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Abstract: The application of multiphysics models and soft computing techniques is gaining enormous
attention in the construction sector due to the development of various types of concrete. In this
research, an improved form of supervised machine learning, i.e., multigene expression programming
(MEP), has been used to propose models for the compressive strength (f′c), splitting tensile strength
(fSTS), and flexural strength (fFS) of sustainable bagasse ash concrete (BAC). The training and testing
of the proposed models have been accomplished by developing a reliable and comprehensive
database from published literature. Concrete specimens with varying proportions of sugarcane
bagasse ash (BA), as a partial replacement of cement, were prepared, and the developed models were
validated by utilizing the results obtained from the tested BAC. Different statistical tests evaluated
the accurateness of the models, and the results were cross-validated employing a k-fold algorithm.
The modeling results achieve correlation coefficient (R) and Nash-Sutcliffe efficiency (NSE) above 0.8
each with relative root mean squared error (RRMSE) and objective function (OF) less than 10 and 0.2,
respectively. The MEP model leads in providing reliable mathematical expression for the estimation of
f′c, fSTS and fFS of BA concrete, which can reduce the experimental workload in assessing the strength
properties. The study’s findings indicated that MEP-based modeling integrated with experimental
testing of BA concrete and further cross-validation is effective in predicting the strength parameters
of BA concrete.

Keywords: multigene expression programming; experimental investigation; multiphysics models;
machine learning; agricultural waste; sustainability; cross-validation

1. Introduction

The damage caused by the construction industry to the environment is a well-known
fact. The construction sector uses a third of the total energy production and emits a large
amount of greenhouse gases into the atmosphere [1]. Concrete is a widely used material
that emits 0.13 tons of CO2 per ton of concrete produced [2–4]. The idea of green concrete
is gaining popularity as a way to diminish the harmful impacts of concrete while still
addressing the underlying problem. Green concrete is made by substituting industrial
waste with traditional cementitious materials. Commonly used wastes that can be used
as cement replacement are electric arc furnace slag, rubber ash, fly ash, volcanic ash, rice
husk ash, metakaolin, and sugarcane bagasse ash [5,6]. The use of these materials is
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seen as a low-carbon alternative to traditional building materials and a way to reduce
energy use and carbon emissions effects. Sugarcane bagasse is the primary fuel used in the
sugarcane industry around the world [7]. It is one of the agricultural wastes that remain
after processing and extraction in the same industry. Bagasse and residue ash make up
about 26% and 0.62% of each ton of sugarcane, respectively [8]. The ash is disposed of
in landfills, raising significant environmental problems [9]. As a result, environmentally
friendly applications for bagasse ash (BA) are being explored in the construction sector.
Several experimental studies have indicated that BA can be used as a cement substitute in
concrete with a substantial improvement in mechanical properties. Chusilp et al. (2009) [10]
observed that concrete including 20% BA by mass of binder had greater compressive
strength (f′c) and better stability. Sobuz et al. (2014) [11] stated that maximum strength
of BA concrete (BAC) could be obtained by replacing 10% of the cement. According to
Jagadesh et al. (2018) [12], the f′c of the concrete with 30% raw BA was reduced by nearly
50%. The reduction in f′c was attributable to the larger size of particles, which expands the
pore size. Almost a 27% increase in f′c was observed when 10% binder was replaced with BA.
The increase in f′c is caused by the presence of finer silica and the finer BA particles acts as a
filler, which in turn improves the density and strength of concrete. Similar observations are
reported by Bahurudeen et al. (2015) [13] where the authors noted that at 25% replacement,
the compressive strength of BAC decreases due to dilution effect. In addition, the durability
properties of BAC are reported to be much better than normal concrete [10,14,15].

Hence, it can be concluded from the aforementioned discussion that the behavior of
BAC is different for different percentages of cement replacement. This complex behavior
is due to several factors, including the proportion of concrete used in the mixture, the
percentage of cement replacement, the type of aggregates, and different water-to-binder
ratios. The development of such relations and factors will increase the use of BAC in the
building industry. Recent advances in the area of artificial intelligence (AI) and multiphysics
models have brought about substantial changes in many engineering fields, including
aeronautical engineering, mechanical engineering, and civil engineering [16–19]. Materials
engineers used advanced soft computing techniques to predict different properties of the
materials, including compressive strength (f′c) and splitting tensile strength.

