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Abstract: Micropipe, a “killer” defect in SiC crystals, severely hampers the outstanding performance
of SiC-based devices. In this paper, the etching behavior of micropipes in 4H-SiC and 6H-SiC wafers
was studied using the molten KOH etching method. The spectra of 4H-SiC and 6H-SiC crystals
containing micropipes were examined using Raman scattering. A new Raman peak accompanying
micropipes located near −784 cm−1 was observed, which may have been induced by polymorphic
transformation during the etching process in the area of micropipe etch pits. This feature may
provide a new way to distinguish micropipes from other defects. In addition, the preferable etching
conditions for distinguishing micropipes from threading screw dislocations (TSDs) was determined
using laser confocal microscopy, scanning electron microscopy (SEM) and optical microscopy. Mean-
while, the micropipe etching pits were classified into two types based on their morphology and
formation mechanism.

Keywords: SiC; micropipes; KOH etching; classification of etch pits; Raman

1. Introduction

Silicon carbide (SiC), a typical representative of the third-generation semiconductor
materials, has unique properties such as wide band gap, high breakdown voltage, high
thermal conductivity and excellent chemical inertness [1–4]. These characteristics are
different from traditional semiconductors such as silicon (Si) and gallium arsenide (GaAs),
making SiC suitable for fabricating high-power and microwave radio-frequency devices [5].
In recent years, the technology for preparing SiC substrates has become increasingly
mature. Some breakthroughs have been made, especially in suppressing micropipes
generation [6]. As a super-screw dislocation, it has always been difficult to accurately
distinguish micropipes from threading screw dislocations (TSDs). According to Frank’s
theory, micropipes are interpreted as hollow-core tubes extending along the c-axis, and are
clearly detrimental to high-power devices [7,8]. Therefore, the characterization and analysis
of micropipe defects in SiC single-crystal material has become an important issue for the
improvement of the single-crystal growth process and the preparation of high-performance
devices. Tomohisa Kato et al. determined the photoelastic constant in the plane of (001)
6H-SiC and then estimated the magnitude of the internal stress around the micropipes [9].
A unique transitional configuration of superscrew dislocations to closed-core elementary
screw dislocations was proposed by Daisuke Nakamura et al., which showed good ability
to explain the decrease of micropipe density during crystal growth [10]. Arora, Aman, et al.
used cathodoluminescence (CL) imaging technology to confirm that multiple micropipes
could originate from a single hexagonal void, and energy-dispersive spectroscopy (EDS)
showed that the inside of the micropipe walls exhibited higher levels of carbon [11].
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However, some research questions on micropipes have yet to be successfully examined.
In particular, accurately distinguishing micropipe etch pits from TSDs after wet etching
has also been a technical problem. In addition, Raman spectroscopy is becoming an
increasingly common analysis method, and offers fast and contact-free measurements
with easy sample preparation. Raman spectroscopy is a vibrational spectroscopy method
based on the analysis of inelastically scattered light. It has been applied to SiC materials
for the characterization of polytypes [12], stacking faults [13], stress [14] and doping [15].
Shenghuang Lin et al. used Raman scattering to study the spectra on the Si surface of 6H-
SiC crystals including micropipes, and the second-order Raman features of the micropipes
in bulk 6H-SiC were well-defined using the selection rules for second-order scattering
in wurtzite structure [16]. Following these, few papers have been published focusing on
this topic. Therefore, it is necessary to apply Raman spectroscopy to the characterization
of micropipe etch pits. In the present work, some new discoveries appear in the Raman
spectra of micropipe etch pits.

