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Abstract: In this study, Ti-6Al-4V alloy samples were processed by micro-arc oxidation (MAO) in
phytic acid (H12Phy) electrolytes with the addition of different concentrations of EDTA-MgNa2

(Na2MgY) and potassium hydroxide (KOH). The surface characterization and cytocompatibility
of MAO-treated samples were evaluated systematically. H12Phy is a necessary agent for MAO
coating formation, and the addition of Na2MgY and KOH into the electrolytes increases the surface
roughness, micropore size and Mg contents in the coatings. The MAO coatings are primarily
composed of anatase, rutile, MgO and Mg3(PO4)2. Magnesium (Mg) ions in the electrolytes enter
into MAO coatings by diffusion and electromigration. The MAO coatings containing 2.97 at% Mg
show excellent cell viability, adhesion, proliferation, alkaline phosphatase activity, extracellular
matrix (ECM) mineralization and collagen secretion, but the cytocompatibility of the MAO coatings
containing 6.82 at% Mg was the worst due to the excessively high Mg content. Our results revealed
that MAO coatings with proper Mg contents improve the cytocompatibility of the Ti-6Al-4V alloys
and have large potential in orthopedic applications.

Keywords: titanium alloys; micro-arc oxidation; cytocompatibility; magnesium; H12Phy

1. Introduction

Titanium (Ti) and its alloys are widely used as metallic implant materials due to high
strength, low density and excellent corrosion resistance [1–3], but the materials cannot
provide sufficient osseointegration with the surrounding bones in vivo. Hence, implant
loosening and failure may occur, and it is sometimes necessary to perform surface treat-
ment to improve the biological properties [1,3]. Micro-arc oxidation (MAO), a simple and
effective electrochemical technique, can produce porous, relatively rough and adherent
anodic coatings on Ti alloys [4–6]. The chemical composition of the MAO coatings depends
on the electrolyte constituents and processing conditions [4,7–11]. It has been shown that
Ti implants with MAO coatings containing a phosphorus (P) element can improve cell
adhesion and proliferation [11], and P-containing electrolytes such as H3PO4 [8,10,11],
NaH2PO4 [3,12], Na3PO4 [9], sodium hexametaphosphate [13,14], calcium glycerophos-
phate [15], β-glycerophosphate disodium [16] and phytic acid (C6H6(PO4)6H12, abbrevi-
ated as H12Phy or InsP6) [17] have been used in MAO treatment. H12Phy, also known
as inositol hexakisphosphate, is a natural and nontoxic organic macromolecule, and its
structure is shown in Figure 1a [18]. Owing to the structure consisting of active oxygen
ligand atoms, H12Phy has a strong chelating capability with Ca2+ and Mg2+, especially in
alkaline solutions, to form stable metal-H12Phy complexes [18–20]. Compared to Na2EDTA,
a widely used chelating agent, H12Phy is less cytotoxic and does not affect the viability
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and ALP activity of MC3T3-E1 cells [20]. Hence, it is a suitable anticancer agent, a food
antioxidant and also functions as an inhibitor for renal stone development [18,21,22].
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Besides the P element, some trace elements in natural bone are helpful for bone forma-
tion. As the second-most abundant intracellular cation [23], magnesium (Mg) influences
many cellular functions, including the transport of potassium and calcium ions, as well as
the modulation of signal transduction, energy metabolism and cell proliferation [24–28].
Mg has been incorporated into biomedical implants by MAO treatment [17,28–30]. In vivo
experiments show that, compared to machine-turned titanium implants or oxidized TiO
implants, Mg-incorporated implants (MgTiO) exhibit better bone integration [28]. In ad-
dition, the immersion tests in simulated body fluid (SBF) indicate that the presence of
Mg in oxide layers enhances the coating bioactivity [29]. However, the mechanism of Mg
incorporation into MAO coatings is not clear. In addition, the correlation between the Mg
amount in MAO coatings and its in vitro cytocompatibility is rarely reported.

