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Abstract: Low-temperature co-fired ceramics (LTCCs) have been attracting attention due to rapid
advances in wireless telecommunications. Low-dielectric-constant (Dk) and low-dissipation-factor
(Df ) LTCCs enable a low propagation delay and high signal quality. However, the wide ranges
of glass, ceramic filler compositions, and processing features in fabricating LTCC make property
modulating difficult via experimental trial-and-error approaches. In this study, we explored Dk and
Df values of LTCCs using a machine learning method with a Gaussian kernel ridge regression model.
A principal component analysis and k-means methods were initially performed to visually analyze
data clustering and to reduce the dimension complexity. Model assessments, by using a five-fold
cross-validation, residual analysis, and randomized test, suggest that the proposed Dk and Df models
had some predictive ability, that the model selection was appropriate, and that the fittings were
not just numerical due to a rather small data set. A cross-plot analysis and property contour plot
were performed for the purpose of exploring potential LTCCs for real applications with Dk and Df
values less than 10 and 2 × 10−3, respectively, at an operating frequency of 1 GHz. The proposed
machine learning models can potentially be utilized to accelerate the design of technology-related
LTCC systems.

Keywords: low-temperature co-fired ceramics (LTCCs); dielectric constant; dissipation factor;
machine learning

1. Introduction

Low-temperature co-fired ceramics (LTCCs) have been attracting attention over recent
decades due to rapid advances in wireless telecommunications, including the 5th genera-
tion (5G) tactile internet and the Internet of Things (IoT) [1]. LTCCs have characteristics
that require sintering at temperatures of less than 1000 ◦C in order to be co-fired with
electrode materials, such as Cu (melting point: 1083 ◦C), Ag (melting point: 961 ◦C), or
Au (melting point: 1061 ◦C) [2]. LTCC devices provide a solution for integrating passive
components, e.g., capacitors and resistors, with these electrodes into a three-dimensional
module at the same time. A more recent review article from Sebastian et al. suggested that
new LTCCs with ultra-low sintering temperatures (e.g., <700 ◦C) are becoming popular
when pursing applications at a much lower temperature [3]. In recent years, the develop-
ment of millimeter wave (mmWave) systems with typical frequencies above 24 GHz has
led to performance benefits in 5G systems [4]. In the meantime, the increasing operating
frequency from the current 4G systems at 3.5 GHz requires more reliable LTCC devices
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with a low dielectric constant (Dk), low dissipation factor (Df ), and comparable mechan-
ical strengths [1]. Wang et al. had pointed out that Dk and Df values should be lower
than 10 and 2 × 10−3, respectively, for real applications at high frequency operation [5].
Ohsato et al. recently reviewed the current status and prospects of LTCC applications in
microwave and mmWave telecommunications [6]. These low Dk and Df values enable a
low propagation delay and high signal quality in 5G systems.

LTCC fabrications are mostly based on glass-ceramic (GC) and glass/ceramic com-
posite (GCC) in order to lower the sintering temperature [7]. Al2O3-based glass/ceramic
composites are extensively used due to their good electrical and physical properties [8].
CaO-B2O3-SiO2-Al2O3/Al2O3 composites have been reported to be promising materials
due to their low firing temperature and low dielectric loss [9]. B2O3-SiO2-Al2O3 glass
and ZnO-B2O3-SiO2 glass/Al2O3 composites have been shown to exhibit a low dielec-
tric loss and good mechanical and thermal performance [10]. La2O3-B2O3-CaO-P2O5
glass/cordierite [5] or La2O3-B2O3-CaO glass/LaBO3 composites [11] have recently been
reported as potential candidates for real LTCC applications. Sebastian and Jantunen had
made a thorough review on the material selections, fabrication methods, and properties of
LTCCs [12]. The review suggests that LTCC fabrications involve modulating a wide range
of glass, ceramic composition, and sintering conditions to meet the desired physical proper-
ties. The modulation is mainly carried out via experimental trial-and-error processes, and
thus is time consuming and economically unfeasible. The wide ranges of input parameters
make optimization even more difficult.

