://doi.org/10.3390/ma14020244 www.mdpi.com/journal/materials 

Article 

Absolute Measurement of Material Nonlinear Parameters  
Using Noncontact Air-Coupled Reception 
Hyunjo Jeong 1,*, Sungjong Cho 2, Shuzeng Zhang 3 and Xiongbing Li 3 

1 Department of Mechanical Engineering, Wonkwang University, Iksan, Jeonbuk 54538, Korea 
2 Nondestructive Testing (NDT) Research Center, Seoul National University of Science and Technology, 

Seoul 01811, Korea; cho-sungjong@seoultech.ac.kr 
3 School of Traffic and Transportation Engineering, Central South University, Changsha 410075, China; 

sz_zhang@csu.edu.cn (S.Z.); lixb213@csu.edu.cn (X.L.) 
* Correspondence: hjjeong@wku.ac.kr; Tel.: +82-(0)63-850-6690 

Abstract: Nonlinear ultrasound is often employed to assess microdamage or nonlinear elastic 
properties of a material, and the nonlinear parameter is commonly used to quantify damage sate 
and material properties. Among the various factors that influence the measurement of nonlinear 
parameters, maintaining a constant contact pressure between the receiver and specimen is 
important for repeatability of the measurement. The use of an air-coupled transducer may be 
considered to replace the contact receiver. In this paper, a method of measuring the relative and 
absolute nonlinear parameters of materials is described using an air-coupled transducer as a 
receiver. The diffraction and attenuation corrections are newly derived from an acoustic model for 
a two-layer medium and the nonlinear parameter formula with all corrections is defined. Then, we 
show that the ratio of the relative nonlinear parameter of the target sample to the reference sample 
is equal to that of the absolute nonlinear parameter, and this equivalence is confirmed by 
measurements on three systems of aluminum samples. The proposed method allows the absolute 
measurement of the nonlinear parameter ratio or the nonlinear parameter without calibration of the 
air-coupled receiver and removes restrictions on the selection of reference samples. 

Keywords: nonlinear parameter; noncontact reception; air-coupled receiver; aluminum samples; 
corrections 
 

1. Introduction 
The acoustic nonlinear parameter becomes a powerful tool in the nondestructive 

evaluation field as a measure of material nonlinearity and damage state in structural 
components. This parameter can quantitatively be obtained by harmonic generation 
measurements. The most widely used technique is the finite amplitude method, in which 
a high power wave of a monochromatic frequency propagates through a nonlinear 
medium introduces distortions, resulting in the generation of higher harmonics. 
Harmonic generation measurements for evaluating nonlinear parameters can be 
conducted using several wave types, different generation and detection methods, and a 
variety of experimental set-ups. The general experimental procedure is similar in all cases, 
where an ultrasonic tone burst at frequency ω is launched from the emitting transducer, 
it propagates some distance through the material, and the response is measured by the 
receiving transducer—specifically, the amplitudes of the fundamental and second 
harmonic waves are extracted from the frequency response of the received signal. 

Contact piezoelectric transducers are most commonly used as emitting transducers 
of longitudinal waves in the through-transmission setup. Various types of detectors can 
be used as receiving transducers of both fundamental and second harmonic wave 
components. Detection of second harmonic generation measurements using longitudinal 
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waves has been conducted with contact piezoelectric transducers [1–6], capacitive 
transducers [7–14], and laser interferometers [15–18]. An absolute measurement of 
material nonlinearity is possible using either capacitive transducers [9,12] or contact 
piezoelectric transducers using a calibration procedure [19,20] in which the absolute 
displacement amplitude of the fundamental and second harmonic waves can be 
measured. 

The various methods used to detect nonlinear signals suffer from significant 
limitations. Piezoelectric contact transducers, while being easy to use in many ways, are 
heavily influenced by contact conditions between the transducer and sample surface, so 
that application of a consistent force is crucial to measurement repeatability. 

Noncontact detection methods such as capacitive receivers and laser interferometers 
are more desirable from the practical point of view, but they also have some drawbacks. 
Laser interferometry requires a mirror-finished sample surface and relies on complicated 
optics to maximize sensitivity. Careful preparation of sample surfaces is also very 
important in the capacitive receiver technique, requiring an optically flat and parallel 
sample surface over the entire receiver area and a small gap spacing of only a few microns 
[21,22]. 

Compared to existing noncontact detection methods such as capacitive receivers or 
laser interferometers, air-coupled transducers are easy to handle, significantly less 
expensive, and robust relative to surface conditions. As far as we know, only relative 
measurements were possible with air-coupled transducers, mainly because they are 
difficult to calibrate for use in nonlinear measurements. Existing calibration techniques 
such as self-reciprocity methods are not directly applicable to the air-coupled receivers 
because of high ultrasonic attenuation loss in air. Consequently, most second harmonic 
generation measurements were limited to relative measurements. Recently, air-coupled 
transducers have been applied to second harmonic generation measurements as an 
efficient detection tool for Rayleigh and Lamb waves [23]. The air-coupled transducer 
detects a longitudinal wave in air that is leaked from the propagating Rayleigh wave or 
Lamb wave in the sample. Torello et al. [24] reported a hybrid acoustic modeling and 
experimental approach to air-coupled transducer calibration and the use of this 
calibration in a model-based optimization to determine the absolute nonlinear parameter 
of representative materials. More recently, Li et al. [25] proposed a comparative approach 
where four separate experimental setups are used to obtain the sensitivity or the transfer 
function of an air-coupled ultrasonic receiver and to measure material nonlinear 
parameter. 