Selective chemical etching has been extensively used to study defects in SiC single
crystals, with methods such as wet etching [17–21], hydrogen etching [22–24], dry etch-
ing [25–27] etc. In these approaches, KOH and its mixtures with other salts are currently
preferred for revealing defects and dislocations in SiC single crystals. Robert T. Bondokov
et al. used KOH steam to etch the (0001), (0001), (1120) and (1100) surfaces of SiC [28]. How-
ever, this method needs to maintain the temperature at 700–1000 ◦C under normal pressure.
This high temperature limits the application of this method. Yong-Zhao Yao et al. used
KOH and Na2O2 as an etchant (KN etching) to identify the types of dislocations in SiC [29].
This method is only suitable for n-type SiC substrates with an off-angle of 0◦ to 8◦. Sandeep
Mahajan et al. utilized molten KOH to etch 6H n-type SiC single-crystal wafers [30]. Their
results revealed that 500 ◦C was the optimum temperature for the identification of mi-
cropipes (MPs), threading screw dislocations (TSDs), threading edge dislocations (TEDs)
and basal plane dislocations (BPDs). Despite being a destructive technique, the molten
KOH etching method is still considered an effective method to characterize dislocations in
SiC [31–38].

In this work, we take advantage of the method of defect-preferred corrosion and
molten KOH, successfully determining the etching condition to distinguish micropipe
etch pits from TSD by etching 4H-SiC and 6H-SiC wafers for different amounts of time.
The results demonstrate that under-corrosion is a suitable condition to form micropipe
etch pits apart from TSDs. We classified the micropipe etch pits based on their formation
mechanism and morphology. Moreover, the Raman performance of the micropipes are also
characterized, and we find a new Raman peak corresponding to micropipe etching pits.

2. Experiment

Nominally undoped 4H-SiC and 6H-SiC single crystals were grown on on-axis seeds
by the physical vapor transport (PVT) method. After crystal growth, the 4H-SiC and 6H-SiC
ingots were processed into standard substrates. The wafers were mechanically polished
on both sides. A nickel crucible (inert for molten KOH) was used for KOH heating, and
the temperature was set to 460 ◦C. Diced 4H-SiC and 6H-SiC samples were immersed in
molten KOH and etched for different amounts of time. After etching, the wafers were taken
out and cooled to room temperature naturally, then washed successively with deionized
water and absolute ethanol. A LEXT OLS4000 laser confocal microscope from Olympus
(Tokyo, Japan) and a S-4800 scanning electron microscope (SEM) from Hitachi (Tokyo,
Japan) were used to observe the morphology of the etch pits on the surface. Meanwhile,
the micropipe etch pits were classified based on their morphologies and Raman features of
micropipes were examined by a LabRAMHR800 system (Horiba Jobin Yvon, Paris, France)
with a 532 nm solid laser as the excitation source. In order to track the changes in Raman
spectra, the Raman spectra of micropipes were compared and interpreted before and after
different etching times.
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3. Results and Discussion
3.1. The Morphologies of Micropipe Etch Pits and the Etching Rates of Different Polytypes

The 4H-SiC and 6H-SiC wafers were etched at 460 ◦C for different amounts of time.
The specific etching situation is shown in Figure 1. It is obvious that as the etching time
increased, the size of the micropipe etch pits also increased. By measuring the size of
the etch pits of the micropipes at different etching times, it was found that the size of the
micropipe etch pits had a linear relationship with the etching time, as shown in Figure 2.
After etching for 10 min, three groups of micropipe etch pits with similar sizes of 4H-SiC
and 6H-SiC (MP-1-6H and MP-6-4H, MP-2-6H and MP-4-4H, MP-3-6H and MP-5-4H) were
selected. Then, the size changes of the micropipe etch pits of different polytypes were
observed through a longer period of etching. The etching rate was measured by the size
change of the micropipe etch pits within a fixed time. The polytypic dependence of etching
rate was also revealed. There was an increase from the 6H to 4H polytypes in etching rate,
which corresponded to their hexagonality, indicating that the etching rate increased as the
hexagonality of the SiC crystals increased [39].
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3.2. Exploration of Etching Conditions to Distinguish TSDs and Micropipe Etch Pits