Theoretical modeling is an effective way to guide an experimental design. While there
have been no existing models to properly simulate Df values, intrinsic Dk can be simulated
via the density functional theory (DFT) in terms of polarizability. Peng et al. performed DFT
calculation and the classical Clausius–Mossotti equation to model the dielectric constant of
Li2(Mg1−xNix)SiO4 (x = 0.00–0.10) [13] and (Zn1−xNix)3B2O6 (x = 0.00–0.07) ceramics [14].
However, microstructure and processing features make extrinsic contributions which are
not easily simulated. Therefore, a more reliable simulation method is required. Recently,
machine learning methods are considered powerful tools to predict material properties
which do not have existing physical models, e.g., effective charges in electromigration [15],
permittivity of microwave dielectric ceramics [16], and dielectric constants of crystals [17].
Morgan and Jacobs had made a thorough review of recent applications of machine learning
methods used in the field of materials science [18]. In this study, we thus employed the
machine learning method to explore Dk and Df properties of LTCC. We used the glass
phase content, ceramic filler content, and GC content as well as the processing features
(e.g., calcination temperature and time) to fit the experimentally-determined Dk and Df
data. Gaussian kernel ridge regression was used as it is powerful for interpolating data
points which has fewer hyperparameters than typical deep learning method (e.g., neural
network). Fitting to fewer hyperparameters is beneficial to a small-scale data set. We
assessed the model using a cross-validation, randomized test, and cross-plot analysis. The
results suggest that the proposed models had a reasonable predictive ability. We explored
the composition and processing feature spaces to find potential LTCC systems with low Dk
and Df values. The proposed models may serve as a quick guideline for new LTCC material
design in future technology-related systems. To the best of the author’s knowledge, this is
the first paper to use a machine learning method to explore Dk and Df of LTCC systems.

2. Methods
2.1. Data Set

The data set used in this study was provided by the Industrial Technology Research
Institute (ITRI), Hsinchu, Taiwan. We refer to the database in this study as “ITRI-LTCC
database.” The database is focused on exploring potential LTCC systems with low Dk
and Df values that can be applied in real 5G applications using various GC, GCC, and
fabrication methods. The database consists of glass phase content, ceramic filler con-
tent, GC content, processing parameters (e.g., calcination temperature and time), and Dk
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and Df measurements at various operating frequencies. The glass phases comprise two
categories—(1) commercial glass and (2) and glass self-fabricated by ITRI. Commercial
glasses consist of MgO-Al2O3-SiO2 glass (MASG), CaO-B2O3-SiO2 glass (CBSG), borosili-
cate glass (BG), and borosilicate glass + filler (BGF). For CBSG, the database includes two
different compositions—one with higher SiO2 content and the other with higher B2O3
content. For the convenience of reference in the following discussion, we refer to the
CBSG with higher SiO2 content as “CBSG-S,” and the one with higher B2O3 content as
“CBSG-B.” Self-fabricated glass comprises mainly of MgO-Al2O3-SiO2-based glass (MAS),
with a few data points for Li2O-Al2O3-SiO2-based glass and Al2O3-SiO2-based glass. MAS
consists of different oxide compositions, i.e., different compositions of MgO, Al2O3, SiO2,
and other relevant oxides. The ceramic filler and GC in the database are alumina and
cordierite, respectively. A given self-fabricated glass might be chosen with a given mole
percent and added into a glass or GCC comprising commercial glass, ceramic filler, and/or
GC in order to tailor the microstructure and the corresponding properties. For example,
2 mol% MAS was added in a GCC composed of 30 wt.% alumina, 20 wt.% cordierite, and
50 wt.% CBSG-S. Processing parameters consist of three stages of calcination at various
temperatures and times. We used T1, T2, and T3 throughout this article to represent the
first to third calcination temperatures, while used time_1, time_2, and time_3 to represent
the first to third calcination times, respectively (e.g., T1 and time_1 represent the first stage
calcination temperature and time). Dk and Df values were measured at four different oper-
ating frequencies in the database, including 0.1, 1, 10, and 11 GHz, but mainly at 1 GHz. In
the present study, the data measured at 1 GHz was pulled out to become an initial data
set, which had a total number of 116 data points. Table 1 shows the feature information of
these 116 data points. A principle component analysis (PCA) and k-means method from
the scikit-learn library [19] were used for analyzing the data clustering in the initial data
set. The proposed machining learning models for Dk and Df were thus developed on one
of the clusters (see Section 3.1) with 63 data points. The proposed machine learning models
are referred to as “the proposed models” in the following discussion.