The purpose of this paper is to develop a new technique for absolute measurement 
of material nonlinearity using air-coupled receivers without separate receiver calibration. 
First, an acoustic model for a two-layer medium composed of solid specimen and air is 
considered, and the diffraction and attenuation corrections are derived from the wave 
field analysis. These corrections convert the measured fundamental and second harmonic 
amplitudes to the plane wave amplitudes in nonlinear parameter calculations. Next, it is 
shown that the ratio of the relative nonlinear parameter of the target specimen to the 
reference specimen ( ref/β β′ ′ ) is the same as the absolute nonlinear parameter ratio of the 
two specimens ( ref/β β ). This equivalence allows an absolute comparison of the material 
nonlinearity between different materials from the measurement of relative nonlinear 
parameter. Furthermore, the absolute nonlinear parameter of a target specimen ( β ) can 
be obtained by measuring the relative nonlinear parameter ratio, ref/β β′ ′ , if the absolute 
nonlinear parameter of the reference specimen ( refβ ) is available. A nonlinear ultrasonic 
testing system including an air-coupled receiver is constructed, and the relative and 
absolute nonlinear parameters are measured for aluminum specimens of three different 
types: Al2024, Al6061, and Al7075. The equivalence between the relative and absolute 
parameter ratios is verified through experimental results. 
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Section 2 describes the nonlinear acoustic model for a two-layer medium composed 
of solid and air and defines the nonlinear parameter formula with necessary corrections. 
The equivalence of relative nonlinear parameter ratio and absolute nonlinear parameter 
ratio is also demonstrated. Simulation results on the received displacement and 
diffraction and attenuation corrections are provided in Section 3. Section 4 introduces the 
experimental setup and specimens, and Section 5 presents the experimental results. 
Conclusions are drawn in Section 6. 

2. Sound Beam Fields and Nonlinear Parameter 
In order to calculate the received wave fileds and to define the nonlinear parameter, 

we need an appropriate model equation for finite amplitude radiation that takes into 
account the combined effects of nonlinearity, diffraction, and attenuation. For this 
purpose, a Westervelt-type equation similar to the Westervelt equation for sound beams 
of fnite amplitude in fuids can be used for longitudinal wave motion in isotropic solids 
[26,27]. Such equation can be obtained from the Westervelt equation in a manner similar 
to the derivation of the KZK-type equation from the KZK equation [28]. 

Applying the quasilinear theory to the Westervelt-type equation yields the governing 
equations for the fundamental and second harmonic waves for axisymmetric sound 
source. The Green’s function approach is a convenient method for constructing the 
integral solutions to these equations. Then, the solutions can be obtained by integrating 
over the product of the Green’s function and the appropriate source function to sum up 
the contributions from all source points. To calculate the received ultrasonic fields by a 
finite radius receiver, the concept of field averaging can be used. 

In general, the accurate determination of the nonlinear parameter in a wide range of 
experimental conditions requires attenuation and diffraction corrections to the plane 
wave solution. The attenuation correction for the fundamental wave is well known [29]. 
The attenuation correction for the second harmonic wave generated by the focring of the 
propagating fundamental wave is also well known [30]. For wave propagation in a multi-
layered medium, attenuation correction can be defined for each layer, and the total 
attenuation correction for the entire medium can be obtained by simply multiplying the 
correction in each layer. 

A closed form of the diffraction correction for the fundamental wave was found by 
Rogers and Van Buren [31] when the transmitter and receiver are of the same size. 
However, the integral solutions can also be used to numerically calculate the diffraction 
correction of the fundamental wave for a more general transmitter-receiver combination 
[32]. The diffraction correction is defined as the magnitude of the fundamental or second 
harmonic wave divided by the corresponding plane wave solution. Similarly, the 
diffraction correction for the second harmonic wave can be found numerically from the 
magnitude of the second harmonic wave and the plane wave solution of the second 
harmonic wave [32]. The concept of diffraction correction for a single medium can be 
extended to a two-layer medium that is covered in this study. 

In this work, the diffraction corrections for the fundamental and second harmonic 
waves are developed using the integral solutions of the Westervelt-type equation [26,27]. 
The diffraction correction for a single medium is extended to a two-layer medium 
consisting of a solid layer (specimen) and an air layer. The analytical diffraction correction 
can be efficiently used for a wide range of two-layer media and transmitter-receiver 
geometries. 

First, using the approach mentioned above, we construct the displacement field 
expressions for the fundamental and second harmonic waves propagating in the solid 
specimen depicted in Figure 1a. The propagation in a single medium is then extended to 
the analysis of propagation in a two-layer medium composed of the solid specimen and 
air, and the displacement fields received by an air-coupled transducer are obtained, as 
shown in Figure 1b. Finally, we will define the diffraction corrections for the fundamental 
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and second harmonic waves in the two-layer medium, and derive a nonlinear parameter 
expression modified by the attenuation and diffraction corrections. 

  

(a) (b) 

Figure 1. (a) Fundamental wave propagation and second harmonic generation in a solid specimen, 
and (b) Transmission at the solid-air interface, propagation in the air, and reception by an air-
coupled ultrasonic receiver. 

