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Abstract: In the present paper, we investigate how the optical and structural properties, in particular
the observed photoluminescence (PL) of photocurable and organic-inorganic TiO2-SiO2 sol-gel
films doped with Rhodamine 6G (R6G) are affected by γ-rays. For this, four luminescent films,
firstly polymerized with UV photons (365 nm), were submitted to different accumulated doses of
50 kGy, 200 kGy, 500 kGy and 1 MGy while one sample was kept as a reference and unirradiated.
The PL, recorded under excitations at 365 nm, 442 nm and 488 nm clearly evidences that a strong
signal peaking at 564 nm is still largely present in the γ-irradiated samples. In addition, M-lines
and Fourier-transform infrared (FTIR) spectroscopies are used to quantify the radiation induced
refractive index variation and the chemical changes, respectively. Results show that a refractive index
decrease of 7 × 10−3 at 633 nm is achieved at a 1 MGy accumulated dose while a photo-induced
polymerization occurs, related to the consumption of CH=C, Si-OH and Si-O-CH3 groups to form
Ti-O and Si-O bonds. All these results confirm that the host matrix (TiO2-SiO2) and R6G fluorophores
successfully withstand the hard γ-ray exposure, opening the way to the use of this material for
sensing applications in radiation-rich environments.

Keywords: Rhodamine 6G; sol-gel films; photoluminescence; γ-rays; FTIR spectroscopy;
photobleaching

1. Introduction

The sol-gel process is a powerful technique used for the manufacturing of low-cost
transparent materials. Based on hydrolysis and condensation reactions [1], this chemistry
route clearly evidences its impact by the diversity and abundance of applicative fields.
Among all these applications, we can mention the development of protective coatings to
prevent corrosion phenomena [2,3], sol-gel layers possessing flame-retardant properties [4],
gas and pH sensors [5,6]. The sol-gel is also widely used in the field of photonics, such as
the fabrication of optical waveguides with low losses operating in the telecommunication
ranges [7,8] where applications can be found in the aerospace domain [9] or diffraction
gratings [10,11] for producing antireflection layers in the solar energy field [12]. In our
case, the potential of the sol-gel material is investigated in the framework of the ADD-ON
European project targeting to develop new generation of sol-gel based sensors for structural
health monitoring of aircrafts [9].

More specifically, regarding the sol-gel elaboration, metal alkoxides precursors are
exploited in order to generate an inorganic metal oxides matrix such as TiO2, ZrO2, SiO2 or
combinations thereof. In addition, a significant advantage relies in tailoring the produced
material by varying the precursor concentration thus adjusting their optical or mechanical
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properties. Using precursors containing an organic chain is of great interest since a UV pho-
tosensitivity can be induced while it can also be achieved (or enhanced) by incorporation
of commercial photoinitiators [13,14]. This opens the way to the creation of photopat-
ternable materials by coupling amplitude photomask lithography or direct laser writing
techniques [9,15]. Basically, photosensitive sol-gel layers are known to act as negative
photoresists: the region insolated through UV photons is polymerized implying a densified
pattern. After development in a proper alcoholic solution, the unexposed zone is dissolved
revealing the final structure. Interestingly, additional functionalities can be obtained by
incorporating specific molecules or nanocrystals during the sol-gel elaboration. It is thus
possible to have access to photocurable sol-gel dedicated to magneto-optic application
by adding cobalt ferrite [16] or even to the creation of fluorescent materials [17]. Among
all the proposed fluorophores, Rhodamine 6G (R6G) has attracted particular attention for
several years and was largely studied [18–21]. This organic dye, from the xanthene family,
is extensively used in optics, spectroscopy and in laser fields due to its intense fluorescence
namely in the 500–600 nm range [22]. Moreover, several applications can be found in the
literature where the evolution of its luminescent properties can be of interest regarding
potential temperature sensing abilities [23] or in more exotic fields such as biomarkers [24].
R6G is known to be degraded after intense light exposure inducing a decrease in the
fluorescence efficiency [18] namely after probing in the ultraviolet (UV) region [25]. To our
knowledge, no study was performed regarding the impact of γ-ray irradiation on such dye.
In this paper, a detailed investigation on the PL properties of a hybrid TiO2-SiO2 sol-gel
doped with R6G is presented. After being γ-irradiated with several accumulated doses
up to 1 MGy (1 Gy = 1 J/kg), the samples were characterized by PL, Fourier-transform
infrared (FTIR) and M-lines spectroscopies in order to check a potential impact of hard
γ-rays exposure. Our objective is to assess if the properties of those materials, particularly
their luminescence responses, could be degraded by the X-ray imaging inspections of the
aircrafts during their maintenance phase.