The etching pits formed by micropipe defects and TSDs in 4H-SiC and 6H-SiC all
appeared as black hexagons under laser confocal microscope, and were difficult to distin-
guish (see pits marked by red labels in Figure 3a,c). In fact, according to the mechanism
proposed by Frank, the micropipes in SiC single crystals are hollow screw dislocations
with a large Burgers vector, also known as superscrew dislocations [40]. Since the strain
energy associated with the dislocations is proportional to the square of the Burgers vector,
the crystal containing the micropipes reduces its strain energy by removing the core of the
dislocation [7]. As a result, the center of the micropipe should be a hollow tube. Therefore,
the etch pits of the micropipes were bottomless hexagonal etch pits, while the TSDs should
be regular hexagonal etch pits with bottoms. This is verified in Figure 3b,d.
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However, scanning electron microscopy (SEM) was not suitable for the identification
of micropipe etch pits in large SiC single crystals. Therefore, careful selection of etching
conditions was very important in order to distinguish micropipe etch pits from TSDs
under optical microscope and laser confocal microscope. When the wafer was etched at
460 ◦C for different amounts of time (Figures 4 and 5), it was found that as the etching
time increased, the size of the TSDs increased accordingly while the size of the micropipes
increased. The difference in size between TSD and micropipe etch pits was also reduced,
as shown in Table 1.
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Table 1. The size difference between 4H-SiC micropipe etch pits and TSDs with etching time.

Etching Time (min) Size of the Micropipe
Etch Pits (µm) Size of TSDs (µm) Difference (µm)

10 15.54 11.02 4.52
20 25.62 21.84 3.78
30 35.73 32.46 3.27
40 45.81 43.14 2.67
50 56.04 53.91 2.13
60 67.04 65.63 1.41

Therefore, 4H-SiC and 6H-SiC were etched for a shorter period. The sizes of micropipe
and TSD etch pits were determined. The results showed that the size of TSDs was stably
distributed in 7–9 µm, while the size of micropipe etch pits was distributed in a larger
range. Notably, the micropipe etch pits were larger than the TSDs, as shown in Figure 6.
This was because the micropipe defects have a larger Burgers vector [41]. We believe that
the variability of the micropipe etch pits size is closely related to variations in the Burgers
vector. A micropipe with a relatively large Burgers vector will produce a larger etch pit.
On the contrary, a micropipe with a relatively small Burgers vector will produce a smaller
etch pit. The above results can prove that under-corrosion is a suitable condition to identify
micropipe etch pits from TSDs.
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3.3. The Classification of Micropipe Etch Pits

We also found that the hexagonal etch pits formed by the micropipes had different
morphologies under the same etching conditions. According to the morphologies of
micropipes, two types of micropipe etch pits were observed using laser confocal microscopy,
as shown in Figures 7 and 8. In terms of shape, one type (named Type i) was a black regular
hexagonal etch pit without a bottom (Figure 7e, Type i), while the other type (Type ii) was
a black irregular elongated hexagonal etch pit, as marked in Figures 7e and 8c. It is worth
noting that Type i micropipes, regular hexagonal micropipe etch pits, were not observed
in 6H-SiC in the under-etched state. Figure 1d–f shows that the shape of the micropipe
etch pits changed from irregular hexagon to regular hexagon during the etching process.
Because the etching rate of 6H-SiC was lower than that of 4H-SiC, the micropipe etch pits
in 6H-SiC remained as irregular hexagons, and did not transform into regular hexagons.
Therefore, Type i micropipe etch pits were not found in 6H-SiC.
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Figure 7. Classification of 4H-SiC micropipe etch pits: (a) transmitted polarized microscopic image
of the area shown in (b); (b) Type II and Type I micropipe etch pits observed with a 20× lens;
(c) tailing of Type II micropipe etch pits when the focal length was changed; (d) black spots formed
on the back by the Type II micropipe etch pits; (e) micropipe etch pits of different shapes observed
with a 50× lens.