2.1. Sound Beam Solutions for a Single Medium 
Referring to Figure 1a, the fundamental displacement field in medium 1, (1)

1u , in the 
forward propagation ( 10 z z≤ ≤ ) region and the generated second harmonic displacement 
field, (1)

2u , due to the finite amplitude radiation at the transmitter can be expressed as: [26] 

(1) (1) (1)
1 1 1( , , ) 2 ( , ,0) ( , , | , ,0) u x y z ik u x y G x y z x y dx dy

+∞ +∞

−∞ −∞
′ ′ ′ ′ ′ ′= −    (1)

( )
( )

(1) 2(1) (1) (1)
2 1 22 0(1)

( , , ) ( , , )  , , | , ,  
2

zku x y z u x y z G x y z x y z dx dy dz
c

β +∞ +∞

−∞ −∞
′ ′ ′ ′ ′ ′ ′ ′ ′ =      (2)

Here, β  is the nonlinear parameter of the solid specimen, and defined as 

111

11

3 C
C

β
 

= − + 
 

 where 11C  and 111C  are the second and third order elastic constants, 

respectively. In Equations (1) and (2), (1)k  and (1)c  are the wave number and wave 
velocity of medium 1, respetively. The Green’s function can be obtained as 

(1) (1)1( , , | , , ) exp( ),   1,  2
4n n

n

G x y z x y z ink r n
rπ

′ ′ ′ = =  (3)

where 2 2 2
1 ( ) ( )r x x y y z′ ′= − + − +  and 2 2 2

2 ( ) ( ) ( )r x x y y z z′ ′ ′= − + − + −  is the distance 
from the sound source point ( ', ',0)x y  to the target point ( , , )x y z . The attenuation effect is 
not included in the Green function and will be treated separately. A constant displacement 

0U  is prescribed over the surface S '  of a circular piston transducer of radius a : 

( )
( )

2 2 2
1 0

2

0 ,         
0 0

u x , y ,z U x y a
u x , y ,z

′ ′ ′ ′ ′ = = + ≤
 ′ ′ ′ = =

. (4)

Note that the range of wave propagation distance in Equations (1) and (2) is 
10 z z≤ ≤ . Equation (1) provides an exact solution to calculate the fundamental wave field, 

and represents a superposition of spherical waves radiating from the point sources 
distributed on the source plane 0z' .=  When the second harmonic wave field is 
calculated using Equation (2), the Green’s function used in this integral includes 
contribution of the element dV dx dy dz′ ′ ′ ′=  of the virtual source formed by the 
fundamental wave field. If a displacement source such as Equation (4) is defined, these 
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equations can be used to obtain the fundamental and second harmonic displacement 
fields. 

Equations (1) and (2) provide the exact displacement solutions for the fundamental 
and second harmonic waves for a planar, circular P-wave transducer radiating at normal 
incidence in medium 1, and can be expressed in the following form: 

(1) (1)
1 1 1( , , ) ( , , , )planeu x y z U D a x y z   =      (5)

(2) (1)
1 2 2( , , ) ( , , , )planeu x y z U D a x y z   =      (6)

where the first square bracket on the right-hand side represents the pure plane wave so-
lutions, and the second bracket the diffraction corrections. The plane wave solutions are 
given by:  

(1)
1 0 exp( )planeU U ik z=  (7)

(1) 2 2
(1)0

2
( ) exp(2 )

8
plane k zU

U ik z
β

=  (8)

and the diffraction corrections are defined as (1) (1)
1 1 1( , , ) / planeD u x y z U=  and 

(1) (1)
2 2 2( , , ) / planeD u x y z U= . 

2.2. Sound Beam Solutions for a Two-Layer Medium 
Prior to further acoustic modeling and simulation, it is necessary to understand the 

transmission, generation, propagation, and reception of the fundamental and second har-
monic waves in a two-layer medium consisting of solid and air. The fundamental wave 
and the second harmonic wave generated by the propagating fundamental wave both 
propagate in the solid medium (Figure 1a) and these two waves are transmitted at the 
solid-air interface and then propagate into the air (Figure 1b). Due to the small intensity 
of the transmitted fundamental wave resulting from the very low transmission coefficient 
and the very high attenuation loss in the air, it is difficult to meet the conditions for gen-
erating a new second harmonic wave in the air. Therefore, the generation of the second 
harmonic that may be newly generated by the transmitted fundamental wave in the air is 
ignored. Similarly, it is assumed that the second harmonic wave in the solid propagates 
only as the second harmonic in the air without generating other waves. These are sche-
matically shown in Figure 1b. 

Approximate methods such as the multi-Gaussian beam (MGB) model may be used 
to formulate the wave fields in the two-layer medium. The MGB model is based on the 
paraxial approximation and is known to be very computationally efficient [29]. This 
model accurately calculates the sound beam fields of an ultrasonic transducer at distances 
of approximately one transducer diameter or greater from the transducer face. In the two-
layer medium covered here, however, the distance from the solid-air interface to the air-
coupled receiver is only a few millimeters, which is very short. Therefore, in this case, the 
paraxial MGB solutions may fail in providing accurate beam field results, especially the 
diffraction corrections. Therefore, exact solutions are required for modeling a planar, cir-
cular P-wave transducer radiating at normal incidence in the solid-air interface. The inte-
gral solutions of Equations (1) and (2) are extended to the wave field analysis in the second 
medium. 