In this work, in order to investigate the influences of the electrolyte constituents on
the Mg contents and surface properties of anodic coatings, MAO coatings were prepared
on Ti-6A1-4V alloys with electrolytes containing 15-g/L H12Phyand different concentra-
tionsofethylene diaminetetraacetic acid magnesium disodium salt (C10H12N2O8Na2Mg,
EDTA-MgNa2, abbreviated as Na2MgY) and potassium hydroxide (KOH). The underlying
mechanism of the Mg ions incorporation into MAO coatings on titanium alloys was firstly
investigated. In addition, the surface characterization and in vitro cytocompatibility of the
MAO-treated samples with different Mg contents were evaluated systematically.

2. Materials and Methods
2.1. Micro-Arc Oxidation Treatment

Widely used medical Ti-6Al-4V alloy samples without annealing or deformation were
machined into a cuboidal shape (10 mm× 10 mm × 2 mm or 50 mm × 50 mm × 2 mm).
The samples were progressively ground with sandpaper from 80 to 1000 grit, washed with
distilled water, dried under hot air and stored in a desiccator prior to MAO treatment.
The electrolytes were composed of 15-g/L H12Phyand 5, 10, 15 and 20-g/L Na2MgY and
designated as the S-Mg-5 system, S-Mg-10 system, S-Mg-15 system and S-Mg-20 system,
respectively. The corresponding MAO samples fabricated in the four solutions outlined
above were denoted as the Mg-5 system, Mg-10 system, Mg-15 system and Mg-20 system,
respectively. In order to study the influences of the solution conductivity on the coating
properties, 2, 5, 8 and 11-g/L KOH were separately added into the S-Mg-10 system, a
solution with moderate Na2MgY concentration, and these solutions were labeled as S-the
Mg-10-KOH-2 system, S-Mg-10-KOH-5 system, S-Mg-10-KOH-8 system and S-Mg-10-
KOH-11 system, respectively. The aqueous electrolyte solutions and the corresponding
MAO coatings are listed in Table 1.
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Table 1. The fabricated MAO coatings and the corresponding electrolytes compositions.

Processes Coatings Electrolyte Concentration (g/L)

H12Phy Na2MgY KOH

S-Mg-5 system Mg-5 system 15 5
S-Mg-10 system Mg-10 system 15 10
S-Mg-15 system Mg-15 system 15 15
S-Mg-20 system Mg-20 system 15 20

S-Mg-10-KOH-2 system Mg-10-KOH-2 system 15 10 2
S-Mg-10-KOH-5 system Mg-10-KOH-5 system 15 10 5
S-Mg-10-KOH-8 system Mg-10-KOH-8 system 15 10 8

S-Mg-10-KOH-11 system Mg-10-KOH-11 system 15 10 11

The solution conductivity was measured by a DDS-307W microprocessor conductivity
meter (Shanghai LIDA Instrument Factory, Shanghai, China). A homemade MAO-50C
powder supply under the constant current control mode was used for MAO treatment.
A Ti-6Al-4V sample and a stainless-steel barrel containing the electrolyte were separately
served as the anode and the cathode. The schematic diagram of MAO treatment is shown
in Figure 1b. MAO was performed at a current density of 50mA/cm2, duty cycle of 35%
and pulse frequency of 2000 Hz for 3 min.

2.2. Surface Characterization

The surface morphology and chemical composition of the samples were examined
on ascanning electron microscope (SEM, Zeiss ΣIGMA, Oberkochen, Germany) with an
energy-dispersive X-ray spectroscopy (EDS, OxfordINCA Energy, Oxford, UK) attachment
by a secondary electron detector using an accelerating voltage of 20 kV. The constituent-
phase structure of the samples was determined by X-ray diffraction (XRD, Shimadzu
XRD-6100, Kyoto, Japan) with Cu Kα in a scanning range between 10◦ and 80◦. An X-
ray photoelectron spectroscopy (XPS, ESCALAB250, Thermo VG, Waltham, NV, USA)
with an Al Kα (λ = 1486.6 eV) was used to determine the chemical states of thesamples
after sputtering for 60 s to remove the surface contaminants. The binding energies were
referenced to the C 1s line at 284.6 eV.

2.3. The Measurement of Mg2+ Concentration

According to our previous experiments, the increasing KOH concentration could
significantly improve the Mg content. In order to clarify the underlying mechanism of Mg
ion incorporation into MAO coatings, in one solution with a high KOH concentration—
for example, the S-Mg-10-KOH-8 system—two syringes around the anode and around
the cathode were used to simultaneously fetch the solution during MAO treatment for
30 s and 150 s (Figure 1b). The Mg ion concentration was analyzed by an inductively
coupled plasma optical emission spectrometry (ICP-OES) (PE Optima8300, Perkin-Elmer
Corporation, Waltham, NV, USA) with the analyzed wavelength of 285.213 nm.