2. Materials and Methods

For all the experiments presented in this manuscript, we have used an organic-
inorganic TiO2-SiO2 sol-gel whose chemical reagents were provided by Sigma-Aldrich
(Saint-Quentin Fallavier, France). This latter was already investigated and developed in our
previous studies [9,26] and a more detailed description is given in Figure 1. The proposed
sol-gel is composed by titanium (IV) isopropoxide (TTIP) and 3-(trimethoxysilyl)propyl
methacrylate (TMSPMA) acting as titanium and silicate precursors respectively. In particu-
lar, two preliminary solutions are prepared: TMSPMA is mixed with HCl so as to achieve a
partial hydrolysis (solution A) while TTIP is chelated with 2-(methacryloyloxy)ethyl ace-
toacetate (AAEM) and denoted as solution B. The corresponding molar ratios Ti:Si:AAEM
are 10:10:5.5. Solutions A and B are mixed and distilled water is incorporated to obtain a
total hydrolysis. As mentioned earlier, using an organic-inorganic sol-gel allows having
access to a UV photosensitivity. Although our sol-gels are photosensitive with respect to
UV photons or X-rays [26], a 2,2-dimethoxy-2-phenylacetophenone (DMPA) photo-initiator
in the form of 0.7 wt.% is added to enhance the photopolymerization. In order to have
access to fluorescent sol-gels, we have incorporated Rhodamine 6G (dye content 95%), an
organic compound widely used in laser due to the very high quantum yield of fluorescence
and emission in the visible part between roughly 500 and 600 nm [22]. To this aim, R6G
is pre-dissolved in ethanol and added to the mixture in the form of 1wt.%. The choice
of ethanol is made among several organic solvents regarding a previous study where
authors showed that a high solubility is achieved without any significant influence in the
fluorescence efficiency [27]. After the solution elaboration, the mixture is filtered at 0.2 µm
and aged for 2 days before any use.
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Figure 1. Elaboration of the TiO2-SiO2 sol-gel doped with Rhodamine 6G (R6G) in the form of 1wt.%.
R6G is pre-dissolved in ethanol before incorporation in the solution. Adapted from [26].

The hybrid silica-titania sol-gels are then coated on several substrates (borofloat33,
silicon or soda-lime glass) depending on the performed characterization. All the layers
were deposited in clean room at fixed hygrometry and temperature using the spin coating
approach, resulting in film thicknesses of 1.9 µm obtained by profilometer measurements.
After the deposition, the sol-gel was pre-baked at 60 ◦C during 5 min to pre-densify the
layer but also to evaporate the solvents. The photolithography process is a necessary step
in order to induce the polymerization of the layers and by extension the creation of patterns.
For this purpose, the insolation was performed using a UV chamber consisting on a Light
Emitting Diode (LED) matrix providing UV photons at 365 nm (3.4 eV). This latter results
in a 10 cm squared light source and the distance between the LEDs and the films can be
adjusted so that the fluence can be easily controlled. All the samples were submitted to a
180 J/cm2 fluence. Interestingly, patterns can be created by coupling UV insolation and an
amplitude photomask placed along the optical path above the substrate with the sol-gel
layer as shown in Figure 2a. Insofar as the sol-gel based organo TiO2-SiO2 reacts as a
negative photoresist, the regions that have not been exposed to UV photons are dissolved
during the development process in a butyl alcohol solution revealing an example of pattern
(QR-code) represented in Figure 2b. For this latter, the red zones correspond to the R6G
doped TiO2-SiO2 sol-gel exposed to UV photons. Finally, after the light exposure and the
development process, all the layers were submitted to a final thermal treatment at 90 ◦C
during 30 min in order to stabilize the films.