Based on this observation, the propagating fundamental and second harmonic waves 
in the second medium (air) can be found by using the results of Equations (1) and (2) at 

1z z=  as new sound sources for radiation into the second medium. Then, the integral so-
lutions become: 
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(2) (2) (1) (2)
1 12 1 1 1 1( , , ) 2 ( , , ) ( , , | , , ) u x y z T ik u x y z G x y z x y z dx dy

+∞ +∞

−∞ −∞
 ′ ′ ′ ′ ′ ′= × −     (9)

( )(2) (2) (1) (2)
2 12 2 1 2 1( , , ) 2 ( , , ) , , | , ,u x y z T ik u x y z G x y z x y z dx dy

∞ ∞

−∞ −∞
 ′ ′ ′ ′ ′ ′= × −    . (10)

In the above equation, 12T  is the transmission coefficient given by 2
12

1 2

ZT
Z Z

=
+

 where 

1Z  and 2Z  are the acoustic impedeances of the medium 1 and 2, respectively. The linear 
transmission is assumed for the nonlinear second harmonic wave in Equation (10), but this is 
a good approximation for the solid-air interface. Note that the range of wave propagation dis-
tance in these equations is 1 2z z z≤ ≤ . These equations can also be written in the quasi-plane 
wave form similar to Equations (5) and (6). The diffraction effects of the fundamental and sec-
ond harmonic waves propagating in the second medium are defined as 

(2) (2) (2) (2)
1 1 1 2 2 2( , , ) / ,  ( , , ) /plane planeD u x y z U D u x y z U= = , where the plane wave solutions are 

given by 0
(1) (2)

1 12 1exp( )planeU U T ik z ik z= + , 
(1) 2 2

(1) (2)1 0
2 12 1

( ) exp( 2 2 )
8

plane k z UU T i k z i k zβ= + . 

The detailed expressions for the plane wave solutions and diffraction corrections are given 
later together with the attenuation corrections. 

Finally, to calculate the received displacement at distance 2z  by a circular air-cou-
pled transducer of radius b , the concept of average field can be used and calculated as 
follows: 

( ) ( )
2 22

1( ) ( , , ) ,   1, 2m m
n n

S
u z u x y z dS n

bπ
= =  (11)

where ( )
2( , , )m

nu x y z  is computed from Equations (9) and (10). Substituting Equations (9) 
and (10) into Equation (11) and performing some manipulation, the received displacement 
fields in the second medium can be written in the following form: 

1 0
(1) (2)

2 12 1 2 1 1 2( ) ( , , )exp( ) ,z D a b z zu U T ik z ik z=    +     (12)

[ ]2 2

(1) 2 2
(1) (2)1 0

2 12 1 2 1 2( ) ( , , )
( ) exp( 2 2 ) ,

8
z D a b z z

k z Uu T i k z i k zβ
=
 

+ 
 

  (13)

where the first term in the bracket in each equation represents the plane wave solution 
and nD  denotes the diffraction correction for the fundamental ( 1n = ) and second har-
monic ( 2n = ) waves. The detailed expressions of plane

nU  and nD  in Equations (12) and 
(13) are given by 

0
(1) (2)

1 12 1 2exp( )planeU U T ik z ik z= +  (14)

(1) 2 2
(1) (2)1 0

2 12 1 2
( ) exp( 2 2 )

8
plane k z UU T i k z i k zβ= +  (15)

1 2
1 1 2

1

( , , )
( ), planeD a b z z

u z
U

=


 (16)

2
2 2

1 2
2

( , , )
( ), planeD a b z z

u z
U

=


. (17)

The diffraction corrections given by Equations (16) and (17) are defined as the re-
ceived average displacement of the fundamental or second harmonic wave propagated 
through the entire medium divided by the amplitude of the plane wave involved in the 
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same propagation process. In the current solid-air medium, the fundamental wave is gen-
erated from the start of radiation and continues to propagate only as the fundamental 
wave in medium 1 (solid) and 2 (air). However, the second harmonic wave is generated 
and propagated by the propagating fundamental wave in the first medium, and then 
propagates as a fundamental wave of frequency 2f in the second medium. 

The attenuation correction for the fundamental and second harmonic waves is well 
known in the second harmonic generation process in a single medium and can be consid-
ered separately since it only affects the amplitude of the propagating wave. Thus, the at-
tenuation correction that occurs over the entire propagation process can be obtained by 
successively multiplying the attenuation correction of each layer. With the inclusion of the 
attenuation corrections, the final expressions of the received displacement fields in the 
second medium are obtained as:  

{ }1 0
(1) (2) (1) (1) (2) (2)

2 12 1 2 1 1 2 1 1 1 1 1 2( ) ( , , ) ( , ) ( , )exp( ) ,z D a b z z M z M zu U T ik z ik z α α=        +         (18)

[ ]{ }2 2

(1) 2 2
(1) (2) (1) (1) (1) (2) (2)1 0

2 12 1 2 1 2 2 1 2 1 2 2 2( ) ( , , ) ( , , ) ( , )
( ) exp( 2 2 ) ,

8
z D a b z z M z M z

k z Uu T i k z i k z α α α
β

=
 

   +     
 

  (19)

where ( )
1

mα  and ( )
2

mα  are the attenuation coefficients at the fundamental and second har-
monic frequencies in the mth medium, respectively. The detailed expressions of 

,  1, 2nM n =  appearing in the above equations are given by: 

(1) (2) (1) (2)
1 1 1 1 1 1 2exp( ) exp( )M M M z zα α       = = − −         (20)

(1) (1)
(1) (2) (2)1 1 2 1
2 2 2 2 2(1) (1)

2 1 1

exp( 2 ) exp( ) exp
( 2 )

M M
z zM z

z
α α α

α α
 − × − −     = = −      − 

. (21)

The attenuation correction of the fundamental wave in each layer is found to be the 
same as the simple exponential attenuation law in linear acoustics. The attenuation cor-
rection of the second harmonic wave in the first solid layer shows a somewhat compli-
cated behavior, since it will grow with propagation distance due to the nonlinear interac-
tion effects, and will also decrease due to attenuation effects. 

