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����������
�������

Citation: Słupek, E.;
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Abstract: The paper presents the screening of 20 deep eutectic solvents (DESs) composed of tetrapropy-
lammonium bromide (TPABr) and glycols in various molar ratios, and 6 conventional solvents as
absorbents for removal of siloxanes from model biogas stream. The screening was achieved using the
conductor-like screening model for real solvents (COSMO-RS) based on the comparison of siloxane
solubility in DESs. For the DES which was characterized by the highest solubility of siloxanes, studies
of physicochemical properties, i.e., viscosity, density, and melting point, were performed. DES com-
posed of tetrapropylammonium bromide (TPABr) and tetraethylene glycol (TEG) in a 1:3 molar ratio
was used as an absorbent in experimental studies in which several parameters were optimized, i.e.,
the temperature, absorbent volume, and model biogas flow rate. The mechanism of siloxanes removal
was evaluated by means of an experimental FT-IR analysis as well as by theoretical studies based on
σ-profile and σ-potential. On the basis of the obtained results, it can be concluded that TPABr:TEG
(1:3) is a very effective absorption solvent for the removal of siloxanes from model biogas, and the
main driving force of the absorption process is the formation of the hydrogen bonds between DES
and siloxanes.

Keywords: absorption; biogas; deep eutectic solvents; siloxanes

1. Introduction

The production of energy from renewable sources is not only a choice resulting from
the policy of environmental protection or care of the environment but is also an obligation
imposed by the European Union in the form of numerous ordinances and international
agreements [1]. Therefore, more and more EU countries are focusing their attention on
managing waste materials from various industries for the production of biogas [2–5]. This
approach is consistent with the theory of sustainable development. However, the obtained
biogas is usually a multicomponent mixture containing both inorganic and organic sub-
stances, i.e., methane (30–60% v/v), carbon dioxide (15–30% v/v), water, ammonia, hydrogen
sulfide, organosulfur compounds, siloxanes, and other linear and aromatic volatile organic
compounds (VOCs) [6,7].

The chemical composition of the waste biogas changes depending on the type of
raw materials used in the dark fermentation process. The presence of gaseous substances
other than methane causes many technological and environmental problems. Particularly
dangerous pollutants include siloxane compounds, which can appear in the biogas from
municipal landfills or wastewater treatment plants [8,9]. During the combustion of such
types of biogas, silicone may be released and combined with oxygen. This can lead to
the formation of silica deposits. The silica deposits can cause abrasion of engine parts
or the formation of layers that inhibit thermal conductivity or lubrication and clogged
transmission lines [10]. Therefore, in order to eliminate the failure of engines convert-
ing biogas into energy and to meet the quality requirements for fuels, raw biogas must
undergo several treatment processes. The oldest and most widely used process for the
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treatment of gaseous streams is the application of water or amine scrubbers [11,12]. How-
ever, most siloxanes are hydrophobic, and only some of them, i.e., trimethylsilanol, can be
absorbed with water because of their high solubility therein [13,14]. Amine scrubbers do
not show satisfactory efficiency of siloxane removal either. Among the effective absorbents,
there are mineral oils, mixtures of glycols, or inorganic acids [15–18]. Although the above-
mentioned absorption methods allow for the recovery of solvents, these methods have
a significant disadvantage, which is their energy consumption resulting from the large
amount of energy needed to regenerate the absorbent. Therefore, in recent years, more and
more scientific research has been devoted to the search for new “green solvents” that will
have higher purification efficiency of biogas streams with a simultaneous lower energy
demand during regeneration [19].

In the last few years, ionic liquids (ILs) have attracted a lot of attention because they
belong to the class of new solvents with a high affinity for CO2 and a wide range of
VOCs [20,21] In addition, ILs have a lower degradation rate, a lower energy requirement
for solvent regeneration, and lower corrosive characteristics compared to conventional
amine-based solvents [22]. The main disadvantages of ILs are their high viscosity, very high
prices, and toxic character. Therefore, deep eutectic solvents (DESs) are a good alternative
to ILs because they are much cheaper, less toxic, and more biodegradable [23]. These
advantageous properties have made DESs widely used in various separation processes
such as extraction [24–27], absorption [28–33], or adsorption [34]. So far, DES has not been
used for the experimental removal of siloxanes from biogas. Only theoretical studies can
be found in the literature [35].