Table 1. The feature information of the initial data set (number of data points = 116).

Feature Maximum Minimum Average Standard
Deviation Unit Category

Dielectric constant (Dk)
at 1 GHz 7.8 2.71 5.33 1 - Target feature

Dissipation factor (Df )
at 1 GHz 16.7 × 10−3 0.07 × 10−3 2.7 × 10−3 3.4 × 10−3 - Target feature

Al2O3 (Alumina) 50 0 8.5 16.1 wt.% Ceramic filler
Mg2Al4Si5O18 (Cordierite) 72.9 0 9.9 19.8 wt.% Glass-ceramic

Borosilicate glass + filler (BGF) 100 0 3.7 18.4 wt.% Glass phase
MgO-Al2O3-SiO2 glass

(MASG) 100 0 7.7 26.7 wt.% Glass phase

CaO-B2O3-SiO2 glass (high
SiO2, CBSG-S) 100 0 25.8 31.6 wt.% Glass phase

Borosilicate glass (BG) 55 0 6.7 14.4 wt.% Glass phase
CaO-B2O3-SiO2 glass (high

B2O3, CBSG-B) 100 0 26.5 39.6 wt.% Glass phase

MgO-Al2O3-SiO2-based
ceramic (MAS) 100 0 5.6 15.6 mol% Glass phase

First stage calcination
temperature (T1) 1650 27 373.7 386.0 ◦C Processing

parameter
Second stage calcination

temperature (T2) 750 27 599.3 263.8 ◦C Processing
parameter

Third stage calcination
temperature (T3) 1200 27 852.0 85.6 ◦C Processing

parameter
First stage calcination time

(time_1) 3 0 2.7 0.7 h Processing
parameter

Second stage calcination time
(time_2) 2 0 1.6 0.8 h Processing

parameter
Third stage calcination time

(time_3) 2 0 1.3 0.8 h Processing
parameter
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Table 2 shows the feature information of the 63 data points after the PCA and k-means
analysis used in developing the proposed models. The input features consisted of the glass
phase content, GC (i.e., cordierite) content, ceramic filler (i.e., alumina) content, and the
processing parameters. The glass phases were MASG, CBSG-S, CBSG-B, BG, and MAS.
MAS had a constant composition of MgO, Al2O3, SiO2, and other relevant oxides. T1
and time_1 was constant at 750 ◦C and 3 h, respectively, while T2, T3, time_2 and time_3
remained variables. Note that, in Table 2, we defined two further features labeled as the X
stage calcination reaction product (TX_R) and X stage calcination temperature and time
product (TX_time), where X = second (2) or third (3). TX_R was defined as the calcination
time multiplied by exp

(
−1

calcination temperature

)
, while TX_time was defined as the calcination

time multiplied by the calcination temperature. We found that these features showed a
better model fit, for which the details are discussed in Section 3.1.

Table 2. The feature information of the data set used in the proposed models (number of data points = 63).

