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Abstract: Critical dynamic stress (σcri) and accumulative plastic strain (εp) are primary indicators
regarding the dynamic stability of unbound granular materials (UGMs). This study aims to seek an
effective method to evaluate the dynamic stability of UGMs used in railway subgrades. First, the
dynamic characteristics of an UGM used in railway subgrade bed construction were investigated
by performing a series of large-scale cyclic triaxial tests, with the results showing that εp versus
cycle number (N) curves can be categorized into stable, failure, and critical patterns. Grey relational
analyses were then established, where the analyzed results demonstrated that the εp–N curve pattern
and final accumulative plastic strain (εs) of the stable curves are strongly correlated with the moisture
content (w), confining pressure (σ3), and dynamic deviator stress (σd). The analyzed grey relational
grades distributed in a narrow range of 0.72 to 0.81, indicating that w, σ3, and σd have similar degrees
of importance on determining the εp–N curve patterns and the values of εs of the UGM. Finally, a data
processing method using a back-propagation (BP) neural network is introduced to analyze the test
data, and an empirical approach is developed to evaluate the σcri (considering the effects of σ3 and
w) and εs (considering the effects of σ3, w, and σd) of the UGM. The analyzed results illustrated that
the developed method can effectively reflect the linear/non-linear relationships of σcri and εs with
respect to σ3 and/or σd. The σcri approximately increases linearly with increasing σ3, and a simple
empirical formula is proposed for the σcri. In addition, εs and its variation rate increase non-linearly
with increasing σd but decrease non-linearly as σ3 increases.

Keywords: unbound granular materials; critical dynamic stress; accumulative plastic strain; cyclic
triaxial test; BP neural network

1. Introduction

The serviceability of railway tracks is strongly associated with the dynamic stability
of unbound granular layers atop weaker layers of the subgrades, of which the critical
dynamic stress (σcri) and accumulative plastic/permanent stain (εp) are primary indicators
regarding the dynamic stability of unbound granular materials (UGMs) [1–6]. Subgrades
of railways accumulate permanent settlement under dynamic traffic loading, and excessive
accumulative surface settlement typically causes problems, such as vehicle turbulence in
transition sections [7,8], uneven settlement [9–11], and lateral expansion of embankment
shoulders [12–14]. One of the most effective ways to control the accumulative deformation
of subgrades is maintaining the traffic-induced dynamic stress to be less than a critical
value (i.e., the σcri), under which the development rate of εp gradually decreases and can
ultimately cease with an increase in the dynamic loading cycles [5,15,16]. Furthermore, the
rapid development of high-speed transport and heavy-haul freight demands the subgrades
beneath track structures must satisfy strict requirements on accumulative permanent
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settlements [17–19]. Therefore, evaluations of the critical dynamic stress and accumulative
plastic strain of the UGM layers are important in the design of a railway.

The cyclic triaxial test is an efficient way to study the critical dynamic stress of sub-
grade materials [20–23]. Qualitative analyses of critical dynamic stress of different types of
materials showed that σcri is linked to the saturation degree, stress history, and dynamic
loading path of the materials [15,24]. Cheung et al. [25] designated the stress level under
which 1% accumulative permanent strain was generated within 1000 loading cycles as the
σcri. Frost et al. [26] presented that the σcri of fine-grained subgrades is approximately half
of the deviator stress corresponding to static destruction. Wang et al. [27] reported that the
initial stress state could considerably affect the σcri of a silty clay. Recently, a few empirical
models were developed to predict the σcri; Zhang et al. [28] developed a regression model
for predicting the σcri based on the fuzzy linear regression theory and structural element
method. Xu et al. [6] presented an empirical method to predict the σcri by introducing
the concept of critical stress ratio; Zhai et al. [16] predicted the σcri of UGMs as a function
of confining pressure based on results of cyclic triaxial tests of specimens with optimal
moisture content. Most existing studies on σcri were qualitative investigations. Several
evaluation models of σcri have also been proposed on the basis of cyclic triaxial tests; how-
ever, the factors considered in the models regarding the σcri of UGMs are incomplete, and
systematic studies of σcri considering the effects of both moisture content and confining
pressure are desirable.