The study presents screening of twenty-five deep eutectic solvents composed of
tetrapropylammonium bromide (TPABr) as hydrogen bond acceptor (HBA) and glycols
as hydrogen bond donors (HBDs) in various molar ratio as absorbents for removal of
siloxanes from model biogas stream. For this proposal, the conductor-like screening model
for real solvents (COSMO-RS) was used. The selection of DESs with the highest siloxane
capacity potential was made on the basis of the calculated solubility. For DES (TPABr:TEG
1:3), which was characterized by the highest solubility of siloxanes, the study of its physic-
ochemical properties, i.e., viscosity, density, and the melting point, was performed. Further
on, optimization studies of the main parameters influencing the absorption processes were
carried out. The mechanism of siloxane removal was evaluated by means of an experi-
mental FT-IR analysis as well as theoretical studies based on σ-profile and σ-potential. To
the best of our knowledge, this is the first study dedicated to the application of DES for
experimental removal of siloxanes from the gas steams.

2. Materials and Methods
2.1. Materials

The following pure substances were used in this study: tetrapropylammonium bro-
mide (TPABr) (purity ≥ 99.0%), tetraethylene glycol (TEG) (purity 99%), hexamethyld-
isiloxane (L2) (purity 98.5%), octamethyltrisiloxane (L3) (purity 98.5%), and octamety-
locyclotetrasiloxane (D4) (purity 98%) were purchased from Sigma Aldrich (St. Louis,
MO, USA).

For the preparation of model biogas, compressed gases such as nitrogen (purity N 5.5)
and methane (purity N 5.0) (Linde Gas, Łódź, Poland) were used. Additionally, for the GC
analysis, compressed gases such as nitrogen (purity N 5.5), air (purity N 5.0) generated by a
DK50 compressor with a membrane dryer (Ekkom, Cracow, Poland), and hydrogen (purity
N 5.5) generated by a 9400 Hydrogen Generator (Packard, Detroit, MI, USA) were used.

2.2. Apparatus

The purification process was controlled by gas chromatography (Autosystem XL)
(PerkinElmer, Waltham, MA, USA) coupled with a flame ionization detector (FID) (PerkinElmer,
Waltham, MA, USA) and an HP-5 (30 m × 0.25 mm × 0.25 µm) capillary column (Agilent
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Technologies, Santa Clara, CA, USA). In the investigations, the TurboChrom 6.1 software
(PerkinElmer, Waltham, MA, USA), was used.

The following apparatus was used to evaluate the physicochemical properties: Bruker
Tensor 27 spectrometer (Bruker, Billerica, MA, USA) with an ATR accessory and OPUS
software (Bruker); BROOKFIELD LVDV-II + viscometer (Labo-Plus, Warsaw, Poland);
DMA 4500 M (Anton Paar, Graz, Austria).

2.3. Procedures
2.3.1. COSMO-RS Studies

The geometry optimization of TPABr:TEG (1:3) was performed by means of the
continuum solvation COSMO model at the BVP86/TZVP level of theory. The level of theory
was used based on previous studies [35,36]. Multiple starting geometries of TPABr:TEG
(1:3) were created and optimized in the gas phase to identify stable conformers. In the
next step, the vibrational analysis was conducted to find the DES conformer correspond to
the true energy minimum. Full geometry optimization was performed only for the most
energetically favorable conformer.

In the studies, the COSMO-RS model was used for the screening of DESs using ADF
COSMO-RS software (SCM, Netherlands). The relative solubility of siloxanes (xj) in DESs
were calculated using Equation (1):

log10
(
xj
)
= log10

exp
(

µ
pure
j − µsolvent

j − ∆Gj, f usion

)
RT

 (1)

where: µ
pure
j —chemical potential of pure siloxanes (J/mol); µsolvent

j —chemical potential of
siloxanes at infinite dilution (J/mol); ∆Gj, f usion—fusion free energy of siloxanes (J/mol);
R—universal gas constant = 8.314 (J/mol·K); T—temperature (K) [37–39].

