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Abstract: Friction is often accompanied by local fracture at the boundary of contacting bodies. The
space between contacting bodies usually contains moving particles of a different nature, and a change
in the effective friction conditions can be associated with a change in the structure of the contact
area. This paper presents a new series of experiments where balls simulated the particles of the
intermediate layer interacting with an elastic layer of different thickness. The effects of regularization
when the balls approached each other were investigated considering different initial configurations
(line and spatial structure). The balls simulated the particles of the intermediate layer interacting
with the elastic layer of different thickness. The opposite effects of convergence and separation of the
balls were observed in different experiments. A model of mutual effect during the contact of two
balls with a two-layered elastic half-space was developed. An analysis of tangential forces due to the
mutual effect was performed for different layer thicknesses, its relative compliance, and different
distances between the balls. It was found that the input parameters defined the sign of the tangential
force, which led to the convergence or the separation of the balls. The results can be used to create
structures controlling the motion in the intermediate layer.

Keywords: contact; friction; fracture; third body; BEM; wear particles

1. Introduction

During friction, wear particles are usually separated from interacting bodies. These
particles, as well as particles coming from the outside, form a third body that changes
the conditions of frictional interaction. An intermediate layer (third body) is formed, and
further interaction of the bodies is carried out through it. The validity of such formulation
of this situation is confirmed by numerous experimental data [1,2]. Systematic fracture in
the presence of the third body at the contact boundary of two interacting bodies during
shear can be one of the main wear mechanisms. The stage of formation of an intermediate
layer was identified [3,4], and a variant of a flat element evolution of the third body was
analyzed in the mode of intense tangential action on its contact surfaces. A model was
developed to analyze the process leading to the appearance of elements of the third body
during the destruction of material in the area of dry frictional contact.

The evolution of the intermediate layer and its effect on the mechanisms of friction and
wear depend on the nature of the material and on the contact conditions. The separated
fragment can form a rolling element or behave as a flat sliding element. This depends on
the ratio of normal pressure and shear in the contact area. A criterion for the initiation of
transformation of a flat element into a rolling element was described [5].

An interaction between bodies in an area of intense friction occurs through the move-
ment (rolling) of structural elements of the intermediate layer, which include both wear
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particles and those appearing from the outside. The latter can include, for example, abra-
sive particles. The influence of interface particles with different hardness and plasticity
index on the contacting bodies is an important factor affecting the interface temperature [6].
Moreover, in the analysis of experiments on ball screws, it was also found that the particle
size and concentration have a significant influence on wear and contact temperature [7].
The rolling ratio of the particles can reduce the friction coefficient, which is also one of the
factors affecting friction [8]. However, the relation between the structure of the intermediate
layer and friction has not been extensively discussed.

Contact interaction in the presence of friction and wear is characterized by self-
regulation mechanisms, which result in the formation of a regular structure corresponding
to an intermediate layer. In [9,10], one of the mechanisms of such self-regulation was
presented; it is based on the possibility of a relative rearrangement of particles in the
intermediate layer under the action of small perturbations of the stress state in their vicinity.
In a steady regime, the preference of various states of the friction structures is associated
with the value of the total potential energy of the elastic system corresponding to these
states. The state of the system with less total potential energy is more probable. In this case,
the nature of bodies interaction at the macro level depends on the mutual position of the
elements in the intermediate layer. The mechanism regulating the mutual position of the
intermediate layer particles is the subject of this study.