Feature Maximum Minimum Average Standard
Deviation Unit Category

Dielectric constant (Dk)
at 1 GHz 7.8 2.79 5.3 0.97 - Target feature

Dissipation factor (Df )
at 1 GHz 17.6 × 10−3 0.34 × 10−3 2.74 × 10−3 3.57 × 10−3 - Target feature

Al2O3 (Alumina) 50 0 20.16 19.6 wt.% Ceramic filler
Mg2Al4Si5O18 (Cordierite) 70 0 14.29 21.27 wt.% Glass-ceramic

MgO-Al2O3-SiO2 glass
(MASG) 100 0 7.94 27.03 wt.% Glass phase

CaO-B2O3-SiO2 glass (high
SiO2, CBSG-S) 100 0 37.6 30.61 wt.% Glass phase

Borosilicate glass (BG) 55 0 7.72 14.88 wt.% Glass phase
CaO-B2O3-SiO2 glass (high

B2O3, CBSG-B) 75 0 7.54 19.6 wt.% Glass phase

MgO-Al2O3-SiO2-based
ceramic (MAS) 100 2 8.49 20.54 mol% Glass phase

Second stage calcination
temperature (T2) 760 650 711.1 42.5 ◦C Processing

parameter
Third stage calcination

temperature (T3) 1200 27 848.8 116.0 ◦C Processing
parameter

Second stage calcination time
(time_2) 2 0.5 1.93 0.32 h Processing

parameter
Third stage calcination time

(time_3) 2 0 1.60 0.71 h Processing
parameter

Second stage calcination
reaction product (T2_R) 2 0.5 1.93 0.32 h/K Processing

parameter
Third stage calcination
reaction product (T3_R) 2 0 1.6 0.71 h/K Processing

parameter
Second stage calcination

temperature and time product
(T2_time)

2400 0 1382.54 613.73 ◦C × h Processing
parameter

Third stage calcination
temperature and time product

(T3_time)
1500 375 1368.65 237.04 ◦C × h Processing

parameter

2.2. Machine Learning Modeling

The machine learning model used in this work was the Gaussian kernel ridge regres-
sion (GKRR). The GKRR model uses the radial basis function kernel, where a hyperparam-
eter γ represents the length scale between two given features. The Gaussian kernel has the
form shown in Equation (1):

kij = exp
(
−γ‖ xi − xj ‖2

)
(1)

where xi and xj are given features vectors for LTCC i and j. kij ranges from 0, which occurs
when all the LTCCs j are infinitely far from LTCC i as measured by the kernel, to 1, which
occurs when all the LTCCs j are infinitely close to LTCC i as measured by the kernel. The
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ridge regression uses a hyperparameter α as the coefficient of the L2-norm to penalize the
fitting coefficients. The cost function Φ thus has the matrix form shown in Equation (2):

Φ = ||Y− Kβ||22 + αβTKβ (2)

where Y is the target feature, K is the Gaussian kernel, and β are the kernel regression coef-
ficients. The model analysis and exploration were primarily performed with the MAterials
Simulation Toolkit for Machine Learning (MAST-ML, version 3.x, University of Wisconsin-
Madison Computational Materials Group, Madison, WI, USA.) [20], an open-source Python
package with scikit-learn [19] library to automate machine learning workflows and model
assessments. The hyperparameters (α, γ) of the GKRR model were optimized using a
genetic algorithm (GA) with the five-fold cross validation (CV) root-mean-square error
(RMSE) as the scoring metric. Table 3 shows the optimized hyperparameters of Dk and
Df models.

Table 3. The optimized hyperparameters of Dk and Df models.