The cyclic triaxial test is also commonly used to study the accumulative plastic defor-
mation of UGMs. Generally, the εp versus cycle number (N) curves can be identified from a
cyclic triaxial test. Instances of commonly used relationships are the power-function [29],
semi-logarithmic [30], and hyperbolic models [31], which simply reflect the variation
relationship between the εp and dynamic loading cycles; therefore, modifications have
been proposed with considerations of the effects of stress path, static strength, confining
pressure, etc. Li and Selig [32] extended the power function model while including the
physical state and static strength of the tested soil; Chai and Miura [33] then extended
the method of Li and Selig [32] by incorporating the initial static deviator stress (σsi); Wu
et al. [34] improved the original power-function model while considering the effects of
cyclic stress ratio. Moghaddas-Nejad and Small [35] improved the semi-logarithmic model
by incorporating confining pressure and dynamic deviator stress; Stewart [36] extended
the model by including the stress path; Xu et al. [37] developed a probabilistic method to
predict εp of UGMs based on the semi-logarithmic model. In addition, a few models in
different formulations were also proposed to predict the εp. Lekarp et al. [38] formulated
εp using the length of the stress path and shear stress ratio. El-Badawy and Witczak [39]
predicted εp as a function of stress state, plasticity index, resilient response, saturation
degree, N, fine contents, and material strength. Xiao et al. [40] proposed a unified prediction
model of εp using the imaging-based morphological indexes of aggregate and concept of
shear stress ratio.

The existing methods generally predict the εp well within small loading cycles. How-
ever, they may overestimate the εp of UGMs under large loading cycles because most of
them demonstrate a monotonic increasing relationship between εp and N, which is contrary
to the fact that the rate of εp of stable specimens gradually declines and finally ceases when
the material enters a shakedown state [4,16,41]. Moreover, comparing with predicting the
development trend of εp, it is more practical to evaluate the final accumulative deformation
of the UGM layers in the design of a railway subgrade.

In this study, the dynamic stability of an UGM under long-term dynamic loading was
investigated by a series of large-scale cyclic triaxial tests. The main influencing factors and
their influencing extent regarding the dynamic stability of the UGM were identified by grey
relational analyses of the test results. Then, a data processing method in combination with a
back-propagation (BP) neural network is introduced, from which an approach is developed
to evaluate the σcri (considering the effects of σ3 and w) and final εp (εs, considering the
effects of σ3, w, and σd) of the UGM, where the analyzed results demonstrated that the
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developed method can effectively describe the linear/non-linear behavior of σcri and εs
regarding the confining pressure (σ3) and/or dynamic deviator stress (σd).

2. Test Materials and Methods

The tests were performed using a UGM consisted by fine particles, sand, and gravel.
The particle size (d) gradation curve of the UGM is presented in Figure 1. The specific grada-
tion properties of the UGM are d60 = 6 mm, d30 = 0.75 mm, d10 = 0.066 mm, dmax = 50 mm,
Cc = 1.42, and Cu = 80, where d60, d30, d10, dmax, Cc, and Cu are the particle diameters
corresponding to 60%, 30%, and 10% finer, maximum diameter, coefficient of curvature,
and coefficient of uniformity, respectively. The tested UGM is categorized as a Group A
subgrade bed filling in line with a railway standard of China [42] and belongs to the silty
gravel group by following the Unified Soil Classification System of ASTM D2487-17e1 [43].

Figure 1. Particle size gradation curve of the UGM [16,37].

The compaction curve of the UGM was tested by following the ASTM D1577-12
compaction standard using the modified proctor [44], as presented in Figure 2. In the
compaction test, the UGM with different moisture contents was compacted using mod-
ified proctor with straightforward compaction energy, and the moisture contents after
compaction were measured. Figure 2 also presents the zero air void curve of the UGM
and basic physical parameters of each group of compacted material, including the specific
gravity (Gs), final void ratio (e), and final saturation degree (Sr). Meanwhile, it can be deter-
mined from the compaction curve that the optimal moisture content (wo) and maximum
dry density (ρdmax) of the UGM are 6.2% and 2.21 g/cm3, respectively.

Large-scale cyclic triaxial test equipment was used to perform the tests, which mainly
consisted of a confining cell and a loading frame. The loading frame can generate dynamic
or monotonic loadings on the tested specimens, of which the maximum loading value is
50 kN; the test device can therefore conduct both cyclic and static triaxial tests. Figure 3
presents a photograph of the used test device, where the displacement gauge installed on
the actuator has a precision of 0.01 mm, and variations in the specimen axil displacement
during the test were recorded using a computer linked to a data logger.
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Figure 2. Compaction curve of the UGM.