The following example illustrates the proposed approach. Let identical solid spherical
particles located at a small distance from each other be pressed into an elastic half-space
under the effect of normal loads Pi. Due to the finiteness of the distance between the
particles, small forces Ti, directed towards each other, appear, which is typical for closely
spaced dies. During static loading, this does not lead to displacement of the dies. The
situation changes if the balls are set in motion at a certain velocity along the contact surface
(for example, by moving a rigid plate that transfers a load to them). In this case, it is
possible to obtain the phenomenon of transformed friction [11]. According to it, if the body
moves under the action of a force in the friction mode, then the appearance of an additional
force in another direction, in particular, the force Ti, leads to the displacement of the body
in the direction of action of this force, no matter how small it is. For this mode of motion,
there is no fundamental difference between sliding and rolling friction. Such interaction
provides a mechanism that can change the mutual position of elements in the intermediate
layer between the contacting bodies during friction. It was shown [11] that in the case
when the initial elements of the intermediate layer are spherical blocks capable of rolling
under the effect of tangential forces, normal loads from the side of the contacting bodies
lead to the convergence of the blocks as the total tangential displacements increase. This
model approach was confirmed experimentally [9,10]. It can be extended to a system of
blocks moving relatively to each other in the sliding mode. The rate of convergence of the
blocks does not depend on the direction of the main displacement of the contacting bodies.
The described process is the reason for the grouping of particles in the intermediate layer
and their subsequent arrangement into some compact formations.

This paper presents a new series of experiments to study regularization effects for
various initial configurations of a system of balls (line and spatial structure). The balls
imitate the particles of the intermediate layer interacting with an elastic body. Previously,
the motion and the effect of convergence in the intermediate layer were associated with
the reaction of a homogeneous elastic half-space. The presence of an additional layer
between the rigid base and the third body can change the scenario of the structure’s
development. In the case of a thin elastic interlayer on a rigid foundation, scattering of
initially closed particles becomes probable. To explain this effect, it is necessary to use
models of the interaction of particles with a layered base, in which the mutual effect is
taken into account. Methods and approaches used in this study were developed to solve
the 3D contact problem for coated solids [12]. The mutual effect was studied previously
for a periodic system of dies and a two-layer elastic foundation [13]. Here, the asymmetry
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effects arising from the mutual influence of two balls in contact with a two-layer elastic
half-space are investigated.

In this study, only the mechanical component of the interaction of the particles of
the third body is investigated. The effect of energy loss on the collision of particles in
their position close to each other is not considered. This effect leads to increased friction
losses. At the microscale there is also adhesion of the particle to the contact surfaces [14];
when approaching, molecular interaction between the particles also occurs [15], which
additionally increases the dissipation of energy during friction. Probably, the assembly or
dispersal of particles should affect tribochemical processes, for example, oxidation [16]. The
real third body consists of microparticles of various sizes; the particles can be of different
nature and shape and have different mechanical properties. The physical and mathematical
models presented here make it possible to isolate the effect of mutual influence from a large
number of factors influencing the behavior of the particles of the third body.

2. Physical Modeling of Structure Changes in the Third Body

An experimental method was developed to demonstrate the effects of motion in the
intermediate layer. Steel balls were placed in a fixed gap between an elastic compliant
layer and a rigid movable plate (Figure 1). The plate, made of clear glass with a thickness
of 10 mm, received a reciprocating motion with amplitude of 7–10 cm. Observations of
the relative displacement of the balls were made and photographed through the glass. All
control experiments were carried out with a fixed vertical approach of the upper plate and
the substrate. The displacement was controlled by fixing the level of the plate while sliding
along the sides of the container (Figure 1).
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Figure 1. Scheme of the experiment.

2.1. Thick Layer

Identical steel balls of 10 mm radius and a compliant foam rubber layer 80 mm thick,
were used in the first part of the experiments. The effective modulus of elasticity of the
rubber, determined from the force during the test penetration of the ball to a depth of
12 mm, was E = 57.4 kPa. The fixed vertical approach of the upper plate to the substrate
was 12 mm.