In order to highlight a possible impact of hard γ-ray photons on the luminescent
properties and on the degradation of the sol-gel layers, the different samples containing
the UV exposed layers were submitted to a 60Co γ-ray source (1.17 and 1.33 MeV) at the
IRSN IRMA facility (Saclay, France). The distance between the 60Co source and the layers
governs the dose rate (Gy/s) thus defining the total accumulated dose. Four samples were
then irradiated at different dose rates of 0.13 kGy/h, 0.52 kGy/h, 1.3 kGy/h and 2.6 kGy/h
resulting in accumulated doses of 50 kGy, 200 kGy, 500 kGy and 1 MGy, respectively, while
a pristine sample (only UV exposure) was kept as a reference (0 Gy).
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Figure 2. Example of photolithography process. (a) Photomask lithography technique on R6G TiO2-
SiO2 sol-gel layers. (b) Picture of a pattern (QR-code) that can be achieved using the UV photomask
approach. The red part corresponds to the UV exposed part and is still present after development in
a butanol solution. All the doped layers are exposed to UV photons (365 nm) at 180 J/cm2.

The layers were characterized in terms of PL via a Horiba Jovin Yvon confocal mi-
crospectrometer (Longjumeau, France) using a He-Cd laser operating at 442 nm (2.81 eV)
and an Argon ion (Ar+) laser providing photons at 488 nm (2.54 eV), where their respective
powers can be adjusted using filters from 0.01% to 100% of the total laser power. For each
configuration, the different sources are focused into the sol-gel layers. More specifically,
an Olympus Mplan N100x (NA = 0.9) is used for the two different visible wavelengths
(442 nm and 488 nm). All the PL spectra were recorded with a 150 l/mm grating, thus
defining a spectral resolution of 0.376 nm. In addition to these two excitation wavelengths,
a UV lamp (UVLS-28) providing a uniform and intense light source at 365 nm (8 W) is
employed to visually check the impact of γ-rays on the PL of the structured sol-gel patterns.
The different layers were also characterized using a Nicolet iS20 Fourier transform infrared
(FTIR) spectrometer (Thermo Scientific, Waltham, MA, USA) operating in attenuated total
reflectance (ATR) with a resolution of 0.482 cm−1. For this latter, the sol-gel layers should
be deposited on Si substrates as it is transparent in the far infra-red (IR) region. A Cary
series UV-Vis-NIR spectrophotometer (Agilent technologies, Santa Clara, CA, USA) with
a 1 nm resolution is employed to have access to the impact of the R6G incorporated in
the TiO2-SiO2 solution namely in terms of absorption bands. Finally, the refractive index
at 633 nm is evaluated using the M-lines spectroscopy [28] at room temperature. This
technique being based on the optical guided modes propagating inside the sol-gel layer,
it is thus crucial to have the most important refractive index contrast between the layer
and the substrate. To this particular investigation, the films were deposited on a borofloat
33 glass substrate, whose refractive index is 1.47 at 633 nm while the TiO2-SiO2 one is
roughly 1.58 ensuring important guiding properties.

3. Results
3.1. Absorption and PL Characterization of R6G Doped Sol-Gel Films

This part is dedicated to the impact of the R6G incorporation in the TiO2-SiO2 sol-
gel. We underline that the results presented in this section correspond to pristine sample
(0 Gy) thermally treated only and exposed to UV photons (180 J/cm2), as described in
Section 2. To this aim, absorption spectroscopy in the [300 nm–1000 nm] spectral range
was performed in order to have access to potential bands induced by the incorporation of
R6G molecules in TiO2-SiO2 sol-gels. Figure 3 reveals spectra of films prepared from an
undoped titania-silica sol-gel film (black line) and a R6G doped TiO2-SiO2 film at 1wt.%
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(red line). It is important to mention that the given spectra correspond to the sole response
of the films as the soda-lime glass substrate was taken as reference when acquiring the
absorbance signatures. First of all, the undoped film is transparent in the visible range
while a strong absorption is present in the UV region, as already observed by other authors
regarding titania-silica based materials with different chelating agents [29]. The absorption
spectrum of the doped film highlights the effect of R6G incorporation with the presence of
an intense absorption band peaking at 526 nm. More specifically, by making the absorption
difference between the doped film and the undoped one, as shown in the inset of Figure 3,
we can clearly reveal the contribution of R6G with additional absorptions ranging from
roughly 330 nm to 570 nm. The three wavelengths (365 nm, 442 nm and 488 nm) used
for probing the luminescence of the samples are also highlighted showing that weak and
strong absorption regions are investigated.
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Figure 3. Absorption spectra obtained before γ irradiation on a titania-silica sol-gel film (black
line) and a R6G doped sample at 1wt.% (red line). The inset shows the contribution of R6G and
corresponds to the absorption difference between the doped and the undoped samples.