2.3. Definition of Nonlinear Parameter 
The nonlinear parameter, β , can be found from Equations (18) and (19) by cancel-

ling 0U  in both terms:  

( )
( )

( )
( )

( )
( )

22 (1) (2)
1 1 1 1 2 1 1 22 2

(1) 2 2 (1) (1) (2)
1 1 2 2 1 22 1 2 2 1 2

, , , , ,8
( ) , , ,, , , ,

M z z D a b z zU z
k z U z D a b z zM z z

α α
β

α α α

   
  =  
        

 (22)

where 1U  and 2U  are the displacement amplitudes of the received fundamental and 
second harmonic waves, respectively. The first square bracket in Equation (22) represents 
the uncorrected nonlinear paramter, and the second and third brackets represent the at-
tenuation correction and diffraction correction, respectively. The nonlinear parameter β  
is defined using the amplitude of the fundamental and second harmonic waves of the 
pure plane wave. However, the amplitude of the measured wave in the real environment 
deviates from the pure plane wave due to material attenuation and finite size transducers. 
Therefore, attenuation and diffraction corrections are required to convert the actually 
measured wave amplitude into the plane wave amplitude. 

The absolute measurement of the received displacement generally requires the use 
of a calibrated receiving transducer. In case of an air-coupled receiver, however, the reci-
procity-based calibration [19,20] is very difficult to perform because of high attenuation 
in the air. Due to the difficulty of obtaining calibration measurements, it is possible to use 
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an electrical output signal instead of the received displacement in the measurement of 
nonlinear parameters. If the amplitudes of received fundamental and second harmonic 
waves are denoted by the electrical current output signals denoted by 1( )A ω  and 2 ( )A ω
, respectively, then the relative nonlinear parameter, β ′ , with the inclusion of attenuation 
and diffraction corrections can be expressed as:  

22
12 1

(1) 2 2
1 1 2 2

8
( )

DA M
k z A M D

β
    ′ =     
      

. (23)

Now we define the relative nonlinear parameter ratio of a target sample to a reference 
sample as follows: 

22
12 1

(1) 2 2
1 1 2 2

22ref 12 1
(1) 2 2

1 1 2 2
ref

8
( )

8
( )

DA M
k z A M D

DA M
k z A M D

β
β

    
    
    ′  =

′                   

. (24)

By including attenuation and diffraction corrections in the denominator of Equation 
(24), the restrictions on the type and thickness of the reference specimen can be removed 
and any specimen can be used. In Equation (24), the amplitude of the electrical current 
signal can be expressed in terms of the absolute displacement amplitude by using the re-
lationship between these two quantities, ( ) ( ) / ( )A U Hω ω ω= , where ( )H ω  is the trans-
fer function of the receive transducer [33]. Then, it can be easily shown from Equation (25) 
below that the relative nonlinear parameter ratio is equal to the absolute nonlinear param-
eter ratio, since the ratio of the transfer function 2

1 2/H H  is a characteristic of the receive 
transducer and does not depend on the type of specimen. 

22 2
12 1 1

(1) 2 2
1 1 2 2 2

22 2ref ref12 1 1
(1) 2 2

1 1 2 2 2
ref

8
( )

8
( )

DU H M
k z U H M D

DU H M
k z U H M D

β β
β β

     
     
     ′  = =

′                         

 
(25)

Therefore, the ratio of the absolute nonlinear parameters between two different ma-
terials can be obtained by measuring the ratio of the relative nonlinear parameters, which 
then allows a quantitative comparison of the material nonlinearity between different ma-
terials. Equation (25) also demonstrates that the absolute nonlinear parameter of a target 
specimen ( β ) can be obtained by measuring the relative nonlinear parameter ratio of a 
target sample to a reference sample ( β ′ / refβ ′ ) if the absolute nonlinear parameter of the 
reference specimen ( refβ ) is available. This observation can be written as 

ref
ref

ββ β
β

 ′
=  ′ 

. (26)

3. Simulation Results 
In the measurement of the relative or absolute nonlinear parameter of a solid speci-

men using an air-coupled transducer, the diffraction and attenuation corrections are im-
portant factors affecting the measurement results. In particular, the diffraction correction 
equations for a two-layer medium of solid-air is complicated and computationally heavy 
due to multiple integrations involved. Therefore, the calculation of accurate diffraction 
correction is the main purpose of the wave field simulation. 
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The acoustic parameters of the two-layered medium used in the calculation of wave 
fileds are listed in Table 1. The acoustic properties of Al6061 including the nonlinear pa-
rameter β  were taken from the measurement [33]. For air, the wave speed and density 
are the values at temperature 20 °C and the value of β was taken from [34]. The frequency-
dependent attenuation coefficient of air was taken from [35]. In addition, the source dis-
placement used is 1.0 m, and the fundamental frequency used is 2 MHz. The diameters of 
transmit and receive transducers are all 12.7 mm. The propagation distance or the layer 
thickness of layers 1 and 2 is 12 cm and 0.5 cm, respectively. 

Table 1. Acoustic parameters of the two-layered medium used in the wave field calculation. 

Materials Wave Speed (m/s) Density (kg/m3) Attenuation (Np/m) 
Al6061 6422 2700 1 2 10.5,  3α α α= =  

Air 346 1.29 11 21.83 10 f−×  

In the wave field calculation, the received displacement, diffraction correction, and 
attenuation correction for the fundamental wave and second harmonic waves were ob-
tained over the entire propagation process of the two-layer medium. In the calculation of 
the received displacement, both the transmission coefficient and the attenuation effect 
were neglected. 

Figure 2a,b respectively shows the received displacement amplitude of the funda-
mental and second harmonic waves, calculated using Equations (9) and (10). The behavior 
of the received displacement in the solid specimen is not unfamiliar and is similar to the 
results observed in previous studies [36]. The distance between the solid-air interface and 
the receiver is 0.5 cm, which is very short, the transmission coefficient was assumed to be 
1, and the attenuation in the air layer was neglected, so the displacement received in the 
air layer remains almost the same and is equal to the displacement at the end of the solid 
specimen. Thus, the diffraction correction at the receiver position can be replaced by the 
value at the end of the solid specimen. 