Four balls in line first were divided into groups, starting from the edges of a straight
chain (line) of balls, in which this process was accelerated (Figure 2a). With an increase in
the initial distance between the balls, the effect of dividing into groups, starting from the
edges of the line, was more evident. Figure 2b shows the change in the distance between
the centers of the balls for the variant of the line of four balls with the initial distance
between them of 30 mm. Such type of grouping is caused by the ‘edge effect’: it means that,
having the same penetration, the edge balls are loaded more than the central ones [1]. Two
groups formed and then interacted with each other. The balls in the photos are numbered
to track their mutual movements.
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We then considered some examples of grouping lines with a larger number of balls.
For a line of six balls (Figure 3), we could see a sequential formation of two groups of

balls—the outer ones grouped together and then one ball from the central group joined
them (that is, two groups of three balls formed). Here, the process also began from the
edge balls (30 cycles). The process ended with the formation of a compact group with the
closest possible packing.
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Figure 4. Reciprocating motion along the line of balls (the initial distance between the centers in the
line was 15 mm). The number of cycles is reported in the upper right corner.

An interesting factor to analyze was the influence of irregularities in the line structure
(Figure 4). A gap was created in the regular initial line structure of seven balls (one ball was
outside the line). There was a sequential formation of two groups of balls–the grouping of
the edge ones, the joining to them of one ball from the central ones, and then their merging,
but the shape of the line curved towards the influencing separate ball. We also observed a
gradual moving of an individual ball to the curved line.

We also carried out experiments with other configurations of the groups of balls.
Figures 5 and 6 present the results for nine balls placed at different initial distances from
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each other. The convergence was more active along the direction of the main movement.
The final shape of the group showed a “tip” oriented towards the direction of the main
movement.
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It can be noted that with a small (20 mm) distance between the balls in the initial
ordered configuration, the balls grouped together preserving elements of the original
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ordering; with an increase in the distance (up to 30 mm), the final configuration with the
maximum density was the same, but in intermediate situations, more complex structures
formed (possibly associated with an increased influence of random factors with a decrease
in the initial density). It is possible that in the case of a much larger number of elements,
even with a regular structure, several centers of grouping can be formed in the system.

2.2. Thin Layer. Effect of Balls Separation

Experiments were carried out with balls of various diameters (7 mm, 10 mm, 16 mm)
moving along a 10 mm-thick layer of spongy rubber on a rigid substrate. A glass plate
performed a reciprocating motion with an amplitude of 30–40 mm. The plate normal
displacement was controlled to be 1.5 mm. When moving from the initial closed position,
balls with a diameter of 16 mm were displaced to a distance of about 50 mm from the
centers after more than 50 cycles of movements (Figure 7). This mutual location was final;
it did not change with further reciprocated sliding. Close balls of smaller diameter were
not separated. This and other effects are explained in the next section, which presents a
model for the emergence of tangential forces due to the mutual effect.
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3. Theoretical Model of Mutual Effect

The study of mutual effect when investigating multiple contacts is usually associated
with surface roughness. For the case of elastic half-space, a periodic system of dies as
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well as a fixed number of dies were considered [1]. The mutual effect leads to a not
uniform force distribution between a limited assembly of dies with controlled penetration,
as well as to the increase of the tangential force because of a non-symmetric pressure
distribution. The tangential force was analyzed in the case of a single slider in contact
with elastic [17] and viscoelastic [18] solids. In the presence of asperities, such tangential
force cannot produce any significant effect. The contact problem for the system of balls is
mathematically identical to the problem for the system of dies, but the balls can change
their location due to the tangential force.

The presented results of physical modeling should be explained by an appropriate
mathematical model. The effect of balls convergence or separation in the reciprocated
sliding process depends on the thickness of the compliant material layer, the balls’ size,
and the normal force. These parameters, as well as the elastic properties of the materials in
contact with each other were the input variables of the model.

Four important notes:
The model was developed for the case of small deformations, which means that the

characteristic size of the contact area of a ball was assumed to be much smaller than the
ball radius. For this case, the model is semi-analytical and applicable for the description of
such effect as the appearance of tangential forces due to mutual influence. For the case of
finite deformations, the effect should be stronger.

We assumed that it was important to use a low-compressible material for the layer (if
we wanted the balls to separate). Experiments were performed with rubber with a large
Poisson ratio. The model presented below can be used for all elastic materials, but the
results were obtained for a Poisson ratio (ν) of ν = 0.48. This value is typical for rubbers.