2.3.2. Preparation of DES

The deep eutectic solvent was successfully synthesized by mixing TPABr and TEG in
1:3 molar ratio, on a magnetic stirrer under 800 rpm, at 80 ◦C. All components were dried
in a vacuum oven before mixing. The mixing process was carried out for half an hour. The
resulting liquid DES was left cooling to room temperature (RT).

2.3.3. Preparation of Model Impurities and Biogas

The model impurities were prepared by means of the barbotage process. Pure nitrogen
was moved through a vial containing 1 mL of each siloxane. The obtained model impuri-
ties were diluted with a nitrogen stream to acquire a suitable concentration of siloxanes
(50 mg/dm3). This is the upper limit of the range of siloxane concentrations which can be
identified in biogas [40].

The model biogas stream was prepared in two options. The first with the use of pure
nitrogen, and the second with the use of a mixture of nitrogen and methane gases in the
volume ratio of 2:1.

2.3.4. Absorption Process

The installation to separate the siloxanes consists of an absorption column, a stripper
column, a heat exchanger, and a reboiler. Figure 1 shows the process of the absorption–
desorption course of siloxanes using TPABr:TEG (1:3). The model polluted biogas stream
containing a certain amount of methane and siloxanes is fed into the absorption column.
The absorption process takes place under certain conditions maintained in the column
(temperature of the process—Ta, the volume of DES—Va, flow rate of the biogas stream—
wa). Pure methane from the top of the absorption column is collected. The next step in
the entire process is desorbing the siloxanes from DES. For this purpose, the contaminated
DES is directed into the stripper column which works in specific conditions (temperature
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of the stripper process—Ts, time of the stripper process—ts). Owing to regeneration, it is
possible to reuse DES, which has a major impact on the economics of the process.
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The absorptivity (A) of siloxanes in the TPABr:TEG (1:3) was calculated using Equation (2):

A =
Cin − Cout

Cin
(-) (2)

where cin—initial siloxanes concentration (mg/dm3), cout—siloxanes concentration after
absorption process (mg/dm3).

2.3.5. Regeneration of DES

Following the selective absorption process of siloxanes, TPABr:TEG (1:3) was regener-
ated using nitrogen barbotage at an elevated temperature (80–100 ◦C). The regeneration
process was carried out conducted in line with previous studies [24]. The regeneration
experiments were conducted at 90 ◦C with an N2 flow of 50 mL/min. The concentration of
L2, L3, and D4 (before and after regeneration) in TPABr:TEG (1:3) was studied by means of
gas chromatography.

2.3.6. Chromatographic Analysis

The degree and efficiency of the model biogas treatment were determined by gas chro-
matography coupled with a flame-ionization detector (GC-FID) (PerkinElmer, Waltham,
MA, USA). The temperature of the GC oven was 120 ◦C, the detector temperature was
300 ◦C, the injection port temperature was 300 ◦C, the injection mode was split 5:1, and the
carrier gas was nitrogen (2 mL/min).

2.3.7. Physicochemical Properties of DES
FT-IR Analysis

FT-IR spectra were taken using attenuated total reflectance (ATR) with the following
operating parameters: number of background scans: 256, number of sample scans: 256;
spectral range: 4000–550 cm−1; resolution: 4 cm−1; and slit width: 0.5 cm.

Viscosity and Density Measurements

The viscosity and density of the synthesized TPABr:TEG (1:3) were measured within
a temperature range of 25–60 ◦C. The uncertainty measurement for the temperature was
0.5 ◦C. Additionally, the relationship between the viscosity and revolutions per minute
abbreviated (RPM) in the temperature range 25–60 ◦C was determined.
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Melting Point Measurements

The melting point (MP) was determined visually at atmospheric pressure by cooling
DES samples to −50 ◦C, followed by a temperature increase at 0.1 ◦C/min. The temperature
at which the initiation of the phase transformation was observed was adopted as the
melting point.