  
(a) (b) 

Figure 2. Variation of received average displacement in the two-layer medium of solid-air: (a) Fundamental wave, and (b) 
Second harmonic wave. 
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Diffraction corrections are defined by Equations (16) and (17) as the division of the 
received average displacement at each propagation distance by the displacement of the 
plane wave at the same distance without considering the effects of attenuation and trans-
mission interface. Diffraction corrections were calculated for the Al6061, 12 cm thick sam-
ple and the results are shown in Figure 3 as a function of the propagation distance. Figure 3a 
is the plot of 1D  of the fundamental wave, and Figure 3b is the plot of 2D  of the second 
harmonic wave. Since the amplitude of the plane fundamental wave is a constant at all 
propagation distances, the overall behavior of 1D  looks the same as that of the received 
fundamental wave shown in Figure 2a. Since the amplitude of the plane second harmonic 
wave increases linearly with the propagation distance, 2D  decreases with the propaga-
tion distance in the solid layer and then looks like Figure 3b. 2D  is smaller than 1D  at 
the same propagation distance. As pointed out earlier, the diffraction correction in the air 
layer can be replaced by the value at the end of the solid layer, in which case the two-layer 
medium composed of solid and air can be treated as a single solid medium. 

  
(a) (b) 

Figure 3. Variation of diffraction correction in the two-layer medium composed of solid and air: (a) Fundamental wave, 
and (b) Second harmonic wave. 

Attenuation corrections in each layer of the solid-air medium are defined by Equa-
tions (20) and (21). Using these equations, attenuation corrections were calculated for the 
Al6061, 12 cm thick sample, and the results for the fundamental and second harmonics as 
a function of propagation distance are shown in Figure 4a,b, respectively. In the first solid 
layer, the fundamental wave exponentially decreases, and the second harmonic shows a 
slightly greater decrease in amplitude at the same propagation distance than the funda-
mental wave. The attenuation correction in the second air layer shows a very rapid de-
crease compared to the first solid layer in both the fundamental wave and the second 
harmonic wave, which is due to the very high attenuation coefficient of the air layer. The 
amplitude reduction of the second harmonic due to the attenuation is very severe com-
pared to the fundamental wave, which is caused by the attenuation coefficient propor-
tional to the square of the frequency. 
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(a) (b) 

Figure 4. Variation of attenuation correction in the two-layer medium of solid-air: (a) Fundamental wave, and (b) Second 
harmonic wave. 

4. Measurement of Relative Nonlinear Parameter β ′  

4.1. Experiment 
Figure 5 shows the experimental setup for second harmonic generation measurement 

in the through-transmission mode using an air-coupled transducer as a receiver. The 
transmit transducer is a single crystal LiNbO3 (Boston Piezo-Optics, Bellingham, MA, 
USA) of 12.7 mm diameter and 2 MHz center frequency. The receive transducer is an air-
coupled transducer (NCT2-D13, Ultran Group, State College, PA, USA) of 12.7 mm diam-
eter and 2 MHz center frequency. The two transducers are aligned with each other for 
maximum output signal capture. The entire propagation region is composed of two lay-
ers: solid specimen and air. The air gap from the solid specimen end to the receiver face is 
fixed at 5 mm. In the transmission side, a toneburst of 20 cycles tuned to the fundamental 
frequency (2 MHz) is supplied by a function generator (33250A, Agilent Technologies, 
Inc., Santa Clara, CA, USA), and then amplified by a linear amplifier (2100L, Electronics 
& Innovation, Ltd., Rochester, NY, USA) to provide a high-power monochromatic tone-
burst for harmonic generation in the solid specimen. In the reception side, the receive 
transducer is directly connected with a current probe (Tektronix CT-2, Tektronix, Inc., 
Wilsonville, OR, USA) and digitized using a digital oscilloscope (LT 332, LeCroy, Inc., 
Chestnut Ridge, NY, USA). 

The purpose of this experiment is to accurately obtain the relative nonlinear param-
eter, β ′ , of aluminum specimens by applying the attenuation and diffraction corrections 
to the measured current output. Then, the ratio of relative nonlinear parameters of two 
different materials can be obtained accordingly, which is equal to the ratio of absolute 
nonlinear parameters. 
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Figure 5. Experimental setup for harmonic generation measurement in the through-transmission 
mode using a contact transmitter and an air-coupled receiver. 

4.2. Specimen 
Three types of aluminum specimens: Al2024, Al6061 and Al7075, were selected, and 

five different thicknesses in each Al type were prepared: 4 cm, 6 cm, 8 cm, 10 cm, and 12 
cm. The shape of the specimen is a block of circular cross section, 5 cm in diameter. 

It has been known that the measured value of nonlinear parameter is affected by the 
parallelism of the top and bottom surfaces of the specimen. The surface roughness of the 
specimen also has a direct influence on the accuracy of the measurement of nonlinear pa-
rameters [37]. In order to minimize the effect of surface roughness, it is necessary to main-
tain the same surface roughness on each specimen as much as possible. The prepared 
specimens were machined so that the upper and lower surfaces were parallel. The surface 
roughness of each specimen was maintained at the same level as possible using a metal 
abrasive. Table 2 shows the surface roughness of each specimen. The surface roughness 
was measured 5 times per specimen and then the mean value was calculated. The mean 
roughness for all specimens is 0.11. Figure 6 shows the representative aluminum speci-
mens after surafce machining. 