We ignored the rheological properties of the rubber, as well as the adhesion between
the rubber and the balls. This last parameter is very important at the microscale for wear of
abrasive particles; it should have a significant influence but will not neutralize the effects
arising from elastic deformation.

Here, we considered only the loading of balls by normal forces. Tangential forces,
which occur due to the mutual effect, lead to the differences in the sliding contact of
neighboring balls.

3.1. Problem Formulation

Let us consider a contact problem for n rigid indenters whose shapes are defined
by the functions fi(x, y), i = 1..n and a two-layered elastic half-space. The layer has a
thickness h. The points of initial contact of the indenters with the layer surface are located
arbitrarily. The elastic layer of thickness h is bonded to an elastic half-space. The elastic
properties of the materials are characterized by the Young modulus and the Poisson ratio
E1, 2, ν1, 2. The indexes “1” and “2” correspond to the layer and the half-space, respectively.
The Oz axis is directed normally to the undeformed surface of the layer.

Two different contact problems can be considered:
Problem 1—the indenters maintain their relative position in all directions, and the

vertical force Q affects the system of the indenters as a unified object;
Problem 2—the indenters maintain their relative position within the plane XY but

have a degree of freedom in the Oz axis. Herewith, the vertical forces Qi, i = 1..n acting on
the indenters are given individually.

For Problem 1, the following boundary and equilibrium conditions are met (z = 0):

n
∑

q=1
wiq(x, y) = fi(x, y) + D , (x, y) ∈ Ωi, i = 1..n,

σz = 0, (x, y) /∈ Ωi
τxz = 0, τyz = 0

, (1)

Q =
n

∑
i=1

x

Ωi

p(x, y)dxdy, i = 1..n.. (2)
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For Problem 2, the following boundary and equilibrium conditions are met (z = 0):

n
∑

q=1
wiq(x, y) = fi(x, y) + Di, (x, y) ∈ Ωi, i = 1..n

σz = 0, (x, y) /∈ Ωi
τxz = 0, τyz = 0

, (3)

Qi =
x

Ωi

p(x, y)dxdy, i = 1..n, . (4)

Here, Ωi, i = 1..n are unknown contact zones of the indenters; the functions wiq(x, y)
define surface displacement within the contact area of indenter i due to impact of indenter
q; Di, i = 1..n—are the vertical displacements of the indenters; σz, τxz, τyz are normal and
tangential stresses. Contact pressure and contact areas have to be determined.

The conditions at the layer–substrate interface (z = −h) satisfied the case of perfect
adhesion:

w(1) = w(2), u(1)
x = u(2)

x , u(1)
y = u(2)

y ,
σ
(1)
z = σ

(2)
z , τ

(1)
xz = τ

(2)
xz , τ

(1)
yz = τ

(2)
yz

(5)

Here ux, uy are tangential displacements.

3.2. Method of Solution

Due to the mutual effect, the contact problem for each indenter is not axisymmetric.
The first step was the loading of the two-layered elastic half-space by a load q, which is
uniformly distributed inside a square 2a× 2a. The loading conditions at the upper layer
bound are the following:

σz = −q, |x|≤ a, |y|≤ a
σz = 0, |x|> a, |y|> a
τxz = 0, τyx = 0

(6)

The Equations (5)–(6) are solved [19] using methods based on double Fourier trans-
forms. Stresses and displacements inside the layer and the half-space are obtained as a
result of inverse Fourier transforms. The normal displacements of the surface are deter-
mined by the following relation:

w′(x′, y′, 0) = −1 + ν1

E1

π/2∫
0

∞∫
0

∆(γ, ϕ, λ, χ) cos(x′γ cos ϕ) cos(y′γ sin ϕ)dγdϕ (7)