Model α γ

Dk model 0.0012 0.3530
Df model 0.0420 3.2551

2.3. Model Assessment

A five-fold CV was used to assess the predictive ability of the model. The five-fold
CV randomly partitioned the data set into five folds and took four of them as the training
sub-dataset to build a GKRR model, with the remaining fold was used as the validation
sub-data set. The CV process was repeated five times in one iteration, with each of the folds
used exactly once as the validation dataset. The five-fold CV was repeated for 20 iterations.
The 20 results were averaged to yield one prediction for each data point, and the average
RMSE of these predictions was called the five-fold CV RMSE. The error bar for the five-fold
CV RMSE was the standard deviation of the distribution of the RMSE values from the
20 iterations. The R2 score of the model was calculated, for which the method can be found
elsewhere [15]. A randomized test was used to determine whether the model fitted to
physical correlations that are not real. A randomized test involves randomly associating
each Dk or Df with a given feature vector, but not the correct one. This gives a new data
set that is exactly like the original one in terms of the actual values, where all the physical
associations of the features and Dk or Df were removed. A five-fold CV was then performed
for these randomized data to show the RMSE and R2 score. The interpolative quality of
the model was examined using a cross-plot analysis, which shows how well the model
predicted the target against a given variable with all the other variables held constant. A
pair plot was generated using Python Library Seaborn [21].

3. Results and Discussion
3.1. Model Development

We intended to use the initial data set with 116 data points (see Table 1) to develop
machine learning models for Dk and Df ; however, we failed to develop decent models.
In developing the model for Dk, the best five-fold CV RMSE was 0.64; the CV RMSE
over the standard deviation of the data set (RMSE/σ) was 0.12, and the R2 was only 0.28.
The optimal input feature vector was found to be T1, T2, T3, alumina, cordierite, MASG,
CBSG-S, CBSG-B, BG, BGF, and MAS. Two issues were raised: (1) The model did not
capture the calcination time; (2) in the initial data set, because MgO, Al2O3, SiO2, and the
other relevant oxides content were not constant in MAS, the oxide composition should
also be considered as part of the input features. Nevertheless, the model did not capture
the oxide composition either. Similar circumstances were found when developing the
Df model. We suspected that there was data bias due to clustering originated from the
unbalancing weight of the limited data sampling. To examine the clustering issue, we
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performed the PCA and k-means method and show the cluster plot in Figure 1. There were
two groups that were apparent in the cluster plot, i.e., the green group and the red group.
Red points were found much closer to the clustering center than the green one. After
careful examination of the data set, we found that the red group shared the same oxide
composition in MAS, while the green group did not. In other words, the oxide composition
in MAS could be held constant when using the red group data as the training data set. On
the other hand, the first stage of the calcination temperature and time (i.e., T1 = 750 ◦C,
time_1 = 3 h), as well as the BGF content (i.e., BGF = 0 wt.%) were also constant in the red
group. Figure 2 shows a pair plot of the glass, ceramic filler, and GC content distribution
in the red group data. The scattered points in the plot show how the data sampled along
the composition spaces. We thus pulled out the red group data with a total number of 63
data points to build Dk and Df models (see Table 2 for the feature information). By using a
cluster plot analysis, feature dimensions and complexity were reduced although we paid
the price of losing some data. Nevertheless, it was still better than having models that were
not consistent with the actual experimental fabrication process.
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When developing Dk and Df models using the red group data, we firstly explored the
optimal input feature vector. Figure 3 shows the five-fold CV RMSE vs. the top 12 input
features, where the plot was sorted based on the CV RMSE values. The x-axis shows the
input feature used in building the model. We showed only the processing parameters in
the x-axis label because the glass, ceramic filler, and GC content (i.e., alumina, cordierite,
MASG, CBSG-S, CBSG-B, BG, and MAS) remained the same in each feature vector. For
instance, “T3_R” in Figure 3a means we used T3_R, alumina, cordierite, MASG, CBSG-S,
CBSG-B, BG, and MAS as the input for building Dk model. This input feature showed the
lowest CV RMSE for Dk model. “T2_time, T3_time” in Figure 3b means we used T2_time,
T3_time, alumina, cordierite, MASG, CBSG-S, CBSG-B, BG, and MAS as the input for
building Df model and that this input feature showed the lowest CV RMSE for Df model.
Note that, in Figure 3a, even though “T2_R, T3_R” showed the third-lowest CV RMSE, the
difference in the RMSE between the lowest one was only 0.01. On the other hand, using the
“T2_R, T3_R” feature set would be more consistent with actual experimental conditions.
We felt that the model was actually capturing the real processing parameters, but due to
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the limited sampling of the data set, a numerical fitting issue occurred. Therefore, we
manually selected the T2_R, T3_R, alumina, cordierite, MASG, CBSG-S, CBSG-B, BG, and
MAS as the input for building Dk model. We did our best to explore as many processing
parameter combinations as possible to see if the models could be further improved. For
instance, we attempted to multiply the T2 term by the T3 term to see if coupling between
the processing temperatures occurred. Nevertheless, it turned out that these CV RMSEs
were not further improved. Overall, the designed features of T2_R, T3_R, T2_time, and
T3_time worked better than using T2, T3, time_2, and time_3 directly. This may suggest
some underlying physics in terms of Dk and Df function that works against the processing
parameters although the physics is not easily examined directly using a machine learning
model. Using “T2_R, T3_R” or “T2_time, T3_time” also helped to reduce the number of
feature dimensions and helped avoid the overfitting issue. In the meantime, the models
built on these features were consistent with the real processing circumstances.
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3.2. Model Assessment