Table 2. Surface roughness of aluminum specimens (Unit: μm). 

Materials 
Specimen Thickness (cm) 

4 6 8 10 12 
Al2024 0.12 0.10 0.13 0.09 0.12 
Al6061 0.11 0.09 0.16 0.10 0.10 
Al7075 0.11 0.10 0.14 0.12 0.10 

 
Figure 6. Aluminum specimens after surface machining. 
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5. Results and Discussion 
Figure 7a,b show the input waveform and its frequency spectrum. Here, the tone-

burst waveform consisting of twenty cycles produces a narrowband spectrum with a cen-
ter frequency of 2 MHz. In nonlinear ultrasonic measurements, the second harmonic am-
plitude is generally two or three orders of magnitude lower than the fundamental wave 
amplitude. When using the air-coupled receiver, it may be more difficult to receive the 
second harmonic component because of low transmission efficiency at the solid-air inter-
face and high attenuation loss in the air. Therefore, the possibility of receiving the second 
harmonic component was confirmed through spectrum analysis of the output signal re-
ceived from each specimen. Figure 7c,d show the received signal and its frequency spec-
trum measured on Al6061, 12 cm thick specimen. From the frequency spectrum, we can 
see that not only the second harmonic component but also the third harmonic component 
are well received. 

  

(a) (b) 

  

(c) (d) 

Figure 7. Input signal (a) Waveform and (b) Spectrum, and output signal (c) Waveform and (d) Spectrum. 

Next, the relative nonlinear parameter β ′  was measured for each specimen. During 
the experiment, it was observed that the output signal was very noisy due to the influence 
of external variables such as vibration of the experiment table and alignment of the probes. 
Therefore, in order to increase the signal-to-noise ratio of the output signal, 500 summed 
averages were used. Figure 8 shows the relative nonlinear parameter β ′  obtained from 
the three types of aluminum specimens before and after corrections for attenuation and 
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diffraction. The β ′  before all corrections appears differently according to the thickness, 
and it tends to increase with the thickness. Since the changes in the fundamental and sec-
ond harmonic amplitudes according to the thickness change have already been reflected 
in the calculation of β ′ , it can be thought that increasing β ′  with increasing thickness 
is due to the diffraction and attenuation effects. After applying all corrections, β ′  in each 
alloy system shows an almost constant value regardless of thickness. These results 
demonstrate the importance of accurate corrections in measuring relative nonlinear pa-
rameters. 

When the three types of aluminum have the same thickness, the magnitude of the 
measured β ′  value before correction is approximately in the order of 7075 6061 2024β β β′ ′ ′> >
. In each type of aluminum, the β ′  value after correction is almost constant regardless of 
the thickness, and the magnitude of the average β ′  value is also in this order, as shown 
in Table 3 below. The order of magnitude of the β ′  after correction coincides with the 
order of magnitude of the absolute nonlinear parameter ( β ) after the correction shown in 
Table 4. 

   
(a) Al2024 (b) Al6061 (c) Al7075 

Figure 8. Measured β ′  before and after all corrections for three different aluminum systems. 

Next, the uncorrected β ′  values measured for each aluminum system were normal-
ized by the β ′  of the 4 cm specimen in each system and compared with the theoretical 
predictions. The comparisons between the two results are shown in Figure 9, and the over-
all agreement is found to be pretty good. The measured β ′  for each aluminum system 
was corrected for attenuation and diffraction, and then normalized by the β ′  of the 4 cm 
specimen in each system. The results are also shown in Figure 9. As can be expected, the 
normalized β ′  values in each alloy system are all close to one regardless of the specimen 
thickness. In fact, in each alloy system, the best fit line to the five normalized data is a 
horizontal line passing close to one. These results validate the proposed method of meas-
uring material nonlinear parameters using an air-coupled transducer. These results also 
demonstrate the importance of accurate corrections in measuring relative nonlinear pa-
rameters. 
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(a) Al2024  (b) Al6061  (c) Al7075 

Figure 9. Comparison of normalized β ′  between the experiments and theory. 

The mean, maximum, and minimum values were calculated for the corrected β ′  of 
each alloy system shown in Figure 8, and the results are listed in Table 3. The calculated 
mean β ′  for each system in Table 3 will be used as the refβ ′  of the reference specimen 
or the β ′  of the target specimen in the calculation of the ref/β β′ ′  ratio in Table 5. Table 4 
shows the absolute nonlinear parameter ( β ) measured by the through-transmission 
method for the same specimens in Table 3 using a contact transmitter and a contact re-
ceiver. In this case, it is necessary to use the calibrated receiver, and detailed measurement 
procedures are given in Ref. [33]. The mean β  value for each system in Table 4 will be 
used as the reference value or target value in the calculation of the ref/β β  ratio. Below, 
we will compare the ref/β β′ ′  ratio and the ref/β β  ratio. 

Table 3. Measurement results of the relative nonlinear parameter β ′ . 

Material meanβ ′  maxβ ′  minβ′  
Al2024 42.39 10−×  42.65 10−×  42.21 10−×  
Al6061 42.82 10−×  42.95 10−×  42.70 10−×  
Al7075 43.22 10−×  43.41 10−×  43.06 10−×  

Table 4. Measurement results of the absolute nonlinear parameter β . 