The applications of the random forest (RF) technique for modeling the compressive
strength (f′c) of high-strength concrete was reported by Farooq et al. (2020) [20]. To examine
the f′c of synthetic-sand concrete, the RF model was created by Zhang et al. (2020) [21]. The
results of the study reported the reduced performance of RF when compared with similar
models. Sun et al. (2019) [22] predicted the f′c of concrete in which rubber was replaced with
fine aggregate. The author combined the RF method with different optimization techniques
and reported high accuracy for the combined methods. Chou et al. [23] applied a support
vector machine (SVM) to forecast the f′c of high-strength concrete with Kernel function for
model development. Outcomes of the research indicated a reliable and high prediction
accuracy of the SVM model. In another study conducted by Deng et al. (2018) [24], SVM
was employed to establish a model for the f′c of recycled aggregate concrete. Based on
statistical analysis, the SVM showed an acceptable modeling outcome. Alexiadis et al.
(2019) [25] coupled a deep multiphysics model with machine learning algorithm in parallel.
The authors discussed the practical and theoretical aspects of the particle neuron duality
and demonstrated it as an efficient computational method capable to learn during the
simulation process. The artificial neural network (ANN) was applied to forecast the f′c
of rice husk ash concrete, fly ash concrete, lightweight concrete, rubberized concrete,
ultra-high strength concrete and modulus of elasticity of concrete made with recycled
aggregate [18,26–31]. ANN shows reliable performance based on inferential statistics in
forecasting the different mechanical properties in these research programs. However, ANN
does not provide information of the associated problem, thus meaning it is considered as
a black-box model. The ANN models are based on the correlation among the inputs and
outputs, though the relation is either linear or dependent on predefined functions [5,32,33].
Recently, gene expression programming (GEP) was employed to estimate the mechanical
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properties of high strength concrete (HSC), waste foundry sand concrete (WFSC), bagasse
ash concrete (BAC), and modeling the bearing capacity of concrete filled steel tubes and
RC frame structures [5,34–36]. GEP was considered advantageous in terms of providing
empirical equations and high prediction capability, and comparative assessment showed
better and enhanced accuracy of the GEP. However, the GEP approach was found to have
some limitations as it does not take into account a large number of diverging entries for the
establishment of model, thus shrinking its range of application [5]. Such outlying entries
should be deleted from the GEP model domain to enhance the performance of developed
model. Moreover, the GEP encodes just one chromosome, so it is appropriate for the basic
connection among the dependent (response) and independent (explanatory) variables [37].

Considering the aforementioned difficulties and limitations, an advanced and im-
proved algorithm, i.e., multigene expression programming (MEP) has been utilized to
formulate the mechanical properties of BAC. To the best of the authors’ knowledge, no
detailed study has been performed to date to develop a relationship and figure out the
responsible factors for the development of strength of BAC using MEP. The MEP has
the capability of encoding several chromosomes into a single program (code) and the
best possible chromosome can be selected based on evaluating fitness [37,38]. MEP is
considered an improved form of the GEP, having the capacity to forecast accurate results
given the complexity of the target is unseen compared to other modeling techniques [39].
A simple decoding process is used in MEP as compared to other machine learning (ML)
algorithms. Despite the unique attributes of MEP, it has been scarcely utilized in civil
engineering. In the present study, the mechanical properties of BAC, such as compressive
strength (f′c), splitting tensile strength (fSTS), and flexural strength (fFS) of BA concrete were
modeled considering the optimum parameters of MEP to resolve a complex relationship. A
large and comprehensive database was extracted from the previously published literature
to train the proposed model. After that, the concrete specimen with different dosages
of BA was prepared in the lab, and the results of the lab-tested specimen were used to
validate and test the established MEP models. The output of the developed models was
further cross-validated by the k-fold method. The performance of the final established
models was assessed employing several statistical assessment indicators. The robust MEP
technique supplemented with experimental tests and statistical checks could effectively
solve complex problems.

2. Modeling Techniques and Database
2.1. Multigene Expression Programming

An improved form of machine learning (ML) known as multigene expression pro-
gramming (MEP) is recently proposed, in which individual variables are represented by
changing length entities [37,40]. The distinguishing feature of MEP is to propose simple
linear and numerous solutions in a single chromosome [41]. This unique function enables
searching in a broader range to find the finest viable response. Compared to gene expres-
sion programming (GEP), the MEP follows simple and easy processes [32]. MEP can handle
exceptions such as incorrect expressions, infinity, statistical error type values, etc. As the
gene is responsible for generating an exception, it alters to an arbitrarily terminal symbol.
Therefore, no infertile individuals enter the next generation, thus providing a margin in
the chromosome structure during the assessment and evaluation process. However, the
GEP cannot remove such exceptions and may become part of the final solution [37]. The
MEP is decoded similarly to the pascal and C compiler empirical relationship to machine
coding. The result of the MEP is in a linear string of instructions form [42]. Several genes
per chromosome govern the chromosome length, whereas the gene encodes the elements
in function and terminal set. The abovementioned advantages of MEP over other methods
can lead to accurate and reliable models in many fields. The MEP has been applied in a
few research studies to estimate elastic modulus of normal and high strength concrete [41],
to formulate the compressive strength of Portland cement [43], to develop models for
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soil deformation modulus [44], to formulate models for consolidating depth of the soil
layer [42] and to develop models for polymer confined concrete columns [39].