Materials 2021, 14, x FOR PEER REVIEW 7 of 12 
 

 

 
Figure 7. Classification of 4H-SiC micropipe etch pits: (a) transmitted polarized microscopic image 
of the area shown in (b); (b) Type II and Type I micropipe etch pits observed with a 20× lens; (c) 
tailing of Type II micropipe etch pits when the focal length was changed; (d) black spots formed 
on the back by the Type II micropipe etch pits; (e) micropipe etch pits of different shapes observed 
with a 50× lens. 

 
Figure 8. Classification of 6H-SiC micropipe etch pits: (a) transmitted polarized microscopic image 
of the area shown in (b); (b) Type I micropipe etch pits observed with a 20× lens; (c) Type ii and 
Type II micropipe etch pits observed with a 50× lens; (d) tailing of Type II micropipe etch pits 
when the focal length was changed; (e) black spots formed on the back by the Type II micropipe 
etch pits. 

3.4. Raman Spectra of Micropipe Etch Pits 
Raman spectroscopy was employed to characterize the different types of micropipe 

etch pits in 4H-SiC and 6H-SiC single crystals. It was worth noting that an accompanying 
peak appeared near −784 cm−1 in the Raman spectrum at the position of the 4H-SiC mi-
cropipe after etching in Figure 9a. In order to further verify whether this peak was a char-
acteristic peak of micropipes, other dislocations such as TSDs and BPDs were also charac-
terized. The −784 cm−1 peak did not appear in the Raman spectra of other dislocations 
(Figure 9b). The Raman spectrum of 6H-SiC is given in Figure 10a. Since 6H-SiC had a 
peak at −788 cm−1, the intensity ratio of the peak at −788 cm−1 and the peak at −767 cm−1 are 
compared at different positions in Figure 10b. Figure 11 shows the different positions of 

Figure 8. Classification of 6H-SiC micropipe etch pits: (a) transmitted polarized microscopic image
of the area shown in (b); (b) Type I micropipe etch pits observed with a 20× lens; (c) Type ii and Type
II micropipe etch pits observed with a 50× lens; (d) tailing of Type II micropipe etch pits when the
focal length was changed; (e) black spots formed on the back by the Type II micropipe etch pits.

According to the formation mechanism of micropipes, areas with high stress form
micropipes to relax stress during the growth of SiC single crystals [42]. This led to the
unique morphology seen in the transmitted polarized microscopic image of the micropipe,
that is, a high-brightness butterfly shape with a black dot in the center [43]. After the
etching, the stress around the micropipes had not completely disappeared, and hexagonal
etch pits appeared at the micropipe core. Micropipe etch pits were also classified into
two types based on this mechanism. Figures 7a and 8a show Type I micropipe etch
pits with high-brightness butterfly wings surrounding them, resulting from stress relief.
Figures 7b–d and 8c–e exhibit Type II micropipe etch pits without stress relief. Type II
micropipes appeared to tail with the adjustment of the focal length of the optical microscope,
and would eventually form a black spot on the back of the wafer.
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3.4. Raman Spectra of Micropipe Etch Pits

Raman spectroscopy was employed to characterize the different types of micropipe
etch pits in 4H-SiC and 6H-SiC single crystals. It was worth noting that an accompanying
peak appeared near −784 cm−1 in the Raman spectrum at the position of the 4H-SiC
micropipe after etching in Figure 9a. In order to further verify whether this peak was a
characteristic peak of micropipes, other dislocations such as TSDs and BPDs were also char-
acterized. The −784 cm−1 peak did not appear in the Raman spectra of other dislocations
(Figure 9b). The Raman spectrum of 6H-SiC is given in Figure 10a. Since 6H-SiC had a peak
at −788 cm−1, the intensity ratio of the peak at −788 cm−1 and the peak at −767 cm−1