The prominent advantage of the test equipment is that it can facilitate tests on subgrade
soils with large particle sizes. According to the ASTM D7181-20 standard [45], the diameter
of specimens is required to be no less than six times the dmax of the soil for reducing the
size effects of specimens on the test data. Currently, a large proportion of triaxial devices
are manufactured for conducting tests with soil specimen diameters less than 150 mm (e.g.,
39.1, 50, 100 and 150 mm) [46–49]. However, the dmax of UGMs used as railway subgrade
fillings is generally within the range of 50–60 mm as specified by a railway standard of
China [42]. Therefore, regular cyclic triaxial devices cannot satisfy the requirement on
the ratio of specimen diameter to dmax. The used test equipment can facilitate tests of
specimens with a diameter of 300 mm. The ratio of specimen diameter to dmax is therefore
six in the present study, which satisfies the specification of ASTM D7181-20 standard [45].

Consistent compaction efforts were adopted in preparing the cyclic triaxial test speci-
mens to ensure the reliability of test results. Similar to the compaction test, the UGM was
first scattered, and then mixed by adding distilled water to reach the optimal moisture
content and kept in a hermetic plastic bag to humidify for more than 48 h to homogenize
the moisture content. The height and diameter of the specimens were 300 mm and 600 mm,
respectively. To ensure the consistence of the prepared specimens, it was required to control
the moist mass added, the thickness of each compacted layer, and the compaction efforts.
In this study, the UGM with optimal moisture content was compacted into a steel specimen
preparation mold by six layers, with each layer having the same moist mass of 16.065 kg.
Then, each incompact layer was compacted to a target thickness of 100 mm using a 17 kg
steel impact hammer with a drop distance of approximately 500 mm, to attain a target
compaction degree of 0.97. It should be noted that keeping consistent layer moist mass
added, consistent compaction layer thickness, and consistent impact hammer mass and
drop distance (i.e., compaction efforts) is helpful to ensure the consistency of the triaxial
UGM specimens.
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Figure 3. Photograph of the test device [16,37].

Both optimal moisture content and saturation specimens were tested in the cyclic
triaxial tests. The specimens with optimal moisture content were achieved by controlling
the amount of distilled water added in the UGM, which corresponded to a saturation
degree of 79.4%, as presented in Figure 2. The full saturation of UGM specimens was
achieved by the following steps: (1) the specimens were firstly pre-saturated using vacuum
suction for 2 h; (2) further saturation of the UGM specimens was achieved by injecting
compressed carbon dioxide (CO2) and then distilled water from the bottom to the top of the
specimens with a small confining pressure to reach a stationary flow state; (3) finally, back
pressure was applied to reach a minimum pore pressure coefficient value of 0.95. Similar
methods to ensure full saturation of specimens were also reported and recommended by
Mehdizadeh [50].

In this study, 28 large-scale cyclic triaxial tests were performed, and the specific test
schemes are listed in Table 1. Based on the field data reported by the China Academy of
Railway Science, the maximum dynamic stress of railway subgrades is discrete in a range
of 35–185 kPa when the train axle load is within 19.6–22.5 t [51]. Moreover, to consider a
future developing trend that the heavy-haul train axle load will increase up to 35 t and
investigate the σcri of the UGM, this study expanded the value range of the deviator stress
σd. Specifically, the range of σd for the tested saturation specimens and optimal moisture
content specimens are 50–250 kPa and 100–400 kPa, respectively. Moreover, the operation
speed of heavy-haul freight trains is much less than the normal and high-speed passenger
trains; for instance, the operation speed of heavy-haul freight trains in China is mainly
in the range of 20–80 km/h [52–54], and the freight train speed in Australia is generally
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within 40–80 km/h [55,56]. The wagon length of freight trains in China is 12–14 m [57].
In the cyclic triaxial tests, a 1 Hz sine-wave cyclic deviator stress was applied by closing
the drainage valve, which corresponded to a typical operation speed of 50 km/h for the
heavy-haul freight train in China. A 15 kPa initial static deviator stress (σsi) was applied
prior to the application of σd [42], to simulate the vertical stress resulted by the rail, sleeper,
and ballast. More detailed introduction regarding the test method and procedures can
refer to the study of Xu et al. [37]. Figure 4 presents the schematic dynamic loading curve
applied in the cyclic triaxial tests. The tests were terminated when the specimens were
destroyed or the εs was achieved. Based on a few preliminary tests, the specimen was
considered to be destroyed when the accumulative plastic strain reached 15%, and when
the accumulative plastic strain was lower than 10% and its increment within 2 h was less
than 1 mm, the specimen was deemed to attain a shakedown state in which the further
plastic strain increments are negligible.

Table 1. Detailed program of cyclic triaxial tests.

Group w (%) σ3 (kPa) σd (kPa)

1 9.3 (Sr = 100%) 15 50, 100, 125, 150, 200, 250
2 9.3 (Sr = 100%) 30 50, 100, 125, 150, 200, 250
3 9.3 (Sr = 100%) 60 50, 100, 125, 150, 200, 250
4 6.2 (Sr = 79.4%) 15 100, 150, 200
5 6.2 (Sr = 79.4%) 30 250, 275, 300
6 6.2 (Sr = 79.4%) 60 250, 300, 350, 400

Figure 4. Cyclic loading curve [16,37].