3. Results and Discussion
3.1. COSMO-RS Molecular Simulation
3.1.1. Solubility of Siloxanes in DESs—Preselection of DES

The conductor-like screening model for real solvents (COSMO-RS) was used to calcu-
late the solubility of siloxanes in pure glycols and water and in DESs composed with TPABr
and glycols. Based on the previous studies, it can be deduced that COSMO-RS is a useful
tool for solvent screening and predicting the impurities’ solubility in conventional as well
as non-conventional solvents [35,41,42]. In most of the published works, the selection of
solvents is made on certain parameters, i.e., Henry’s constant and activity coefficient. The
results are often inconsistent. However, the most important parameter from the industrial
point of view, solubility, is rarely reported [35,43]. Therefore, in this study, we calculated
the solubility of individual siloxanes (L2, L3, and D4) in various DESs composed of TPABr
as HBA and glycols, i.e., ethylene glycol (EG), glycerol (Gly), triethylene glycol (TriEG),
tetraethylene glycol (TEG), and diethylene glycol (DEG), as HBD at various molar ratios
(1:3; 1:4; 1:5; 1:6, HBA:HBD). These various molar ratios were selected on the basis of other
studies which show that the melting point of most TPABr:glycols in 1:1, 1:2 complexes are
higher than 20 ◦C [44,45]. This fact disqualifies the possibility of such DES as absorbents
since one of the necessary conditions for absorbents is liquid at room temperature. The
structures of HBA and HBDs are presented in Figure 2.
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Additionally, the solubility of siloxanes in pure glycols and water were taken into
account. The obtained results are presented in Figures 3–5.
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Among the tested solvents, water is the poorest solvent for siloxanes. The calculated
solubility of individual siloxanes in water was 0.0054, 0.00011, and 0.027 g/L for L2, L3,
and D4, respectively. This is due to the hydrophobic nature of most siloxanes [13,14]. From
the industrial point of view, the ideal absorbents should be cheap and easily accessible. Due
to the relatively high price of TPABr in comparison to the price of pure glycols, it would be
advantageous to use pure EG, Gly, TriEG, TEG, or DEG to absorb siloxanes from biogas.
However, the calculated solubility values are significantly lower for pure glycols compared
to DES. The highest solubility can be observed for the DES composed of TPABr and glycols
in 1:3 molar ratio. On the other hand, further increasing the amount of glycols in DES
structures reduces the solubility of siloxanes. This indicates that both HBA and HBD take
an active part in the absorption process by creating hydrogen or electrostatic bonds with
siloxanes. COSMO-RS calculations indicate that D4, which represents cyclic siloxanes,
shows higher solubility in DESs than linear siloxanes (L2 and L3). Similar results were
obtained for ILs in the previous studies [46]. For linear siloxanes, as the length of the
molecule decreases, their solubility in DESs increases. These are different results from those
obtained for ionic liquids [46]. The highest solubility of both linear and cyclic siloxanes
was obtained for DES composed of TPABr and TEG in 1:3 molar ratio. This is probably
due to the formation of strong non-bonded interactions between TPABr:TEG (1:3) and
siloxanes, i.e., hydrogen bonds between -OH group from TEG molecules, and O—a group
from siloxanes. In order to obtain detailed information on the interactions between DES
and siloxanes, analyses of σ-profiles and σ-potentials were performed. Due to the best
siloxane dissolving ability of TPABr:TEG (1:3), only this DES was further investigated.