2.4. Cell Culture and Viability

The mouse pre-osteoblast cells (MC3T3-E1, ATCC CRL-2594) were cultured in alpha-
minimum essential medium (α-MEM, Gibco, OK, USA) supplemented with 10% fetal
bovine serum (FBS, Gibco, OK, USA) and 100 units/mL of penicillin and streptomycin
at 37 ◦C in a 5% CO2 humidified atmosphere. Prior to the experiments, all the samples
were sterilized by 70% ethanol for 30 min and rinsed with sterile phosphate-buffered saline
(PBS, HyClone, Marlborough, MA, USA) three times. The cytotoxicity of the samples
was evaluated using the Cell Counting Kit-8 (CCK-8, Beyotime, Haimen, China). The
extract was prepared based on a sample surface area-to-extraction medium volume ratio
of 1 cm2/mL for 3 days. The MC3T3-E1 cellswith an initial density of 5.0 × 103 cells/well
were seeded on 96-well plates. After culturing for 24 h, 100-µLextract supplemented with
10% FBS were added into each well to replace the initialα-MEM. After further incubation
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for 1, 3 and 7days, the α-MEM containing 10% CCK-8 was added into each well and
incubated at 37 ◦C for another 2 h. Afterwards, the optical density was monitored at
450 nm on a microplate reader (Thermo Fisher Scientific, Waltham, NV, USA), and the cell
viability (%) was determined according to the manufacturer’s instructions.

2.5. Initial Cell Attachment and Cell Proliferation

To assess the initial cell attachment and proliferation, the MC3T3-E1 cells were seeded
directly on each sample with a density of 1 × 104 cells/well on 24-well plates. During the
initial cell attachment, the cells were allowed to settle for 4 h. The seeded samples were
then washed twice with PBS and fixed for 5 min with 3.7% formaldehyde solution in PBS.
The cytoskeleton protein F-actin was stained with phalloidin-fluorescein isothiocyanate
(InvitrogenTM, Ronkonkoma, NY, USA) for 40 min at room temperature, and the nuclei were
counterstained with DAPI (Sigma, Ronkonkoma, NY, USA). The cell images were captured
by a fluorescence microscope (Olympus-IX71, Shinjuku City, Japan). Cell proliferation was
evaluated using CCK-8 (Beyotime, China) after the cells were cultured on the Ti-6A1-4V
samples for 1, 3 and 7 days. At each timepoint, the samples were rinsed with PBS and
transferred to new 24-well plates. The α-MEM containing 10% CCK-8 was added into
each well and incubated at 37 ◦C for another 2 h. Then, 100 µL of solution was transferred
to new 96-well plates. The absorbance was measured at a wavelength of 450 nm on a
microplate spectrophotometer (Thermo Fisher Scientific, Waltham, NV, USA).

2.6. Alkaline Phosphatase (ALP) Activity

ALP activity was evaluated with an Alkaline Phosphatase Assay kit (Beyotime, China)
to determine the pre-osteoblast differentiation properties. The MC3T3-E1 cells were seeded
on the Ti-6A1-4V samples with a density of 1 × 104 cells/well and incubated for 1 day. On
the second day, α-MEM supplemented with 50-µg/mL ascorbic acid (Sigma, Ronkonkoma,
NY, USA) was added into each well to replace the initialα-MEM, and after culturing for
7 days, 10-mM b-glycerol phosphate(Sigma, Ronkonkoma, NY, USA) was added together
with ascorbic acid. After 3, 7 and 14 days, the seeded cells were washed twice with PBS and
lysed in the M-PER Reagent (Thermo Scientific, Waltham, NV, USA) at 4 ◦C for 10 min. The
cell lysates were then centrifuged at 14,000× g for 10 min. Fifty microliters of supernatant
were transferred to a new 96-well culture plate and mixed with 50 µL of ALP reagent
containing p-nitrophenyl phosphate (p-NPP) as the substrate. Finally, the absorbance was
recorded on a spectrophotometer at 405 nm. The total proteins in the cell lysate were
determined by a bicinchoninic acid (BCA) protein assay kit (Pierce, Rockford, Waltham,
NV, USA). The ALP activity was normalized to the total protein level of the samples, and
the data were expressed as the specific ALP activity per unit of proteins.