Here, x′, y′, w′ are dimensionless coordinates related to a, χ is the ratio of the reduced
moduli of elasticity of the layer and the elastic half-space γ, ϕ are the coordinates in the
space of double Fourier transforms, λ = h/a is dimensionless layer thickness. The function
∆(γ, ϕ, λ, χ) is obtained as a result of solving a system of linear functional equations
obtained from the boundary conditions (5), (6) as a result of using biharmonic functions
to determine stresses and displacements, as well as a double integral Fourier transform
applied to a constant load. The full analytical representation of ∆(γ, ϕ, λ, χ) is cumbersome
and is not presented here, but it is important to note that this function linearly depends on
q, which is the result of applying the double Fourier transform to the constant pressure q:

q = q
4

π2
sin(γ cos ϕ) sin(γ sin ϕ)

γ2 sin ϕ cos ϕ
(8)

Due to the fact that the constant pressure q enters the function ∆(γ, ϕ, λ, χ) linearly
and can be taken outside the integral sign, (7) can be taken as a basis for solving the contact
problem by determining the contact pressure p(x, y) as a piecewise function. Thus, we use
here the boundary element method.
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A rectangle area Ω0
i , i = 1..n of size ai × bi containing a priory the sought contact

area is chosen for each indenter, taking into account its size, shape, and applied load.
Every Ω0

i contained an appropriate grid of Nai · Nbi = Ni elements. Contact pressure
pi

j, i = 1..n, j = 1..Ni is assumed constant within each element of the grid.
Vertical displacement at any point of the boundary is a superposition of displacements

caused by all loaded elements. Consider a column ‖wiq‖ to be composed of surface
displacements within the area Ω0

i due to the impact of pressure ‖pq‖ within the area Ω0
q.

In this case, the relation between contact pressure and vertical displacements of the surface
can be defined by the matrix of influence coefficients ‖Aiq‖ consisting of Ni × Nq elements:

‖Aiq‖ · ‖pq‖ = ‖wiq‖ (9)

Thus, the coefficients of the matrix Aiq
jl , j = 1..Ni, l = 1..Nq, which are the surface

vertical displacements in the center of the element j of area Ω0
i caused by a unit pressure

within the element l of the area Ω0
q, can be calculated using the relationship (7).

Taking into account the introduced piecewise functions, one can rewrite the boundary
and equilibrium conditions (1), (2) in a matrix form:


A11

11 · · · A11
N11

...
. . .

...
A11

1N1
· · · A11

N1 N1

 · · ·

 A1n
11 · · · A1n

Nn1
...

. . .
...

A1n
1N1

· · · A1n
Nn N1

 1

...
. . .

...
...

A1n
11 · · · A1n

N11
...

. . .
...

A1n
1Nn

· · · A1n
N1 Nn

 · · ·

 Ann
11 · · · Ann

Nn1
...

. . .
...

Ann
1Nn

· · · Ann
Nn Nn

 1

(
s1 · · · s1 ) · · ·

(
sn · · · sn ) 0


·



 p1
1
...

p1
N1


... pn
1
...

pn
Nn


D


=



 f 1
1
...

f 1
N1


... f n
1
...

f n
Nn


Q


(10)

Here, si, i = 1..n are the areas of mesh elements, and f i
j , i = 1..n, j = 1..Ni are

piecewise functions defining the indenters’ shapes.
Conditions (3) and (4) thus can be rewritten in the following form:


A11

11 · · · A11
N11

...
. . .

...
A11

1N1
· · · A11

N1 N1

 · · ·

 A1n
11 · · · A1n

Nn1
...

. . .
...

A1n
1N1

· · · A1n
Nn N1

 1

...
. . .

...
...

A1n
11 · · · A1n

N11
...

. . .
...

A1n
1Nn

· · · A1n
N1 Nn

 · · ·

 Ann
11 · · · Ann

Nn1
...

. . .
...

Ann
1Nn

· · · Ann
Nn Nn

 1

(
s1 · · · s1 ) · · · 0 0

...
. . .

...
...

0 · · ·
(

sn · · · sn ) 0



·



 p1
1
...

p1
N1


... pn
1
...

pn
Nn


D1
...