Material meanβ  maxβ  minβ  
Al2024 4.78 5.13 4.66 
Al6061 5.32 5.43 5.21 
Al7075 6.46 6.68 6.31 

Equation (25) indicates that the relative nonlinear parameter ratio and the absolute 
nonlinear parameter ratio are the same regardless of the type of reference specimen. 
Therefore, the equivalence of these two ratios was confirmed in the following way. Rela-
tive nonlinear parameter ratios were calculated for various alloy system combinations us-
ing the mean values of β ′  in Table 3. Similarly, absolute nonlinear parameter ratios were 
calculated using the mean values of β  in Table 4. The results of these ratios for various 
combinations of specimen systems are presented in Table 5. Comparing these results, the 
overall agreement between the two ratios for all possible target and reference specimen 
combinations is within about 7%. In this study, we demonstrated the equivalence between 
the relative nonlinear parameter ratio and the absolute nonlinear parameter ratio using 
the reference samples whose acoustic impedances are not very different from the target 
samples. However, even if the difference in acoustic impedance between the reference 
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sample and the target sample is large, the method can be applied in principle because only 
the diffraction and attenuation corrections need to be accurately calculated and applied. 

Table 5. Comparison of the relative nonlinear parameter ratio and absolute nonlinear parameter 
ratio. 

Ratio ref/β β′ ′  ref/β β  Difference (%) 
Al6061/Al2024 1.18 1.11 6.3 
Al7075/Al2024 1.35 1.35 0 
Al2024/Al6061 0.85 0.90 5.6 
Al7075/Al6061 1.14 1.21 5.8 
Al2024/Al7075 0.74 0.74 0 
Al6061/Al7075 0.88 0.82 7.3 

Equation (26) shows that the absolute nonlinear parameter of a target specimen ( β ) 
can be obtained from the relative nonlinear parameter ratio of a target sample to a refer-
ence sample ref( / )β β′ ′  by multiplying the absolute nonlinear parameter of the reference 
specimen ( refβ ). Based on this equation, the absolute β  of each aluminum type was cal-
culated using the ref/β β′ ′  in Table 5 and refβ  in Table 4. Table 6 contains the results of 
this calculation, and when compared with the directly measured β  of Table 4, the overall 
agreement is within 7%. These results show that the absolute nonlinear parameter can also 
be obtained within the same level of error as the absolute nonlinear parameter ratio pre-
viously observed in Table 5. 

In principle, there are no restrictions on the selection of reference specimens when 
measuring ref/β β′ ′ , but a standardized reference specimen is more preferable. In linear 
ultrasonic testing, reference standards are mainly used to to establish a general level of 
consistency in measurements and to calibrate instruments, and a wide variety of standard 
calibration blocks of different designs, sizes and system of units are available [38]. How-
ever, such reference blocks are not yet available in nonlinear ultrasonic testing. The devel-
opment of standardized reference blocks related to the measurement of nonlinear param-
eters will be another subject of future work. 

Table 6. Absolute nonlinear parameter obtained from the relative nonlinear parameter ratio of two 
materials. 

Ratio ref/β β′ ′  ref
ref

β β β
β

′
× =

′
 Difference (%) 

Al2024/Al6061 0.85 4.52 5.7 
Al2024/Al7075 0.74 4.78 0 
Al6061/Al2024 1.18 5.64 6.0 
Al6061/Al7075 0.88 5.68 6.8 
Al7075/Al2024 1.35 6.45 0.2 
Al7075/Al6061 1.14 6.06 6.6 

6. Conclusions 
This paper has covered the measurement of absolute nonlinear parameters of solid 

specimens using an air-coupled transducer. The relative nonlinear parameter ( β ′ ) was 
measured for three types of aluminum specimens with various thicknesses, and the fol-
lowing conclusions can be drawn: 
 The ratio of the relative nonlinear parameters ( ref/β β′ ′ ) and the ratio of the absolute 

nonlinear parameters ( ref/β β ) matched well within 6–7% for different target and 
reference specimen combinations. 
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 The absolute nonlinear parameter ( β ) obtained from the ref/β β′ ′  also agreed with 
the directly measured β . 

 The proposed method does not require calibration of the air-coupled receiver, and 
there are no restrictions on the type and thickness of the reference specimen. 

 The measurement of the β  of a target specimen requires the β  of the reference 
specimen. 

 The received signal from the air-coupled transducer can be affected by the surface 
roughness of the specimen, alignment of the transmitter and receiver, and vibration 
of the experiment table. 

 The use of low frequencies is relatively inefficient in second harmonic generation, 
and it is not easy to apply them to thin specimens. 
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Nomenclature 
 a  Transmitter radius 

b  Receiver radius 
( )A ω  Magnitude spectrum 
( )m
nα  Attenuation coefficient of nth harmonic in mth layer 

β  Absolute nonlinear parameter 

β ′  Relative nonlinear parameter 

refβ  Absolute nonlinear parameter of reference specimen 

refβ ′  Relative nonlinear parameter of reference specimen 
( )mc  Longitudinal wave velocity in mth layer 

11C  Second order stiffness component 

111C  Third order stiffness component 
( )m
nD  Diffraction correction of nth harmonic in mth layer 

f  Frequency 
( )m
nG  Green function of nth harmonic in mth layer 
( )H ω  Transfer function of receiving transducer 

( )m
nk  Wave number of nth harmonic in mth layer 

( )m
nM  Attenuation correction of nth harmonic in mth layer 

nr  Distance from source to target point for nth harmonic 

12T  Transmission coefficient at the interface of medium 1 and medium 2 
( )m
nu  Displacement of nth harmonic in mth layer 
( )m
nu  Received average displacement of nth harmonic in mth layer 
( )m
nU  Displacement amplitude of nth harmonic in mth layer 

0U  Source displacement 

mz  Thickness of mth layer 

mZ  Acoustic impedence of mth layer 
( , , )x y z  Cartesian coordinates 
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