2.7. Extracellular Matrix (ECM) Mineralization and Collagen Secretion

Extracellular matrix mineralization (ECM) on and collagen secretion by the MC3T3-E1
cells on the Ti-6A1-4V samples were assessed using Alizarin Red and Sirius Red staining,
respectively. After culturing for 21 days, the cells with an initial density of 1 × 104/well
were washed and fixed. The cells were incubated with 1-mg/mL Alizarin Red S (Sigma-
Aldrich, Ronkonkoma, NY, USA) or 0.1% Sirius Red solution (Sigma, Ronkonkoma, NY,
USA) in saturated picric acid for 30min to reveal ECM mineralization or collagen secretion,
respectively. After rinsing with deionized water, the stained cells were taken by a digital
camera (Nikon D3200, Tokyo, Japan). Afterwards, the Alizarin Red or Sirius Red stain was
dissolved in 10% cetylpyridinum chloride in 10-mM sodium phosphate (pH 7) or 0.2-M
NaOH/methanol (1:1), and the absorbance was measured at a wavelength of 620 nm or
540 nm on a microplate reader (Thermo Scientific Appliskan, Waltham, NV, USA).
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2.8. Statistical Analysis

Each experiment was repeated three times, and the data were presented as the mean
± SD. The differences were compared using the unpaired Student’s t-test, and a value of
p < 0.05 was considered to be statistically significant.

3. Results
3.1. Influences of Na2MgY Concentrationon on Solution Conductivity and MAO Coatings

The conductivity of the solution containing 15-g/L H12Phy and 5-g/L Na2MgY (S-Mg-
5 system) at 10 ◦C was 4.02 mS/cm. When the Na2MgY concentrations were increased to
10, 15 and 20 g/L, the corresponding conductivities changed to 4.55, 5.66 and 6.65 mS/cm,
respectively. As shown in Table 2, as the Na2MgY concentration went up, the Mg content
in the MAO coatings increased. At the same time, the P content initially increased rapidly
but then decreased slowly, and the Mg-15 system achieved the maximum P content.

Table 2. Chemical composition of MAO coatings obtained in solutions composed of 15-g/L H12Phy
and various concentrations (5, 10, 15 and 20 g/L) of Na2MgY, and the S-Mg-10 system was added
with 2, 5, 8 and 11-g/L KOH.

Processes
Element Content (at%)

C Na K O P Ti Mg

Mg-5 system 2.43 60.37 4.80 32.40
Mg-10 system 3.76 61.76 9.23 24.68 0.57
Mg-15 system 4.94 59.73 10.69 22.80 1.84
Mg-20 system 3.99 60.97 10.51 22.19 2.34

Mg-10-KOH-2 system 5.00 60.97 10.44 21.71 1.87
Mg-10-KOH-5 system 4.17 60.47 9.91 22.50 2.97
Mg-10-KOH-8 system 8.02 0.21 59.03 8.57 17.36 6.82

Mg-10-KOH-11 system 6.34 0.39 0.45 58.28 7.49 19.92 7.13

The surface morphology and phase structure of the samples prepared in solutions
with different Na2MgYconcentrations are presented in Figures 2a–d and 3a. The anodized
Ti-6A1-4V alloy exhibited a typical porous structure. The pore size of the Mg-5 system and
Mg-10 system ranged from 0.1 to 2.0 µm (Figure 2a,b), whereas that of the Mg-15 system
varied between 1.0 and 3.0 µm (Figure 2c). The Mg-20 system exhibited uneven micropore
characteristics, and the largest pore could achieve 8 µm in size (Figure 2d).
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The samples fabricated in the solutions containing 15-g/L H12Phy and different
Na2MgY concentrations were mainly composed of anatase, rutile, MgO and Mg3(PO4)2
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acteristic peak of the Mg3(PO4)2 phase at (100) increased in intensity and exhibited the
maximum intensity for the Mg-20 system.
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3.2. Influence of KOH Concentration on Solution Conductivity and MAO Coatings