Figure 4a,b show the parity plots of the full-fit for the proposed Dk and Df models
fitted to the optimal features, respectively. The RMSE was 0.37, the RMSE/σ was 0.38, and
the R2 was 0.82 for Dk model. The RMSE was 0.39 × 10−3, the RMSE/σ was 0.11, and
the R2 was 0.99 for Df model. Figure 4c,d show the parity plots of the five-fold CV for
the proposed Dk and Df models, respectively. The CV RMSE was 0.59, the CV RMSE /σ
was 0.61, and the R2 was 0.57 for the Dk model. The CV RMSE was 1.12 × 10−3, the CV
RMSE/σ was 0.31, and the R2 was 0.91 for the Df model. Overall, the RMSE/σ values
were all less than one, which suggests that our models captured the complex Dk and Df
properties by providing information only for the glass, ceramic filler, GC content, and the
processing parameters. Figure 4e,f show the residual plots of the five-fold CV, for which
the results showed an approximately normal distribution. This suggests that the choice of
the GKRR model was appropriate.
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Due to a rather small scale of the data set with limited sampling (see Figure 2), it is
conceivable that the model may not fit the correct physical correlations. To investigate this,
we performed a randomized test [15]. Figure 5a,b shows the parity plots of the randomized
tests for Dk and Df models, respectively. The RMSE was 1.19, the RMSE/σ was 1.22, and
the R2 was −1.58 for Dk model in the randomized test. The RMSE was 4.33 × 10−3; the
RMSE/σ was 1.21, and the R2 was −0.94 for Df model in randomized test. All models for
the randomized test were significantly worse than the models for the original data fits. The
results suggest that the models for the original data were physically meaningful.
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3.3. Dk and Df Exploration

Because the data set was rather small and sampling was less homogeneous, it would
be difficult to obtain an accurate prediction from extrapolation. Nevertheless, exploring
potential LTCC candidates within the composition range of the data set as an interpolation
would be still beneficial, especially in the relatively uniform composition spaces shown in
Figure 2, e.g., in the alumina, cordierite, and CBSG-S spaces. To see how Dk and Df evolved
along these feature spaces within the data set range, we performed a cross-plot analysis. We
chose T2 = 700 ◦C, time_2 = 2 h, T3 = 850 ◦C, time_3 = 2 h (i.e., T2_R, and T3_R (T2_time, and
T3_time) were set at 1.9979, and 1.9982 h/K (1400, and 1700 ◦C × h)), CBSG-S = 50 wt.%,
MAS = 2 mol%, and all the other glass phases = 0 wt.% for the analysis because a series of
LTCCs was fabricated at this range in the data set. Figure 6 shows the cross plot of Dk and
Df against alumina and cordierite content. We found that Dk increased when the alumina
content increased, as shown in Figure 6a. Df in general increased when the alumina content
was increased until 40 wt.% and then decreased when alumina content was higher than
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40 wt.%, as shown in Figure 6b. A small hump of Df increase at the alumina content of 0
to 5 wt.% was also found. Prediction for Df was slightly higher than the measured data
but the difference was minor. Overall, the trend between the real measurements and the
machine learning prediction agreed well with each other. From the cross plots, one would
expect to obtain low Dk and Df values at a low (high) alumina (cordierite) content.
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Figure 6. Cross plot of (a) Dk and (b) Df against the alumina and cordierite content. MAS was
2 mol%, T2_R, T3_R (T2_time, T3_time) were at 1.9979, 1.9982 h/K (1400, 1700 ◦C × h), and CBSG-S
was 50 wt.%. All the other glass phase contents were zero.