are compared at different positions in Figure 10b. Figure 11 shows the different positions
of the test. I788/I767 increased as the distance from micropipes decreased. Therefore, the
peak (approximately −784 cm−1) can be considered a sensitive peak to the micropipes,
regardless of whether it appeared in 4H-SiC or 6H-SiC single crystals. This could be a
means to distinguish micropipes from TSDs.
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Raman scattering has the advantage that it can provide information on both the lattice
structure and electronic properties of SiC [44]. The FTO mode in 4H-SiC and 6H-SiC is
a forbidden band because of the backscattering geometry using the (0001) face. It can be
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activated by disorder in the stacking sequence [45]. In other words, FTO mode is sensitive
to disorders in crystalline perfection. So, the −784 cm−1 peak may originate from greater
disorder in the micropipe etch pit area in the process of etching.

In order to track the −784 cm−1 peak, Raman spectroscopy tests were also per-
formed on the micropipes with different etching time. The result is presented in Figure 12.
Figure 12a clearly shows that the −784 cm −1 peak did not appear for the unetched mi-
cropipes in 4H-SiC. This was also true for 6H-SiC. According to our calculations, the value
of I788/I767 did not change with the distance from the micropipe in the unetched 6H-SiC
sample, as can be seen from Figure 13a. This result reveals that the −784 cm −1 peak cannot
correspond to unetched micropipes. This suggests that the −784 cm−1 peak is caused by
a certain change in the micropipes during the etching process. This change may be the
larger lattice disorder during the etching process mentioned above. On the other hand,
the peak intensity decreased with the increase of the etching time, which might be due
to the reduction of the incident laser intensity caused by the uneven surface in the inner
wall of the micropipe. This was also seen in 6H-SiC (Figure 13b). The ratio of I788/I767 at
the center of a micropipe decreased with the increase of the etching time, which precisely
illustrates this point. In short, the −784 cm−1 peak is uniquely associated with the presence
of micropipe etch pits.
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The longitudinal optical phonon-plasmon coupled (LOPC)-mode can be used to study
the electrical properties in 4H-SiC and 6H-SiC, which can fluctuate according to carrier
concentration. Taking 4H-SiC as an example, a Raman shift at −967 cm−1 occurred in the
Raman spectrum of the micropipe etch pit. The LOPC mode of the micropipe etch pits
shifted to higher values. The longitudinal optical phonon and plasmon coupling mode
(LOPC mode) results were analyzed to calculate the carrier concentrations of different dis-
locations in SiC [46]. The results are shown in Table 2. According to Table 2, we concluded
that the carrier concentrations in the neighbors of the micropipe etch pits were higher than
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those in other dislocations and dislocation-free regions. This effect was produced by a
modification of the electronic properties of the material [16].

Table 2. LOPC modes and carrier concentrations of different dislocations in 4H-SiC.

Defects Types LOPC Mode (cm−1) Carrier Concentration (cm−3)

TSD 965.6 1.85 × 1017

BPD 965.6 1.85 × 1017

TED 965.2 1.35 × 1017

No dislocation region 965.6 1.85 × 1017

MP 969.3 6.40 × 1017

4. Conclusions

We employed the wet etching method to distinguish micropipe etch pits from TSDs
in 4H-SiC and 6H-SiC wafers. We confirmed that the under-etched state was the best
etching condition to distinguish micropipe etch pits from TSDs. The size of the micropipe
etch pits was linearly related to the etching time, and the etching rate showed a polytype
dependence. The etching rate was positively related to the hexagonality in 4H-SiC and 6H-
SiC. The micropipe etch pits were classified in detail. Most importantly, the spectra of 4H-
SiC and 6H-SiC crystals containing micropipes were examined using Raman scattering. In
the Raman spectrum of the micropipe etching pits, an accompanying peak of approximately
−784 cm−1 was a sensitive peak of micropipe etch pits, which may be induced by the larger
lattice disorder during the etching process in the area of micropipe etch pits. This work
demonstrated that Raman spectroscopy was an effective way to characterize micropipes
in a simple manner which might also be useful for distinguishing micropipe etch pits
from TSDs.
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