3. Results and Discussion of Accumulative Plastic Strain Curves

Figures 5 and 6 present the variation curves of the accumulative plastic strain εp with
cycle number N of saturation and optimal moisture content specimens, respectively, where
different curves correspond to different σd.
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Figure 5. εp—N relationship of saturation specimens: (a) σ3 = 15 kPa; (b) σ3 = 30 kPa; (c) σ3 = 60 kPa [16].

Figure 6. εp—N relationship of specimens with optimal moisture content: (a) σ3 = 15 kPa; (b) σ3 = 30 kPa; (c) σ3 = 60 kPa.

It can be observed that the εp and its rate decline with an increase in σ3 but increase
with the increase in σd. Hence, the confining pressure and dynamic deviator stress have
significant impacts on the development of εp of the UGM. The values of εp are generally
greater than those reported in the existing literature [46–49]. One possible reason is that
the tested confining pressures are relatively small comparing with existing studies. The
low confining pressures tested in the present study can appropriately simulate the stress
states of the subgrade soils in the field. The confining pressure of the subgrade soils can be
approximately estimated as

σ3 = K0(σsi + γh) (1)

where K0 is the coefficient of lateral earth pressure and a value of 0.8 is generally adopted [58],
γ is the unit weight of the subgrade soil and a value of 22 kN/m3 is generally acceptable,
and h is the depth. The subgrade bed layers of a railway embankment generally have a
thickness of 2.5 m [42]. As a result, the confining pressure of the subgrade bed layers is
generally within the range of 12–56 kPa. Therefore, the confining pressures of 15, 30, and
60 kPa were selected to simulate the stress states of the UGM in the field.

Based on the variation tendencies of the accumulative plastic strains in Figures 5 and 6,
the εp versus N curves can be divided into three types, i.e., the stable (class a), failure (class
b), and critical (class c) patterns. A stable pattern represents that the growth rate of
εp gradually attenuates and finally ceases with the increase in loading cycles. Because
of the internal erosion behavior, the fine particles can provide lateral support for the
coarse particles, which leads to local particle rearrangement under dynamic loading and
compression of the intergranular void [50,59], thus a densification effect would be formed.
Finally, a stable UGM specimen enters a dense state in which it can resist the damage effects
of the cyclic loading, and no further plastic strain is produced in subsequent loading cycles.
By contrast, a failure pattern illustrates that the accumulative plastic strain of the specimen
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continuously rapidly increases to a εp value greater than 15% within small loading cycles
or collapses under σd. In addition, the εp versus N curve of a critical specimen is between
the stable and failure patterns, of which the increase tendency of the accumulative plastic
strain fluctuates and presents uncertainties with increasing the loading cycles. The dynamic
deviator stress with respect to the critical curve pattern is generally designated as the critical
dynamic stress σcri of an UGM.

4. Evaluation of Critical Dynamic Stress and Final Accumulative Plastic Strain
4.1. Evaluation of Critical Dynamic Stress
4.1.1. Grey Relation of εp–N Curve Pattern Regarding w, σ3, and σd

It can be seen that the εp versus N curve pattern of the UGM is greatly affected by the
dynamic deviator stress σd, confining pressure σ3, and moisture content w, as presented
in Figures 5 and 6. In this section, the grey correlation theory was used to investigate the
correlation degree of εp–N curve patterns in regard to the σd, σ3, and w.

Generally, principal component, regression, and variance analyses are commonly used
to analyze systems. However, strict requirements should be met when using these methods,
including (1) samples to obey typical probability distributions, (2) large size samples to
ensure reliable analyses, and (3) a mass of calculations; moreover, the results between the
qualitative and quantitative analyses are inconsistent at times, thereby occasionally leading
to unreliable conclusions [60]. While the GRA is an advanced system analysis method and
extensively employed in medical, economic, engineering, educational, and environmental
fields to determine whether data sequences of a system have strong correlations. The
method can effectively evaluate systems with small size data, where traditional statistical
methods are unsuitable, because small size samples usually involve a great deal of grey
information. Furthermore, the GRA has strong nonlinear fitting ability and convenient pro-
gramming function [61]. The method can determine whether data sequences have strong
correlations by comparing the similarity of their geometric curves, and greater similarities
imply larger grey relational grades. The GRA does not have traditional demands on data
distribution and can evaluate small size samples effectively, which would not generate
disagreements between qualitative and quantitative results [60]. A brief introduction
regarding the analysis steps of the GRA is as follows:

To perform GRA conveniently, non-dimensional treatment of the feature sequence
(Y = (y1, y2, y3, . . . , yn)) and observation sequences (Xi = (xi1, xi2, xi3, . . . , xin), i = 1, 2, 3,
. . . , m) is carried out by normalizing the sequences using the initial values as

X′ i = Xi/xi1 = (x′ i1, x′ i2, x′ i3, . . . x′ in), i = 1, 2, 3, . . . m (2)

Y′ = Y/y1 = (y′1, y′2, y′3, . . . y′n) (3)

The grey correlation coefficient (γij, i = 1, 2, 3, . . . m, j = 1, 2, 3, . . . , n) between yj and
xij is calculated as

γij =

[
m

min
i=1

n
min
j=1

∣∣∣x′ ij − y′ j
∣∣∣+ ξ

m
max
i=1

n
max
j=1

∣∣∣x′ ij − y′ j
∣∣∣][∣∣∣x′ ij − y′ j

∣∣∣+ ξ
m

max
i=1

n
max
j=1

∣∣∣x′ ij − y′ j
∣∣∣] (4)

where ξ denotes a discriminant coefficient within the range of 0 to 1, and generally the
value of ξ is taken as 0.5 [60,62–64]. The grey relational grade (γi) between Y and Xi is
formulated as

γi =
1
n

n

∑
j=1

γij (5)

In this study, the sequence composed of the values of an index parameter (β) that
denoting the εp versus N curve pattern was designated as the feature sequence Y1, where
β values of 1.0, 2.0, and 3.0 were allotted to the stable, critical, and failure patterns, re-
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spectively, according to the recommendations of Javed et al. [65], Wu et al. [66], and Liu
et al. [67]. In addition, the data sequences composed of moisture content w, confining
pressure σ3, and dynamic deviator stress σd are termed as the observation sequences X1,
X2, and X3, respectively. The computed values of the grey correlation coefficients γ1j,
γ2j, and γ3j are presented in Table 2, and the grey relational grades (γ1, γ2, and γ3) of β
regarding w, σ3, and σd obtained by Equation (5) are 0.809, 0.745, and 0.720, respectively.
Generally, the feature sequence is considered to be strongly correlated with the observation
sequences if the calculated grey relational grade exceeds 0.6, as recommended by previous
studies [62–64,68]. Therefore, it is considered that β (i.e., the curve pattern) is closely related
to w, σ3, and σd. In addition, slight differences appear among γ1, γ2, and γ3, implying that
w, σ3, and σd have approximate importance degree on determining the εp versus N curve
patterns of the UGM.

Table 2. Grey relational coefficients of β with respect to w, σ3, and σd.

B σ3 (kPa) σd (kPa) w (%) γ1j γ2j γ3j

1 15 50 9.3 1.000 1.000 1.000
1 15 100 9.3 1.000 1.000 0.778
3 15 125 9.3 0.636 0.636 0.875
3 15 150 9.3 0.636 0.636 1.000
3 15 200 9.3 0.636 0.636 0.778
3 15 250 9.3 0.636 0.636 0.636
1 30 50 9.3 1.000 0.778 1.000
1 30 100 9.3 1.000 0.778 0.778
2 30 125 9.3 0.778 1.000 0.875
3 30 150 9.3 0.636 0.778 1.000
3 30 200 9.3 0.636 0.778 0.778
3 30 250 9.3 0.636 0.778 0.636
1 60 50 9.3 1.000 0.538 1.000
1 60 100 9.3 1.000 0.538 0.778
1 60 125 9.3 1.000 0.538 0.700
3 60 150 9.3 0.636 0.778 1.000
3 60 200 9.3 0.636 0.778 0.778
3 60 250 9.3 0.636 0.778 0.636
1 15 100 6.2 0.913 1.000 0.778
1 15 150 6.2 0.913 1.000 0.636
1 15 200 6.2 0.913 1.000 0.538
1 30 250 6.2 0.913 0.778 0.467
3 30 275 6.2 0.600 0.778 0.583
3 30 300 6.2 0.600 0.778 0.538
1 60 250 6.2 0.913 0.538 0.467
1 60 300 6.2 0.913 0.538 0.412
1 60 350 6.2 0.913 0.538 0.368
1 60 400 6.2 0.913 0.538 0.333
1 15 50 9.3 1.000 1.000 1.000
1 15 100 9.3 1.000 1.000 0.778