3.1.2. σ-Profile

A very important molecule-specific property in the COSMO-RS model is the σ-profile,
which is the probability distribution of surface area with charge density (σ). Typically,
σ-profile is presented as a histogram which can be divided into three regions i.e., HBA
region σ > 0.0084 e/Å2; non-polar region −0.0084 e/Å2 < σ < 0.0084 e/Å2; and HBD region
σ < −0.0084 e/Å2 [47]. The σ-profiles of TPA, Br, TEG, L2, L3, and L4 are shown in Figure 6.
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The results indicate that the σ-profiles of all siloxanes are distributed within the non-
polar and hydrogen bond acceptor region. There is no significant difference between
σ-profiles of L2, L3, and D4. The only peak can be observed in the more positive region
of the histogram for linear siloxanes. This indicates a slightly stronger hydrogen bond
acceptor capacity of L2 and L3. Similar results were observed in other studies [35,46]. The
distribution of TPA shows the concentration of the charge density mainly around 0, and
a small concentration of the charge below −0.0084, which indicates the role of TPA as a
hydrogen bond acceptor in hydrogen bond formation. The distribution of the bromide
anion is located around 0.018 in the HBA area, which demonstrates a non-polar character
and the possibility of H-bonding formation. On the other hand, the distribution of TEG
is observed over the entire range of the σ-profile. This indicates that TEG can be both an
acceptor and a hydrogen bond donor.

3.1.3. σ-Potential

The σ-potential is typically used to indicate the affinity between mixture components.
The higher values of the positive µ (σ) suggest an increase in its repulsive behavior, and
higher negative values of the µ (σ) indicate a stronger interaction between the molecules.
Similarly to the σ-profile plot, the σ-potential plot is divided at the same three regions. The
σ-potential for TPABr:TEG (1:3), L2, L3, and D4 are plotted in Figure 7. The obtained results
indicate that all siloxanes almost overlap each other, which means that L2, L3, and D4
have similar molecular interaction properties with other molecules and with themselves.
The shape of siloxanes σ-potential is negative in the HBA region and positive in the HBD
region. This means that L2, L3, and D4 can be acceptors in H-bonding formation. However,
the DES shape is negative in both these regions. This indicates that it is both an acceptor
and a hydrogen bond donor. Therefore, the formation of hydrogen bonds is the most likely
driving force in the process of removing siloxanes from biogas.

3.2. Structural and Physicochemical Properties of DES
3.2.1. FT-IR Analysis

Spectroscopic characterization is a very important aspect to determine the interaction
between HBA (TPABr) and HBD (TEG). For this purpose, the FT-IR analysis was used in
the study (Figure 8).
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Figure 8 shows the mechanism of TBABr:TEG (1:3) formation. In the TPABr:TEG (1:3)
spectrum, the shift of -OH group vibration towards lower values compared with pure TEG
HBD (from 3411.14 to 3386.93 cm−1) indicates the formation of O-H O or O-H Cl bonds. In
addition, the broadening and shifts of the vibration towards lower values of the aliphatic
C–H stretching bonds (from 2996.67 and 2869.12 cm−1 to 2942.26 and 2867.71 cm−1) can be
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observed. The shifts O-H O or O-H Cl, and C-H groups are most likely the consequence
of hydrogen bond formation between TPABr and TEG [48,49]. Moreover, shifts of the OH
group may result from the presence of C-O-C groups in the TEG. The C-O-C group are
considered as the electronegative groups and tend to attract electrons on hydrogen in OH
bands. The occurring interactions between TPABr and TEG can be confirmed by the shift
of the C-O-C group towards lower values from 1227.80 to 1115.17 cm−1 and increasing the
intensity of the OH group [50]. Similar vibration towards lower values can be seen in the
peaks in the bands responding with H-bending, CH2 deformation, and N-C-C bending
bonds from 1514.06–1207.26 cm−1 to 1493.48–1202.00 cm−1, and C-N bond symmetric
stretching vibration from 774.17 to 768.27 cm−1 as well as redshift phenomena O-H and
C-O-H stretching bonds from 1042.73 to 1060.44 cm−1. The shifts confirm the interaction
between the atoms in TPABr and TEG [51–53].