In order to improve the Mg content in the coatings, KOH was added into the S-Mg-
10 system to adjust its solution property. The conductivity of the S-Mg-10 system was
4.55 mS/cm, and after the addition of 2-g/L KOH, the conductivity of the S-Mg-10-KOH-
2 system increased to 5.80 mS/cm. Similarly, the conductivity of the S-Mg-10-KOH-5
system, S-Mg-10-KOH-8 system and S-Mg-10-KOH-11 system increased to 8.97, 12.69 and
20.05 mS/cm, respectively. According to Table 2, the Mg contents increased with the KOH
concentrations, but the P contents decreased slowly. The Mg-10-KOH-11 system showed
the maximum Mg content of 7.13 at%. Compared to the Mg-10 system (Figure 2b), the
Mg-10-KOH-2 system achieved a larger pore size and lower pore density (Figure 2e). As
the KOH concentration was increased, the fabricated MAO coatings became rougher, with
uneven micropore distribution (Figure 2f–h).

As shown in Figure 3b, the Mg-10 system was composed of primarily anatase together
with small amounts of rutile, MgO and Mg3(PO4)2. Compared to the Mg-10 system,
the addition of KOH increased the intensity of the Mg3(PO4)2 peak, and as the KOH
concentration was increased, anatase, rutile and MgO increased gradually. However, with
the increasing KOH concentration from 2 to 11 g/L, the ratios of the Mg3(PO4)2 peak
intensity at (100) in the MAO coatings to the titanium peak intensity at (002) exhibiteda
slowly decreasing trend.

3.3. Influences of H12Phy on Coating Formation

According to the experiments, the influences of solution conductivity on the coating
properties were investigated in the base solution with 15-g/L H12Phy and 10-g/L Na2MgY
(the S-Mg-10 system). In addition, the increasing KOH concentrations could significantly
improve the Mg amount. In order to clarify the effect of H12Phy on coating formation,
the Ti-6Al-4V alloy was anodized for 3 min in a solution containing 10-g/L Na2MgYand
a high KOH concentration, for example, 8-g/L KOH. The peak voltage could not be
higher than 130 V, and the surface morphology and EDS spectra of the anodic coating was
shown in Figure 4a,b. It was clear that MAO coatings were not successfully developed
on the titanium alloy withoutH12Phy, indicating that H12Phy was anecessary agent for
coating formation.
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Figure 4. (a) The SEM image and (b) EDS spectrum of the MAO coatings produced in the solution of
10-g/L Na2MgY and 8-g/L KOH.

3.4. XPS Analysis

Since theMg-10-KOH-8 system presented a high Mg content, its XPS survey and high-
resolution spectra were acquired to clarify the reaction products in the oxide layer, and the
results are shown in Figure 5. According to Figure 5a, Mg, Ti, O, C and P were detected. The
C 1s spectrum was composed of two subpeaks at 284.6 and 285.7 eV (Figure 5b), with the
former attributed to adventitious carbon species or C-C or C-H from H12Phy radicals and
the latter corresponding to C-O bonds from adsorbed H12Phy on the surface or the reaction
products phytates [22,31]. The O 1s peaks with binding energies of 530.3 eV, 531.5 eV and
532.7 eV (Figure 5c) were O2−, PO4

3− and C-O or HPO4
2−, respectively [11,31]. Figure 5d

showed the Ti 2p doublet spectra of Ti 2p3/2 and Ti 2p1/2, indicating the presence of
Ti2O3 and TiO2 at 457.7 eV and 458.7 eV [32,33]. The P 2p peaks (Figure 5e) at 132.8 eV
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and 133.7 eV revealed the presence PO4
3−and HPO4

2−, respectively [34], and the Mg 1s
peaks (Figure 5f) at 1303.8 eV and 1304.5 eV corresponded to MgO [35] and Mg3(PO4)2,
respectively.
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3.5. Mg Ions Concentration Analysis

The Mg ions concentrations in the Mg-10-KOH-8 system before and after MAO
treatment are shown in Figure 6. Prior to MAO treatment, the Mg concentration was
681.17± 5.07 mg/L. After anodizing for 30 s and 150 s, the Mg concentrations near the
anode were separately 675.63 ± 4.29 mg/L and 667.11 ± 10.01 mg/L, slightly higher than
those close to the cathode at 662.89 ± 8.37 mg/L and 660.79 ± 5.12 mg/L, respectively.
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Figure 6. The magnesium concentration in the solution of the Mg-10-KOH-8 system before MAO
treatment and near the anode and the cathode after MAO treatment for 30 s and 150 s.