4.1.2. Analysis of Specimen Pattern using the BP Neural Network

Most existing empirical models for the critical dynamic stress and cumulative plastic
strain of subgrade soils are based on explicit analyses of limited test results. However,
the σcri and εs of an UGM may have considerable non-linear correlations with influencing
factors such as the w, σ3, and σd, and the correlations are generally difficult to be identified
by explicit analyses of the test results. In this study, the BP neural network was used
to analyze the specimen pattern based on the MATLAB (version R2018b) platform. The
MATLAB is a powerful and high-performance programming tool for technical computa-
tion, which integrates computation, visualization, and programming in a user-friendly
environment [69]. The BP neural network generally consists of an input layer, several
hidden layers, and an output layer, which exhibits strong non-linear mapping functions
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on multi parameters. Consequently, the BP neural network is appropriate for analyzing
the σcri and εs of the UGM, and the developed empirical model is considered capable to
effectively reflect the relationships of σcri and εs in regard to the σ3 and σd.

The BP neural network used in this study is a special machine learning method
which focuses on intelligent predictions rather than improvements of computer algorithms,
therefore the required amount of training data can be less than the traditional machine
learning techniques, and a few studies have shown that training data with a size around
20 can yield acceptable training results [70–74]. The present study performed 28 cyclic
triaxial tests on the UGM. Figure 7 presents a topological graph of a BP neural network
that includes a hidden layer, in which the numbers of neurons in the input, hidden, and
output layers are denoted by A, B, and C, respectively. The neurons in the input layer are
specified as w, σ3, and σd, while the neuron in the output layer is specified as the index
parameter β, therefore A = 3 and C = 1 in the present study.

Figure 7. Topological graph of the BP neural network [16].

When the neurons in the input layer are assigned a data set regarding the w, σ3, or σd,
the neurons in the hidden and output layer(s) will generate values by following a transfer
function, and the yielded values of the neuron in the output layer are the evaluated values
of β. In the self-training of a BP neural network, the yielded values in the output layer (i.e.,
the evaluated values of β) generally exhibit deviations in comparison to the theoretical
values or expectations. In this study, the expectations of β are 1.0, 2.0, and 3.0 regarding the
stable, critical, and failure specimens, respectively. By inputting a series of data sets that
correspond to different test conditions of w, σ3, or σd, the computation of the BP neural
network continues until the sum of deviations meets the required precision or the iteration
number achieves the maximum. In this study, a sigmoid function was adopted for the
transfer function, and the maximum of iterations is 2000. For more details regarding BP
neural networks, one can refer to Rumelhart et al. [75].

The number of neurons (i.e., the B value) in the hidden layer(s) is one of the key
parameters that could considerably affect the trained neural network. Chen et al. [76]
stated that the value range of B can be estimated as
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B =
√

A + B + S (6)

where S is a constant that ranges between 1 and 10. The value range of B calculated by
Equation (6) is 3–12. The mean square errors (MSE) of the trained BP neural network
regarding the variation of parameter B are presented in Figure 8, where the results showed
that the MSE attained the minimum value when B = 3, thus three neurons in the hidden
layer were adopted in the following analyses.

Figure 8. Mean square error with different B values (regarding the σcri).

In training of the BP neural network, a stable specimen with test conditions of w = 6.2%,
σ3 = 60 kPa, and σd = 350 kPa (corresponding to a β value of 1.0) and a failure specimen
with conditions of w = 9.3%, σ3 = 60 kPa, and σd = 200 kPa (corresponding to a β value
of 3.0) were excluded, which were used to verify the reliability of the trained BP neural
network later on. Figure 9 presents the output of the trained optimal neural network using
the remaining data (including the data of stable, failure, and critical specimens). The figure
shows that the evaluated β values are close to theoretical values without data distortion or
local minimum problems, and the predicted β values of the two specimens used to verify
the trained neural network (data points in the rectangles) also agree well with the theoretical
values, indicating that the trained optimal neural network is of acceptable reliability.

4.1.3. Evaluation of Critical Dynamic Stress Using the Trained BP Neural Network

Evaluations of the σcri under different σ3 were implemented using the trained optimal
BP neural network. Predetermined moisture contents and confining pressures were first
input as the neuro values in the input layer. Then, the input neuron value with respect to
σd is continuously changed until the β obtains 2.0. The final input σd which generates a β
value of 2.0 is therefore the evaluated value of σcri with respect to the input w and σ3. The
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input σ3 is altered within 15–60 kPa by a 5 kPa interval, and the evaluated σcri values using
the BP neural network are presented in Table 3.

Figure 9. Output results of β using the trained BP neural network.