As the goal for the proposed models is to explore potential LTCCs which have both
low Dk and Df values to control signal delay and energy loss, a property contour plot
would be visually useful to define the region fulfilling the given criteria. We followed
the criteria provided in Ref [5], i.e., the notion that Dk and Df should be lower than 10
and 2 × 10−3, respectively. We therefore set these criteria for the property contour plot
and explored potential candidates within the alumina, cordierite, and CBSG-S content.
MAS was again chosen at 2 mol%, and T2_R, T3_R (T2_time, T3_time) were set at 1.9979,
1.9982 h/K (1400, 1700 ◦C × h), respectively. All the other glass phase contents were set at
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zero. Figure 7 shows the property contour plot. The blue and red regions represent the
LTCCs that fulfilled one, and fulfilled both criteria, respectively. This contour plot reveals
that if one chooses the compositions in the red region and calcinates them in three different
stages, i.e., (1) 750 ◦C for 3 h, (2) 700 ◦C for 2h, and then (3) 850 ◦C for 2 h, these LTCCs will
be likely to have Dk and Df values less than 10 and 2 × 10−3, respectively, at an operating
frequency of 1 GHz. The plot provides a quick guideline for developing potential LTCCs
with low Dk and Df values, as well as for saving both time and cost. Once more data
become available, the proposed models could be further improved and extended to more
complex systems.
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glass was 2 mol%, and the first to third calcination temperatures (time) were 750 ◦C, 700 ◦C, and
850 ◦C (3 h, 2 h, and 2 h), respectively. All the other glass phase contents were zero. The operating
frequency was set at 1 GHz.

4. Conclusions

In this paper, we built machine learning models for predicting Dk and Df, and explored
potential LTCCs with low Dk and Df values. Data at an operating frequency of 1 GHz
were pulled out from the ITRI-LTCC database to build models. PCA and k-means methods
were initially performed to visually analyze data clustering and to reduce the dimension
complexity that inherently caused the model to fail. In optimizing the input features, we
found that using the calcination reaction product (i.e., T2_R and T3_R), as well as the
calcination temperature and time product (i.e., T2_time and T3_time), led to a better model
performance (i.e., a lower five-fold CV RMSE) as opposed to using temperature and time
separately (i.e., T2, T3, time_2 and time_3) for building Dk and Df models, respectively. The
five-fold CV RMSE was 0.59, the CV RMSE/σ was 0.61, and the R2 was 0.57 for the Dk
model. The CV RMSE was 1.12 × 10−3, the CV RMSE/σ was 0.31, and the R2 was 0.91
for the Df model. CV results suggest that the proposed models captured the complex Dk
and Df properties. Randomized test showed a worse model performance than that for
the original data fits. It suggests that the proposed models were not only numerical due
to the rather small data set, but were physically meaningful. Cross-plot analysis showed
that the machine learning prediction agreed well with the real measurements. Cross-plot
analysis suggests that the proposed models had the potential to predict Dk and Df within
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the input feature ranges as an interpolation. A property contour plot was built to explore
LTCCs for real applications with Dk and Df values less than 10 and 2 × 10−3, respectively,
at an operating frequency of 1 GHz. Explorative models were obtained in the current work,
and the models can be further improved as new data become available in the future. The
proposed machine learning models can potentially be utilized to accelerate the design of
LTCCs used in fifth-generation telecommunications.
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