Dn



=



 f 1
1
...

f 1
N1


... f n
1
...

f n
Nn


Q1
...

Qn



(11)

The coefficients Aiq
jl , j = 1..Ni, l = 1..Nq are obtained from (7):

Aiq
jl = −

1
2G

π/2∫
0

∞∫
0

∆′(γ, ϕ, λ) cos(yiq
jl γ sin ϕ) cos(xiq

jl γ cos ϕ)dγdϕ (12)



Materials 2021, 14, 5689 11 of 15

Here, ((xiq
jl )

2
+ (yiq

jl )
2
)

1/2
is the distance between corresponding elements of the grids,

∆′(γ, ϕ, λ) = ∆(γ, ϕ, λ)/q.
According to the boundary conditions (1), (3), the unknown contact pressure should

be 0 outside the contact area. The systems (10) and (11) do not take into account this fact,
so a solution will include negative pressure elements. In order to obtain the unknown
contact areas, one should consider these elements to be zero and consequently reduce
the system rank. After, the reduced system is solved again. The described iteration
procedure continues until there are no negative pressure elements in the solution. As a
result, one obtains the unknown contact areas, contact pressure, and normal displacement
of the indenters.

The mutual effect leads to a non-axisymmetric contact pressure distribution under
each indenter. It means that we have tangential forces with opposite directions, which arise
for two balls. It is defined by the following relation:

→
Ti = −

x

Ωi

→
p XY(x, y)dxdy, i = 1..n (13)

Here,
→
p XY(x, y) is a projection of the pressure on the plane XY. It can be calculated

for an obtained solution as the surface displacement, and therefore, the surface curvature
can be found.

3.3. Results and Discussion

First let us consider the simplest example, which can explain the nature of forces of
attraction or repulsion during contact of the balls with a low compressible layer adherent
to a more rigid substrate. What are the surface normal displacements if a two-layered
elastic half-space is subjected to a load q, which is uniformly distributed inside a square
2a × 2a? For an elastic half-space, the displacements are always positive (if the acting
force is positive). In contrast, for the layer, the displacements are positive inside the
loaded area and in the vicinity of the area. As we move away from the loading region,
the displacements become negative, reach a certain minimum value w∗ at a point x∗, and
then asymptotically tend to zero. Figure 8 presents the dependences of w∗ and x∗ on the
thickness of a compliant low compressible layer. If the layer has zero thickness, the elastic
half-space presents no negative displacements of the surface. For a thin layer, the negative
displacements are located very close to the loaded area. The thicker the layer, the farther
from the loading zone is the region of greatest bulging. The value of w∗ depends on the
layer thickness non-monotonically. With an increase in the layer thickness, its absolute
value increases and then decreases. It is clear that if the bulge is between two balls, they
will separate. However, the opposite case is also possible, if both balls are in the region
of positive displacements. In order to understand which scenario will be realized, it is
necessary to solve the contact problem for the system of balls.

The problem formulated in Section 3.1 can be used for the case of a limited number
of smooth indenters with various shapes. The calculations were performed for balls with
radius R. We chose a two-ball configuration for the analysis of tangential forces due to
mutual influence, since the separation was experimentally obtained for this configuration.
In addition, having two equally loaded balls, we could reduce the number of input parame-
ters and facilitate the analysis. The points of initial contact of the balls with the layer surface
were located on the axis Ox; the distance between the balls was L. For a more generalizable
analysis, we used the following dimensionless parameters: (x′, y′, z′) = (x, y, z)/R,
P′ = P/E1, Q′ = Q/(E1 · R2), L′ = L/R.
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The asymmetry of the contact pressure distribution is illustrated in Figure 9. The two
contact pressures were close to each other (two curves appear like one in Figure 9a), but
the difference between the two pressure distributions is obvious. This suggests that we
tangential forces should be acting in opposite directions.
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E1/E2 = 10−3, ν1 = 0.48, ν2 = 0.3, L′ = 2.0, h′ = 1.16, Q′ = 2.66(6)× 10−3.