3.6. Initial Cell Attachment

As shown in Figure 7, the number of MC3T3-E1 cells on the MAO-treated Ti-6A1-4V
in the Mg-10-KOH-5 system was greater than those on the untreated control, the Mg-10
system and the Mg-10-KOH-8 system after incubation for 4 h. The cells on all the samples
had a polygonal or spindle shape, and the filose pseudopodium and flat membrane were
evident. Compared to the other groups, the cells on the Mg-10-KOH-5systemexhibited
more spreading and superior filopodia extension, and so, this system could promote initial
cell attachment.
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Figure 7. Fluorescent images of the MC3T3-E1 pre-osteoblasts after culturing for 4 h: (a) untreated control, (b) the Mg-10
system, (c) the Mg-10-KOH-5 system and (d) the Mg-10-KOH-8 system. The scale bar in the low-magnification insets is
100 µm.
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3.7. Cell Viability

The cell viability assessed by the CCK-8 assay is shown in Figure 8a. All the extracts
were well-tolerated by the pre-osteoblasts, with the cell viability ranging from 130% to
95% over time in comparison with the untreated control group ranging from 120% to
100%. At day 1, the viability of the Mg-10 system and Mg-10-KOH-8 system was lower
than that of the untreated control group (p < 0.05, Figure 8a). At day 3, the viability
of the Mg-10 system, Mg-10-KOH-5 system and Mg-10-KOH-8 system was lower than
that of the untreated control group (p < 0.05, 0.05 and 0.01, respectively). At day 7, the
viability of the Mg-10-KOH-8 system was lower than that of the untreated control group
(p < 0.01, Figure 8a) but still reached over 95%. In comparison, at day 7, the viability of the
Mg-10 system and Mg-10-KOH-5 system was similar to that of the untreated control group
(p > 0.05, Figure 8a).
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Figure 8. In vitro cytocompatibility evaluation of the MAO samples after culturing MC3T3-E1 pre-
osteoblasts for a different period. (a) Cell viability, (b) cell proliferation, (c) ALP activities, (d) ECM
mineralization, (e) collagen secretion and (f) the quantitative expression of ECM mineralization and
collagen secretion * p < 0.05 and ** p < 0.01 versus the untreated control. Scale bar is 200 µm.

3.8. Cell Proliferation

Gradually increasing the cell proliferations was observed throughout the culturing
period from 1, 3 to 7 days (Figure 8b). In particular, the cells on the Mg-10 system and
Mg-10-KOH-8 system showed lower proliferation rates than the untreated control at day1
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(p < 0.05; Figure 8b). At day 3, the proliferation rates of the Mg-10 system, Mg-10-KOH-5
system and Mg-10-KOH-8 system were lower than that of the untreated control group
(p < 0.05, 0.05 and 0.01, respectively). At day 7, the proliferation rates of the Mg-10-KOH-8
system were lower than that of the untreated control group (p < 0.01, Figure 8b), but the
proliferation rates of the Mg-10 system and Mg-10-KOH-5 system were similar to that of
the untreated control group (p > 0.05, Figure 8b).

3.9. Cell Differentiation

As shown in Figure 8c, the ALP activities of the MC3T3-E1 cells in all the groups at
day 3 were not significantly different but increased afterwards with the culturing time.
At days 7 and 14, the ALP activities of the MCT3-E1 cells of the Mg-10-KOH-5 system
were higher than that of the untreated control group (p < 0.05 for day 7 and p < 0.01 for
day 14, respectively). The ALP activities of the Mg-10 system and Mg-10-KOH-8 system
were similar to that of the untreated control group (p > 0.05). ECM mineralization of
the MC3T3-E1 cells after culturing for 21 days is shown in Figure 8d,f. As shown in
Figure 8d, the mineralized calcium nodules were present on all the samples. Compared to
the untreated control, the Mg-10 system, Mg-10-KOH-5 system and Mg-10-KOH-8 system
showed more mineralized calcium nodules, suggesting that MAO could promote ECM
mineralization. In particular, the Mg-10-KOH-5 system exhibited significantly upregulated
ECM mineralization compared to the Mg-10 system and Mg-10-KOH-8 system (Figure 8f).
Figure 8e,f presented the collagen secretion after incubation for 21 days. As shown in
Figure 8e, the Mg-10 system and Mg-10-KOH-8 system showed slightly more collagen
secretion than the untreated control, whereas the Mg-10-KOH-5 system exhibited denser
collagen secretion. Figure 8f further confirmed significantly upregulated the collagen
secretion for the Mg-10-KOH-5 system, and the results were consistent with the ECM
mineralization results.