Table 3. Evaluated critical dynamic stress.

w
(%)

σ3
(kPa)

σcri
(kPa)

w
(%)

σ3
(kPa)

σcri
(kPa)

w
(%)

σ3
(kPa)

σcri
(kPa)

w
(%)

σ3
(kPa)

σcri
(kPa)

6.2

15 205

7.5

15 186

8.5

15 147

9.3

15 116
20 224 20 203 20 155 20 119
25 248 25 222 25 165 25 122
30 268 30 242 30 177 30 125
35 295 35 259 35 185 35 127
40 318 40 277 40 194 40 130
45 345 45 299 45 204 45 132
50 368 50 319 50 214 50 135
55 390 55 337 55 223 55 138
60 408 60 357 60 235 60 140

Variations of the evaluated σcri of the UGM with the confining pressure are illustrated
in Figure 10, with different lines corresponding to optimal and saturation moisture contents.
It is found that the σcri approximately linearly increases as the confining pressure increases,
and the correlation between σcri and σ3 can be formulated as Equation (7), where m
and n are fitting parameters. Therefore, it is a feasible method to improve the dynamic
stability of a railway subgrade by appropriate techniques (e.g., the prestressed embankment
technique [6]) to increase the confining pressure of the subgrade soil. Figure 10 indicates
that the σcri of the UGM is also influenced by the moisture content of the UGM. It is therefore
considered that the model parameters m and n in Equation (7) could have correlations
with the w, and Equation (7) can be reformulated as Equation (8), where f 1(w) and f 2(w)
are functions of w. However, due to the limited moisture contents tested, the expressions
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of f 1(w) and f 2(w) are still not clear, and further investigations regarding this topic are
desirable in future studies.

σcri = m× σ3 + n (7)

σcri = f1(w)× σ3 + f2(w) (8)

Figure 10. Relationship between critical dynamic stress and confining pressure.

Dawson et al. [77] reported that the critical total vertical stress (σ1d, the sum of σcri
and σ3) of unbound granular subgrade soils can be formulated as

σ1d = A(σ1d/σ3)
B (9)

where A and B are model parameters.
Wang et al. [78] performed cyclic triaxial tests on an UGM, having a similar gradation,

of which both the fine contents (less than 0.075 mm) of the materials tested by Wang
et al. [78] and this study were around 10%. Wang et al. [78] reported that the values of
model parameters A and B are 3838.8 and −1.583 for the UGM. Based on Equation (9), it is
deduced that the correlation between the σcri and σ3 of the UGM is as

σcri = 24.4123× σ3
0.6129 − σ3 (10)

The functional image of Equation (10) is presented in Figure 11. It is observed that
the relationship between σcri and σ3 shows some non-linearity; however, the non-linearity
is not discernible when the UGM is in a low confining pressure service state, and can be
approximately replaced by a linear relationship with a high determination coefficient (R2)
of 0.99, as illustrated in Figure 11. Therefore, it is rational to simplify a linear relationship
between σcri and σ3 of an UGM used as subgrade material.
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4.2. Evaluation of Final Accumulative Plastic Strain
4.2.1. Grey Relation of εs Regarding w, σ3, and σd

A railway generally has strict requirements on surface deformation; therefore, the
failure and critical patterns of the UGM are generally not expected in engineering practice.
Consequently, this section primarily focuses on evaluating the final accumulative plastic
strain εs of stable specimens (i.e., the class a curves in Figures 5 and 6). The grey correlation
theory was used to investigate the correlation degrees of εs in regard to w, σ3, and σd by
taking the sequence composed of final accumulative plastic εs as the feature sequence Y2.
The computed values of the grey correlation coefficients γ′1j, γ′2j, and γ′3j are presented
in Table 4, and the grey relational grades (γ′1, γ′2, and γ′3) of εs regarding w, σ3, and σd
obtained by Equation (5) are 0.796, 0.733, and 0.724 (larger than 0.6), respectively; therefore,
the εs is considered to be closely related to the w, σ3, and σd. Furthermore, slight differences
appear among γ′1, γ′2, and γ′3, implying that w, σ3, and σd have similar importance degree
for the final accumulative plastic strain of the UGM.
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Table 4. Grey correlation coefficients of εs with respect to w, σ3, and σd.