In addition to the absorption, the layers were characterized in terms of PL. Figure 4a
reveals the PL signal after probing an undoped sol-gel film using lasers operating at 442 nm
(black line) and 488 nm (red line) with power densities of 58 W/cm2 and 25 W/cm2,
respectively. Through this graph, it is obvious that no PL signal is present under excitation
with these two laser sources. The R6G doped sol-gels were also probed and the results are
synthesized in Figure 4b. A very intense PL can be achieved under excitation at 442 nm
(black line) and 488 nm (red line). In both cases, we can observe an emission band peaking
at roughly 564 nm. Despite a lower power density, we note that a stronger PL signal is
obtained for a 488 nm excitation. This behavior was expected since a more important
absorption occurs at this particular wavelength compared with 442 nm as illustrated in
Figure 3. Finally, visual observations regarding the PL are presented in Figure 4c. On
the left is imaged a QR-code architecture (25 × 25 mm2) under visible light while the
same structure shows a strong luminescence under excitation at 365 nm (8 W). This clearly
evidences a stokes shift from a green absorption (peaking at 526 nm) to a yellow-orange
fluorescence (peaking at 564 nm) and a successful incorporation of R6G into the TiO2-SiO2
sol-gel matrix.
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Figure 4. PL study under excitation at 442 nm and 488 nm for an undoped TiO2-SiO2 sol-gel film (a) and a R6G doped
sol-gel layer (b). A visual observation of the PL is given under excitation of a QR-code architecture (25 × 25 mm2) at
365 nm (c).

3.2. Photobleaching under Visible Light Exposure

Rhodamine molecules are known to be degraded under intense light exposure and
repeated excitation leading to a decrease of the PL efficiency [25]. The fluorescence response
of the sol-gel layers exposed to γ photons will be obtained using two wavelengths: 442 nm
and 488 nm. It is thus essential to find the best conditions, in terms of power density and
acquisition time, in order to avoid a potential photobleaching effect due to visible exposure
while probing the γ exposed R6G TiO2-SiO2 sol-gel layers. To this aim, we have studied the
photodegradation using these two particular wavelengths, by varying both power densities
(filters at 1%, 0.1% and 0.01%) and exposure times up to 10 min. The results regarding the
photodegradation under a 442 nm excitation are presented in Figure 5a at 5.8 kW/cm2

(black), 580 W/cm2 (red) and 58 W/cm2 (blue). For the highest power density, we can
observe a very strong decrease in the PL efficiency down to roughly 33% of the initial PL
after 10 s of irradiation while a stabilization seems occuring for higher exposure times. As
expected, R6G is less affected when the power density is decreased. As for instance, using
the lowest one possible in this experiment (58 W/cm2), 99% of the initial PL intensity is
still present after a probing duration of 10 s. The exact same experiment was performed
for the 488 nm excitation and the results are depicted in Figure 5b. For this latter, we can
observe the same behavior insofar as a dramatic decrease of the PL occurs for high power
densities. As a consequence, in order to probe the layers exposed to γ-rays and avoid any
photobleaching effect, all the samples presented in the following part are characterized at
58 W/cm2 (442 nm) and 25 W/cm2 (488 nm) with an acquisition time of 1 s. Under these
specific conditions, the probing process does not alter R6G molecules incorporated in the
sol-gel matrix.

Additionally to the passivation of R6G, we can observe a negative shift of the PL
band as illustrated in Figure 5c under excitation at 442 nm. As suggested by Figure 5a,
the negative shift is more and more important by increasing the power density to reach a
blue shift of 6.4 nm and 2.6 nm after a 600 s irradiation time for the highest (5.8 kW/cm2)
and lowest power densities (58 W/cm2), respectively. The same behavior is obtained by
exciting at 488 nm. Interestingly, such blue-shifting was also observed by decreasing the
R6G concentration [27]. In our particular case, we can reasonably presume that during the
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intense light exposure, R6G is degraded by a series of bond breaking events, destroying
chromophoric groups and explaining the negative shift observed in Figure 5c.
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Figure 5. Degradation of the R6G luminescence under excitation at 442 nm with power densities
of 5.8 kW/cm2, 580 W/cm2 and 58 W/cm2 (a). Degradation of the PL under excitation at 488 nm
(2.5 kW/cm2, 250 W/cm2 and 25 W/cm2 (b). Negative shift of the PL band under excitation at
442 nm (c).