Let us consider the tangential force acting on the left ball. Since the axis was directed
from left to right, positive forces brought the balls closer and negative forces separated
the balls. For the ball on the right, this was exactly the opposite. The smaller the distance
between the balls, the more noticeable the mutual effect. First, we analyzed the influence
of the layer thickness when the balls were close to each other, L′ = 2 (Figure 10). In this
Figure, the starting point (zero thickness) corresponds to the case of an elastic half-space,
when a very small positive force acts to bring together the balls. Next, we increased the
thickness of the relatively compliant weakly compressible layer. Since the layer was thin
and weakly compressible, some surface bulging of the material between the balls contact
zones was inevitable. This resulted in a negative tangential force separating the balls. At
a particular a layer thickness, this force reached its minimum. With a further increase in
the layer thickness, a positive force appeared again, tending asymptotically to the value
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characteristic of the half-space (in this case, it was greater than at zero thickness, since the
layer material was more compliant than the half-space material). It is interesting to note at
a certain layer thickness, the positive force was greater than that observed in the case of a
half-space.
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L′ = 2.0, Q′ = 2.66(6)× 10−3.

Another important input parameter is the relative compliance of the layer (Figure 11).
We chose here the thickness of the layer, which provided the separation effect for the
relatively compliant layer. In this case, the deformation of the layer was much greater
than that of the substrate. With an increase of the layer elastic modulus, the contact zones
decreased and became relatively farther from each other. Mutual effect and tangential forces
became weaker. The deformation of the substrate became comparable to the deformation
of the layer, which led to the appearance of a positive tangential force. There is a value of χ
at which the positive force reached its maximum value, then decreased.
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It is possible to compare the results shown in Figure 12 with the experimental results.
Figure 12 shows the dependence of the arising tangential forces on the distance in the cases
of a relatively thin (dashed line) and a relatively thick (solid line) layers. When the layer is
thin, the bulging of the material, leading to the appearance of negative tangential forces,
occurs near the contact area and decreases sharply with the distance from this area. The
thicker the layer, the further from the contact area is the zone of bulging. This explains
the fact that when the balls move apart on a relatively thick layer, the positive tangential
force is replaced by a negative one. In the case of a thin layer, the opposite phenomenon
occurs due to the fact that, at a sufficiently large distance, the mutual effect associated
with the deformation of the layer becomes negligible, but the mutual effect provided by
the deformation of the substrate remains. In our case, the substrate effect was negligible,
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because its material was much more rigid and more compressible than the material of
the layer. Therefore, the initial position of the balls can determine whether separation or
convergence of the balls will occur. This also explains the experimental fact that the balls
stopped after separation in a position of negligible tangential force.
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4. Conclusions

An experimental method was developed to demonstrate the effects of convergence or
separation of particles in the intermediate layer between two bodies during friction. Steel
balls were used as the physical model of the particles. The convergence effect was obtained
for a relatively thick compliant layer in contact with the balls, which had different initial
configuration. Some irregularities in the configuration were also considered as a starting
condition and changed the convergence process. The separation effect was obtained for
two balls in contact with a relatively thin layer of a low compressible elastic material.
An analytical–numerical model based on double Fourier transforms, boundary element
method, and iterative procedure was developed to study tangential forces arising due to
the mutual effect related to the contact of two balls with a two-layered half-space. We
found that the sign of the tangential force depended on the layer thickness, its relative
compliance, and the distance between the balls. The experimental observation of a fixed
position of the balls after their separation could be explained: this position corresponded
to a negligible tangential force, as shown in Figure 12.

It should be noted that tangential forces arising due to the mutual effect do not affect
the friction force at the macro level. (If we add up the forces acting on all the balls, we
obtain zero). However, the assembly or separation of particles can significantly affect the
adhesion or tribochemical processes and, thus, the friction force.

These results open up interesting prospects. Further research in this direction may
be interesting from the point of view of creating structures and controlling motion in the
intermediate layer between two bodies.
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