εs (%) σ3 (kPa) σd (kPa) w (%) γ′1j γ′2j γ′3j

0.34 15 50 9.3 1.000 1.000 1.000
3.39 15 100 9.3 0.603 0.603 0.631
0.18 30 50 9.3 0.967 0.903 0.967
0.71 30 100 9.3 0.926 0.994 0.994
0.02 60 50 9.3 0.935 0.776 0.935
0.24 60 100 9.3 0.979 0.805 0.913
0.96 60 125 9.3 0.882 0.921 0.977
1.08 15 100 6.2 0.844 0.862 0.921
3.01 15 150 6.2 0.625 0.634 0.699
9.11 15 200 6.2 0.343 0.346 0.374
3.71 30 250 6.2 0.571 0.605 0.697
2.26 60 250 6.2 0.695 0.837 0.892
2.62 60 300 6.2 0.659 0.786 0.889
4.95 60 350 6.2 0.495 0.563 0.643
9.49 60 400 6.2 0.333 0.363 0.406

4.2.2. Evaluation of Final Accumulative Plastic Strain Using the BP Neural Network

The test data of stable specimens were used to perform the self-training of the BP
neural network, excluding two specimens tested with conditions of w = 6.2%, σ3 = 60 kPa,
and σd = 300 kPa (corresponding to a εs value of 2.62%) and w = 9.3%, σ3 = 30 kPa, and
σd = 100 kPa (corresponding to a εs value of 0.71%), respectively, which were employed
to verify the reliability of the trained BP neural network later on. The variation of the
MSE of the trained BP neural network with the parameter B is presented in Figure 12,
where the results show that the hidden layer of the optimal BP neural network contains
eight neurons. Figure 13 presents the evaluated εs values using the trained optimal neural
network, showing that the final accumulative plastic strains generated by the BP neural
network agree well with the measured data, and the predicted εs of the two specimens
used to verify the trained neural network also close to the measured values (see the
triangular points in Figure 13), indicating that the trained optimal BP neural network is of
acceptable reliability.

Figure 12. Mean square error with different B values (regarding the εs).
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Figure 13. Output of εs using the optimal BP neural network.

The εs of the UGM under different σ3 and σd can then be evaluated using the trained
optimal BP neural network. The relationships of the predicted εs with respect to σd and σ3
are presented in Figures 14 and 15, respectively. It can be found that εs and its variation
rate non-linearly increase with increasing σd but non-linearly decrease as σ3 increases.
Furthermore, the εs of saturation specimens with low confining pressures (e.g., 15 kPa in
Figure 14) starts to increase in a large rate when the dynamic deviator stress exceeds 60 kPa.
Freight trains operated in the heavy-haul railway system of China can generally impose
a maximum dynamic stress greater than 60 kPa on the subgrade surface [17,57,79,80].
Therefore, keeping sufficient drainage capacity and preventing the subgrade approaching
saturation are important in the routine maintenance of a railway. In addition, increasing
the confining pressure can efficiently reduce the final accumulative plastic strain of the
UGM, especially in low confining pressure conditions as illustrated in Figure 15.

Figure 14. εs–σd relationship of saturation specimens.
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Figure 15. εs-σ3 relationship of saturation specimens.

5. Conclusions

The critical dynamic stress (σcri) and accumulative plastic strain (εp) are primary
indicators regarding the dynamic stability of unbound granular materials (UGMs). In
this study, the dynamic stability of a typical UGM employed in railway subgrade bed
construction was investigated by performing a series of large-scale cyclic triaxial tests, while
considering the variations of moisture contents (w), confining pressures (σ3), and dynamic
deviator stresses (σd). A data processing method in combination with a back-propagation
(BP) neural network is developed to analyze the test results, and an effective method
is presented to evaluate the σcri and the final εp (εs) of the UGM. The main conclusions
obtained are as follows:

• The variation curves of εp with cyclic number (N) can be categorized into stable, failure,
and critical patterns, and the grey relational analyses shown that the curve patterns
and final accumulative plastic strain εs of stable specimens are closely related to the w,
σ3, and σd. In addition, the analyzed grey relational grades were in a narrow range of
0.72 to 0.81, demonstrating that the w, σ3, and σd have similar importance degrees in
determining the εp versus N curve patterns and the values of εp of the UGM.

• The developed evaluation method indicates that the σcri approximately linearly in-
creases with increasing σ3, and a simple linear empirical equation is proposed for the
σcri. In addition, εs and its variation rate non-linearly increases with increasing σd
but non-linearly decreases as σ3 increases; therefore, an increase in σ3 can effectively
reduce the εs, especially in low confining pressure conditions.

• The εs of saturation specimens with a low confining pressure of 15 kPa started to
increase rapidly when the σd was greater than 60 kPa which is generally less than the
dynamic deviator stress on subgrade surfaces imposed by freight trains operated in
heavy-haul railway lines. Therefore, keeping sufficient drainage capacity, prevent-
ing the subgrade approaching saturation, and raising the confining pressure of the
subgrade by appropriate reinforcement techniques are effective ways to enhance the
railway dynamic stability.
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