3.2.2. Viscosity and Density Measurements

It is well known that DES components and temperature have a dramatic effect on
the absorbent density and viscosity. Basic physicochemical parameters of DES strongly
influence the ability of the mass transfer capacity, which is of great importance for any
changes in the absorption process [54,55]. In order to analyze the flow behavior of syn-
thesized TPABr:TEG (1:3), the viscosity was studied in a function of shear rate ranging
10–50 rpm and temperature range 25–60 ◦C. The obtained results indicate that the viscosity
of TBABr:TEG (1:3) decreases with increasing temperature. The increase in temperature
causes the velocity of the particles in the liquid to increase, which reduces the intermolecu-
lar forces, resulting in a decrease in the TPABr:TEG (1:3) viscosity (Figure 9A). At room
temperature, the viscosity of TPABr:TEG (1:3) is 84.6 mPas; it should be noted that it is
much lower compared to the DESs which are presented in the literature. The dynamic
viscosity of DES composed of tetrabutylammonium bromide (TBABr) and glycerol (Gly)
or ethylene glycol (EG) in a molar ratio of 1:3 were 467.2 and 91.4 mPas, respectively [56].
A decrease in the viscosity value contributes to the increase in the capacity and rate of
absorption because it makes the mass transfer easier. Therefore, DESs with lower value
viscosities are more desirable for absorption processes.Materials 2021, 13, x FOR PEER REVIEW 11 of 21 
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Figure 9. (A) Viscosity for TPABr:TEG (1:3) as a function of temperature in the range 25–60 ◦C. (B) Dependence of viscosity
on turnover in the range 10–50 RPM in temperature 40 ◦C.

In Figure 9B, it can be observed that the viscosity of TPABr:TEG (1:3) remains almost
constant throughout the range of the applied shear rate ranging. Therefore, it can be
concluded that the obtained DES is a Newtonian liquid [57]. The possible shear thinning
behavior can be attributed to different strengths of the H-bonding present in TPABr:TEG
(1:3) which can start breaking with increasing RPM. However, deeper analysis is required
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to confirm these assumptions. Similar behavior was also observed for another type of
DES [58].

Another tested physicochemical parameter was density. The value of DES density de-
creases linearly with increasing temperature (Figure 10). At 20 ◦C, the density TPABr:TEG
(1:3) is 1.5520 g/cm3. However, it can be observed that with increased temperature (60 ◦C),
the density value decreases to 1.5508 g/cm3. The lower density values can be due to
the fact that during heating, HBA and HBD in DES vibrate harder. These vibrates can
cause molecular rearrangements between HBA and HBD, which can contribute to creating
weaker interactions in the hydrogen bonding [59]. The obtained density of TPABr:TEG
(1:3) is higher compared to the DESs which are composed of quaternary ammonium salts
(ChCl or TBABr) [56,60].
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3.2.3. Melting Point Measurements

The measured MP of TPABr:TEG (1:3) is −48 ◦C. As expected, the melting point of
TPABr:TEG (1:3) is lower than the MP of pure TEG (−9.4 ◦C) [61]. The depression in the
melting point of the mixture shows the formation of strong intermolecular interactions, i.e.,
hydrogen bonds between TPABr and TEG [62].

3.3. An Experimental Studies on Absorption of Siloxane Compounds
Optimization of the Absorption Process Conditions

In our research, the processes of absorption using a new DES based on TPABr:TEG
(1:3) were carried out for purification of the model biogas stream from L2, L3, and D4
pollutants. The absorption processes were optimized in terms of the volume of TPABr:TEG
(1:3), model biogas flow, and temperature.