4. Discussion

In our work, H12Phy, a medium-strong acid, was the major ingredient of the MAO
electrolytes. H12Phy and other inositol phosphates such as InsP4 and InsP5 are ubiquitously
involved in cellular signal transduction and regulation in eukaryotic cells [36]. In addition,
H12Phy is stable in water at a low temperature and used as an environmentally friendly
chemical conversion agent for magnesium alloys [18,23,37]. On account of the strong
chelating ability of H12Phy with Mg ions, magnesium phytate may be developed and
absorbed on MAO coatings, which could be inferred according to the C-O bond at 285.7 eV
(Figure 5b).

A higher electrolyte concentration produces larger micropores onanodic coatings with
rougher surfaces due to the change in the solution conductivity [38,39]. According to the
empirical equation proposed by Burger and Wu [40], the breakdown voltage increased
almost linearly with the logarithmic electrolyte resistivity. Larger Na2MgY and KOH
concentrations increased the conductivity of the solutions, resulting in a lower breakdown
voltage and more spark discharge [39,40]. Therefore, larger Na2MgY or KOH concentra-
tions enlarge the pore size in anodic coatings and yield a rougher surface morphology. Our
study also indicated that Na2MgY and KOH influence the surface morphology of MAO
coatings in a Na2MgY and KOH concentration-dependent manner.

Na2MgY and KOH also affect the chemical composition of anodic coatings. The
Na2MgY concentration imposes a larger effect on the Mg and P contents, while KOH
shows a larger effect on the Mg content. This influence can be explained according to
the MAO characteristics. Similar to magnesium alloys, there are four stages in MAO of
titanium alloys—namely, before anodizing, traditional anodizing, MAO treatment and arc
anodizing, as shown in the schematic diagram in Figure 9.
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In the first stage, H12Phy molecules in the aqueous solution are converted into different
H12Phy radicals, which compete with Y− ions to combine with Mg2+ ions, and the following
reactions occur [17]:

Na2MgY � MgY2− + 2Na+ (1)

MgY2−� Mg2+ + Y4− (2)

C6H6(PO4)6H12 + iMg2+ + (12-j) OH− = [MgiHjC6H6(PO4)6](12−2i−j)− + (12-j)H2O (3)

As shown in Figure 1a, one H12Phy molecule has 12 hydrolysable hydrogens. In Equa-
tion (3), j is the number of left hydrolysable hydrogens (j = 0–12), while i is the number of
Mg ions combined with one H12Phy molecule (j = 0–6). According to Equations (1) and (2),
a small amount of Mg2+ is present in the solution. Owing to the strong chelating ability of
H12Phyradicals with cations such as Mg2+, insoluble magnesium phytate may be formed
according to Equation (3), and the solution becomes a turbid colloid.

In the second stage, anions in the solution such as OH−, Phy12−,
[MgiHjC6H6(PO4)6](12−2i−j)− and MgY2− are driven to the anode by the electric field.
In water solutions, cations move to the anode mainly by diffusion [17,22]. In our study, Mg
ions were combined with the chelating agents and became negatively charged. Therefore,
electromigration drives negatively charged Mg ions to the anode, which was verified by
the higher Mg ion concentrations near the anode than that near the cathode (Figure 6).
In addition, microsparks are not developed on the anode surface, and so, the tempera-
ture on the sample surface is relatively low, and the H12Phy radicals are stable. In this
stage, a small amount of TiO2, Mg(OH)2 or MgO may be produced on the anode surface
(Equations (4)–(7)):

Ti − 4e− = Ti4+ (4)

Ti4+ + 4OH− = TiO2 + H2O (5)

Mg2+ + 2OH− = Mg(OH)2 (6)

Mg(OH)2 = MgO + H2O (7)