3.3. PL Properties after γ-ray Exposure

After the sol-gel film preparation, as described in Section 2, samples were submitted
to γ-rays at room temperature and at different accumulated doses up to 1 MGy. More
specifically, the effect on their PL properties was investigated and all the results are pre-
sented in Figure 6. First of all, we have made a visual observation under excitation at
365 nm (Figure 6a). In the present image, all the accumulated doses are represented (50 kGy,
200 kGy, 500 kGy and 1 MGy) while one pristine layer was only exposed to UV photons.
It is evident that TiO2-SiO2 sol-gel films successfully withstand the hard γ-rays exposure
even for the highest accumulated dose (1 MGy). In addition, a quantitative study was
performed by recording the PL spectra under excitation at 442 nm (Figure 6b) and 488 nm
(Figure 6c). The sol-gel layers were probed by using the parameters (power density and
exposure time) defined in Section 3.2, so that potential changes in the PL intensity are
only caused by the γ-rays. More specifically, the PL under excitation at 442 nm remains
largely satisfying, where 90% of the initial PL intensity can be observed despite the 1 MGy
accumulated dose. These results are confirmed by probing the samples at 488 nm: the PL
signal is still intense, whatever the accumulated dose, to reach roughly 65% of the pristine
PL intensity. Additionally to the PL investigation, the layers were probed by microscopic
observations revealing that no damage or crack are induced whatever the accumulated
ionizing dose.
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Figure 6. PL study of TiO2-SiO2 sol-gel doped with R6G exposed to γ-rays with accumulated doses
of 50 kGy, 200 kGy, 500 kGy and 1 MGy. Visual observation under a 365 nm (8 W) excitation (a). PL
spectra under excitation at 442 nm (b). PL spectra under excitation at 488 nm (c). The power densities
are 58 W/cm2 and 25 W/cm2 for the 442 nm and 488 nm excitation while the exposure time is 1 s. It
is to note that the PL was normalized with respect to the maximum PL intensity obtained for the
pristine sample.

3.4. FTIR Spectroscopy

FTIR spectroscopy is a powerful technique allowing the chemical and structural char-
acterization of sol-gel materials [30]. It is to remind that the TiO2-SiO2 sol-gel films doped
with R6G are photosensitive with respect to UV photons inducing a photopolymerization
process. As observed by others authors, it is possible to monitor the polymerization de-
gree of hybrid TiO2-SiO2 layers with respect to light exposure [16,29] by investigating the
[800 cm−1–1250 cm−1] range, where inorganic and organic network modifications can be
observed. In order to understand the evolution of R6G doped sol-gel layers under γ-rays
exposure, FTIR spectra were recorded in this particular region for all the accumulated
doses and synthetized in Figure 7. This investigated range is assigned to Ti-O-Ti, Ti-O-Si
optical responses and their potential combinations [16] through a large band peaking at
roughly 890 cm−1. Interestingly, three narrower bands are present and are of great interest
regarding the polymerization evolution. These bands peaking at 813 cm−1, 933 cm−1 and
1160 cm−1 correspond to the stretching vibration of CH=C, Si-OH and Si-O-CH3 groups,
respectively [26,29]. To clearly understand the process involved during the polymerization,
a non-exposed film (grey line), only submitted to thermal treatments, is presented where
the three bands of interest remain intense. After being exposed to UV photons (365 nm,
180 J/cm2), the corresponding FTIR spectrum (black line) reveals a decrease in the 813 cm−1

band intensity compared with the unexposed films, thus evidencing bond breakings of
CH=C and initiation of a polymerization process. Additionally, a decomposition of Si-OH
and Si-O-CH3 groups can be observed through a decrease of their respective intensities
leading to the creation of Ti-O-Si, Ti-O-Ti or Si-O-Si bonds. The layers exposed to UV
photons were also exposed to γ-rays with different accumulated doses of 50 kGy (red line),
200 kGy (blue line), 500 kGy (magenta line) and 1 MGy (green line). Interestingly, despite a
first UV insolation, the samples exposed to γ photons are still photosensitive. A further
polymerization process is evidenced through a strong decrease in the 813 cm−1, 933 cm−1

and 1160 cm−1 bands. Obviously, the decrease is more pronounced for higher accumulated
doses where it seems that the consumption of the organic network is total. Finally, after
a 1 MGy accumulated dose, only the large band peaking at 890 cm−1 is present clearly
revealing that Ti-O or Si-O bonds are unaffected and successfully withstand the irradiation.
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Figure 7. FTIR spectroscopy of organo TiO2-SiO2 films doped with R6G deposited on Si substrate.
The graph represents the non-exposed film (grey line), the UV-exposed film (black line) and the
samples exposed to γ-rays with different accumulated doses of: 50 kGy (red line), 200 kGy (blue line),
500 kGy (magenta line) and 1 MGy (green line). All the layers exposed to γ-rays were first exposed
to UV photons. For better visualization, spectra are vertically shifted.