The first optimized parameter was the volume of the TPABr:TEG (1:3) in the range
of 15–50 mL/min (Figure 11). The results show that the volume of DES has a significant
impact on the overall siloxane capture process. As the volume of DES increases from 15
to 50 mL/min, the DES saturation time increased from 150 to 320 min (L3—Figure 11B),
from 140 to 400 min (L2—Figure 11A), and from 1551 to 5281 min (D4—Figure 11C). The
increase in saturation time can be explained by increases in the contact time between the
siloxane gas phase and the absorbent [63]. Increasing the volume of DES also contributes
to an increase in the amount of active substance (TPABr:TEG (1:3)) and an increase in the
number of active sites that are responsible for capturing of the siloxanes from DES.
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The next studied parameter was model biogas flow rate in the range of 10–50 mL/min
(Figure 12). The results indicate that the flow rate has only a minor effect on siloxane uptake
compared to DES volume. The conducted research indicates that an increase in the flow
rate from 10 to 50 mL/min slightly decreased the effectiveness of siloxane removal from the
model biogas stream. Similar results were observed in the previous studies [29,64]. In the
industrial technologies used with the use of a water scrubber, a flow of 88 mL/min is used
to remove CO2 or H2S [65], whereas when using an amine scrubber, flows of 30 mL/min
are used [66]. The reduction in the flow rate may result from the different viscosities of the
use of the absorbent. Therefore, the assumed optimal value of 50 mL/min seems to be the
rational and comparable value.

The temperature in the range of 25–50 ◦C was selected as the last parameter for
optimizing the absorption conditions (Figure 13). An increase in temperature causes
decreases in TPABr:TEG (1:3) viscosity. The lower viscosity improves the mass transfer
efficiency and, hence, the siloxane removal efficiency should be higher. However, increasing
the temperature does not extend the absorption process too much. This is likely due to the
fact that the absorption process is normally exothermic [67]. Therefore, a temperature of
25 ◦C was adopted as optimal.
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Owing to the conducted research, the optimum conditions for the removal of siloxanes
from the model biogas stream were selected as a temperature of 25 ◦C, a DES volume of
50 mL, and a flow rate of 50 mL/min. The obtained dependence of the absorption efficiency
on the duration of the absorption process of individual pollutants is shown in Figure 14A
(with the use of pure nitrogen) and Figure 14B (with the use of a mixture of nitrogen and
methane gases in the volume ratio 2:1).
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For D4 in pure N2, after 5380 min of absorption process, a sharp increase in the
supersaturation value was observed. While for D4 in the mixture of nitrogen:methane at 2:1
volume ratio, the saturation time was 5300 min. The oversaturation times of the other two
siloxanes in N2 were 400 and 300 min, while in N2:CH4 (2:1), they were 375 and 280 min,
respectively, for L2 and L3. In the literature, there are very few works that focus on the
capture of siloxanes from biogas. The results obtained in our studies can only be compared
to the absorption in which the absorbent consists of amines, acids, or bases. However, it is
well known that the strong bases and acids contribute to the cleavage of Si-O bonds and
convert siloxanes to other volatile compounds with lower boiling points [68].

Devia and Subrenat [15] proposed L2 and D4 absorption into motor oil, cutting oil,
and water-cutting oil. The studies showed the best results were obtained for motor oil for
which the breakthrough curves obtained to allow for efficient removal of siloxanes were
for 191.4 min (L2) and for 47.1 min (D4). The obtained results show that the proposed
new DES-based absorbents show a much higher absorption capacity towards siloxanes
than conventional solvents. In the studies, apart from monitoring the siloxane absorption
process, the concentration of methane was also monitored (Figure 14C). The results show
that complete saturation of TPABr:TEG (1:3) with methane occurs after 50 min of the
process. The loss of methane in the entire process of siloxane absorption was within 5%.
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3.4. FT-IR Studies on Absorption of Siloxane Compounds