As time elapses, small and dense sparks can be observed on the anode surface.
In the third stage, the instantaneous temperature on the anode surface is estimated to
reach 2116–2643 K due to the spark discharge [41]. It is reported that H12Phy can be
hydrolyzed into small molecular inositol phosphates in the temperature range between
320 and 345 ◦C [18]. During MAO, H12Phy radicals or magnesium phytate at the an-
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ode/electrolyte interface are not stable and are hydrolyzed into inorganic phosphates
according to Equations (8) and (9):

[MgiHjC6H6(PO4)6](12−2i−j)−→Mg3(PO4)2 + PO4
3− + H2O + C6H6(OH)6 (8)

3Mg2+ + 2PO4
3− = Mg3(PO4)2 (9)

In the fourth stage, there are larger sparks on the sample surface, and the main
reactions on the anode surface are similar to those in the third stage.

According to Equations (4)–(9), anatase, rutile, MgO and Mg3(PO4)2 are formed in
MAO coatings. With increasing the Na2MgY concentration, more Mg2+ is present in the
solution, according to Equations (1) and (2). The Mg ions take part in the coating formation,
according to Equations (8) and (9), and the MAO coatings contain more Mg and P elements,
showing that Mg ions enter into anodic coatings by diffusion. Furthermore, with the
increasing KOH concentrations, the Mg count increases but that of P decreases. During
MAO, OH− competes with H12Phy radicals to combine with cations such as Mg2+ to
form stable compounds. In addition, OH− ions are smaller and move faster thanH12Phy
radicals, and therefore, more OH−ions are present on the anode. Magnesium ions prefer to
combine with OH− ions, and thus, more MgO is formed, according to Equations (6) and (7).
Therefore, with the increasing KOH concentrations, MAO coatings contain more Mg but
less P, exhibiting further increases in the surface roughness.

The cell behaviors, such as attachment, proliferation and differentiation, are mainly
determined by the properties of the anodic coatings, such as the composition, roughness,
hydrophilicity, morphology and microstructure, which, in turn, depend on the processing
parameters, such as the electrolyte composition and concentration, treatment time and
final voltage [3,4,10–12,38,42,43]. H12Phy, found in eukaryotes and an abundant inositol
phosphate in cells, can increase the lipid storage capacity, improve the glucose uptake
and inhibit lipolysis [44]. In vitro cell tests show that magnesium alloys treated in a
H12Phy-containing solution show a high cell viability and proliferation [33,37]. Our results
demonstrated that the MAO coatings had no cytotoxicity, but the different solutions did
affect the cell attachment, proliferation and differentiation. With increasing the Na2MgY
and KOH concentrations, both the surface roughness and micropore size increased. The Mg-
10-KOH-5 system (containing 2.97 at% Mg) showed better cell viability, proliferation and
differentiation than the Mg-10 and Mg-10-KOH-8 systems, suggesting that the chemical
composition and microstructure of the MAO coating played an important role in the
pre-osteoblast performance, in addition to the surface morphology.

Mg is a vital element, and the appropriate Mg concentration induces osteogenic
activity [26]. There is Mg3(PO4)2 and MgO in the MAO coatings, and it is well-known that
magnesium salts, especially magnesium phosphate, have good biocompatibility [45,46].
With increasing the KOH concentrations, the Mg contents increase while the P concentration
decreases slowly, thus resulting in more MgO, producing some deleterious effects [25,47].
Therefore, our data show that the Mg-10-KOH-5 system has better in vitro cytocompatibility
than the Mg-10-KOH-8 system.

5. Conclusions

Ti-6A1-4V alloy samples were subjected to MAO treatment in an environmentally
friendlyorganic P-containing and a novel Mg-containing electrolyte and showed good
in vitro cytocompatibility based on the viability, adhesion, proliferation and differentiation
of the MC3T3-EI pre-osteoblast. Higher Na2MgY and KOH concentrations increased the
roughness of the MAO coatings, and the best cytocompatibility wasachieved from H12Phy
with 10-g/L Na2MgY; 5-g/L KOH. H12Phy is a key agent for MAO coating formation, and
Mg ions enter into MAO coatings mainly by electromigration. The results suggested that
both the surface morphology and Mg contents affected the in vitro cytocompatibility of the
MAO coatings on Ti-6A1-4V.
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