However, despite the incorporation of R6G, we have no noticeable signature of the
organic dye in the FTIR spectra. This behavior was already observed in [23] where typical
bands attributable to R6G were not detected once incorporated in a silica matrix. Moreover
the R6G being present in a trace quantity in the samples, due to the low thickness of the
thin layers and therefore the low amount of material, was more difficult to detect by FTIR.
It is to remind that Figure 7 displays the results regarding TiO2-SiO2 sol-gel films doped
with R6G. Undoped sol-gel films were also evaluated using FTIR spectroscopy (not shown
here) and the same behavior as Figure 7 occurs.

3.5. Radiation Induced Refractive Index Change

In addition to PL and FTIR studies, the refractive index was also investigated using
the M-lines spectroscopy. This value is of great interest regarding the development of
photonic sensors where a strong refractive index allows having the best performances.
First, we have measured the refractive index of a R6G doped sol-gel and the results are
represented in Figure 8 (red square). A refractive index of 1.597 is measured at 633 nm for
the not-irradiated sample with γ-rays. A decrease of the refractive index can be observed
after the sample has been irradiated. Obviously, the degradation is more important by
increasing the accumulated dose. As for instance, a decrease of the refractive index in
the range of 7 × 10−3 can be achieved at 1MGy. However, in order to evaluate if the
degradation is caused by the organic dye contribution or induced by the precursors used
during the sol-gel elaboration, a second TiO2-SiO2 sol-gel film was prepared without R6G,
exposed to γ-rays and characterized using the same approach (black line). The primary
observation is that the refractive indices are globally lower compared with the R6G doped
sol-gel with an initial value of 1.587 before exposure to γ photons. However, the refractive
indices seem to be rather stable and unaffected despite the different accumulated doses.
This result clearly evidences that the refractive index change observed for the R6G doped
films exposed to different accumulated doses is due to the R6G contribution.
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Figure 8. Refractive index (633 nm) evolution for different accumulated doses of: 0 kGy (pristine
sample), 50 kGy, 200 kGy, 500 kGy and 1 MGy. The investigated films are a R6G doped sol-gel layer
(red square) and an undoped TiO2-SiO2 film (black line). The films were deposited on a borofloat
33 substrate.

4. Conclusions

In the present paper, we have investigated the effect of hard γ-ray photons (1.17 MeV
and 1.33 MeV) on the properties of an organic-inorganic TiO2-SiO2 thin films doped with
R6G. After incorporation in the host matrix, the layers exhibit a strong absorption band
peaking at 526 nm while a very intense PL signal is present at 564 nm. The layers, once
exposed to UV photons (365 nm–180 J/cm2), were submitted to different accumulated
γ-doses up to 1 MGy. PL signals are still largely intense to reach roughly 90% and 65% of
the initial PL intensity under excitation at 442 nm and 488 nm, respectively for the highest
accumulated dose. In addition to the PL study, the refractive index change was monitored
through M-lines spectroscopy. This latter reveals that a decrease in the refractive index can
be observed with a maximum change of 7 × 10−3 after a 1 MGy accumulated dose regarding
the doped sol-gel while no significant variation is highlighted in the undoped sol-gel (host
matrix). Finally, R6G doped sol-gel layers were characterized by FTIR spectroscopy. Even
though the films were preliminary exposed to UV photons, a further polymerization still
occurs under γ-rays exposure up to 1 MGy and is related to the consumption of CH=C,
Si-OH, and Si-O-CH3 groups while the band related to Ti-O or Si-O is unaffected. All these
promising results show that both TiO2-SiO2 sol-gel films and R6G molecules withstand the
hard γ-ray exposure, can operate in a variety of radiation-rich environments and could
resist to the X-ray inspection phases in aerospace domain.
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