The experimental study on the mechanism of the absorption process of siloxanes
was conducted by FT-IR analysis. The obtained spectra of pure TPABr:TEG (1:3) and
pure siloxanes were compared with the spectra of TPABr:TEG (1:3) after the absorption
process (Figures 15–17). All of them identified the bands which can be observed in the
FT-IR spectrum for pure siloxanes: Si-O-Si antisymmetric stretch bonds in the range
1000–1100 cm−1 and Si-C symmetric stretch bonds at 800 cm−1 are visible in the spectrum of
the TPABr:TEG (1:3) after the absorption process [69]. In the spectrum after the absorption
process, new peaks or significant band shifts cannot be observed. Only shifts of the -OH
stretching vibration and aliphatic C-H stretching bonds are visible, which confirms the
phenomena of physical absorptions. In addition, the shifts of -OH stretching vibration
indicate that the hydroxyl group from TPABr:TEG (1:3) may interact with the oxygen
atoms from siloxanes by forming hydrogen bonds, which is in accordance with the siloxane
absorption [70]. Additionally, a shift of the bands originating from group C-O-C towards
higher values from 1112.40 to 1123.83 cm−1 (Figure 15), 1123.54 cm−1 (Figure 16), and
1118.59 cm−1 (Figure 17) are observed. These shifts indicate that siloxane absorption
can also occur through the interaction of silicon atom (Si-OH—827.67 cm−1 and SiO—
752.14 cm−1 (Figure 15), Si-O—801.56 cm−1 (Figure 16), Si-OH and Si-O in the range
847.96–792.11 cm−1 (Figure 17)) with the oxygen atoms with C-O-C in the DES (1:3) [50].
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3.5. Regeneration of DES

From the industrial point of view, the regeneration processes of absorbents are ex-
tremely important because they determine the final costs. The obtained results indicate
that siloxanes can be completely removed from TPABr:TEG (1:3) using nitrogen barbotage
conducted at a temperature of 90 ◦C for 3 h. TPABr:TEG (1:3) shows tall and almost
unchanging L2, L3, and D4 removal efficiency for up to 10 regeneration cycles (Figure
18A). In addition, the thermal stability of TPABr:TEG (1:3) by means of FT-IR analysis was
confirmed. The comparison of fresh and regenerated TPABr:TEG (1:3) spectrum indicates a
lack of additional shifts and peaks in the regenerated TPABr:TEG (1:3) (Figure 18B). This
confirms stability and effective regeneration of TPABr:TEG (1:3).
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4. Conclusions

In the paper, the solubility of siloxanes (L2, L3, and D4) in deep eutectic solvents (DESs)
composed of tetrabutylammonium bromide and glycols as well as conventional solvents
was investigated. The siloxane solubility was predicted by means of the COSMO-RS model
where the highest solubility of both linear and cyclic siloxanes was present in the DES
composed of TPABr and TEG in a 1:3 molar ratio. The chemical structures of TPABr:TEG
(1:3) and the interaction structures between TPABr and TEG as well as between DES and
siloxanes were reported using FT-IR spectroscopy. Furthermore, in order to confirm the
interactions, the analyses of σ-profiles and σ-potentials were used.

The results of physicochemical properties indicate that TPABr:TEG (1:3) is a Newto-
nian liquid due to the lack of viscosity changes during shear changes, which contribute to
only minor changes in siloxane removal efficiency with increasing temperature. In turn,
carrying out the absorption process at a temperature of 25 ◦C is beneficial from an economic
point of view. Under optimum conditions (50 mL of TPABr:TEG (1:3), 50 mL/min flow
rate, and temperature 25 ◦C), the L2, L3, and D4 can be removed with high efficiency
for 375, 280, and 5300 min, respectively. These are much better absorption efficiencies
compared to mineral oils. In addition, TPABr:TEG (1:3) also can be easily regenerated up
to 5 cycles without significantly changing the siloxane absorption efficiency. The studies
on the absorptive mechanism to remove siloxanes indicate that the reason for the high
solubility siloxanes in TPABr:TEG (1:3) is the formation of the strong hydrogen interactions
between -OH group from DES molecule, and -O- a group from siloxanes.

The cost of the absorption process mainly depends on the type of absorbents. The esti-
mated capital cost of the absorption process based on TPABr:TEG (1:3) is 126.05 €/L [71,72].
The DES price is higher than conventional absorbents prices which are 9.17 €/L for motor oil
5W40 from Elf) [73]; 33.42 €/L for cutting oil Hochleistungs-Schneidöl Alpha 93 from Jokish®

GmbH [74]. However, it should be remembered that DES can be used for up to 5 cycles
without changing the high efficiency of removing siloxanes from biogas. The initial price of
126.05 €/L can drop to 25.21 €/L. Therefore, DESs can be used as alternative absorbents.
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