The development of MEP model depends on several parameters which affect the
overall performance of the model. Therefore, careful selection of these parameters is
necessary. The values of the MEP-optimized parameters selected in the present study are
presented in Table 1. The trial and error approach was used to get the optimum values of
these important parameters, as suggested in the literature [45].

Table 1. Best parameter setting used in MEP modeling.

Setting Parameters Optimum Value

Subpopulation 50
length of code 40

Subpopulation size 250
Number of generations 1000

Mutation probability 0.01
Crossover probability 0.9

Mathematical operators +, −, ×, ÷
Variables 0.5

Tournament size 4
Operators 0.5

2.2. Modeling Database

A comprehensive and reliable experimental dataset on 28 days mechanical properties
of bagasse ash concrete (BAC) was acquired from the published literature to train the
MEP models [10–15,46–67]. The final datasets included a total of 132, 125, and 128 records
of compressive strength

(
f′c
)
, splitting tensile strength (fSTS) and flexural strength (fFS),

respectively, for concrete incorporated with bagasse ash (BA). As some researchers fol-
low the British standard during experimental testing of the compressive strength (f′c) for
concrete, the cube strength data was converted to cylindrical strength to make the data
uniform [4,68]. Once all the data was collected and properly arranged, statistical analysis
was applied to identify the most important and effective parameters that considerably
influence the performance of BAC. The results of the data after statistical analysis are
shown in Table 2. The parameters selected in the present research are water-to-binder
ratio (w/c), amount of cement (CC), the quantity of coarse aggregate (CA), the quantity of
fine aggregate (FA), and the percentage of BA (BA%). The frequency histograms of these
modeling inputs are illustrated in Figure 1 for the purpose of visualizing the distribution
of the input variables. The aforementioned parameters are considered to be a function of
the f′c, fSTS and fFS of BAC as given in Equation (1).

f′c, fSTS, fFS = f
(

W
C

, SCBA%, CA, CC, FA
)

(1)

Table 2. Descriptive statistics of the input variables.

Parameter Unit Range Min Max Mean SD

W/C - 0.3 0.3 0.6 0.47 0.074
CC Kg/m3 444 112 555 336.5 98.5

BA% % 50 0 50 13.41 10.46
FA Kg/m3 614 239 853 603.5 232.1
CA Kg/m3 772 477 1249 884.6 392.3
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2.3. Cross-Validation with k-Fold Algorithm

The machine learning (ML) models frequently fail to generate generalizable findings
when trained on data that has not been previously used for model training. Consequently,
it becomes difficult to assess the accuracy of the models [69]. As a usual practice, the dataset
is partitioned into train and test sets for training and testing of models, respectively, and the
performance is then assessed using statistical error metrics. However, this approach only
works well with the availability of a large and broad dataset. Moreover, it is not considered
a reliable method as the accuracy of one dataset can be very different from the accuracy
obtained for another dataset. A resampling technique, called k-fold cross-validation, is
used to ensure that the model can perform well on unseen data. This technique distributes
the currently available dataset to k subclasses [70]. The superior results and efficacy of the
10-fold approach are presented in the previously published literature [71]. In the current
study, the 10-fold cross-validation is adopted by randomly dividing the dataset into ten
subsets. Each class of the 10 subsets is utilized for validation to examine the grouping
model, and the same process is reiterated for each subset left behind. The accuracy and
predictability of the final model are then expressed in terms of mean accuracy obtained by
the 10-fold approach in ten individual rounds.

2.4. Models Evaluation by Statistical Measures

Different researchers suggest different parameters to check the accuracy of the devel-
oped models. Some of those parameters are used in this study, and their mathematical ex-
pressions are presented in Equations (2)–(9). Researchers recently used a new parameter to
avoid overfitting of the model in artificial intelligence, and ML, known as an objective func-
tion (OF), is also used in this study [41,72]. If the values are low for Equations (2) and (5),
the model is said to be good [30]. Similarly, if the values obtained from Equations (3) and (4)
are close to 1, the model is termed as good [73]. However, it singlehandedly cannot judge
the validity of a model because of its insensitiveness to the multiplication of the division
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of outcome. Likewise, according to Despotovic et al. (2016) [74], a model is deemed
excellent if the result of Equation (7) is between 0 and 0.10; and good if lies between 0.11
and 0.20, respectively. The values of Equations (8) and (9) lie from 0 to positive infinity
with a value nearer to zero signifies a good model. Lower value of OF identifies superior
model performance.

Root means squared error (RMSE) =

√
∑n

i=1 (Pi −Mi)
2

N
(2)

Nash Sutcliff efficiency (NSE) = 1− ∑n
i=1(Mi − Pi)

2

∑n
i=1
(
Mi −Mi

)2 (3)

Correlation coefficient (R) =
∑n

i=1
(
Mi −Mi

)
(Pi − Pi)√

∑n
i=1 (Mi −Mi)

2
∑n

i=1 (Pi − Pi)
2

(4)

Mean absolute error (MAE) =
1
n ∑n

i=1|Pi −Mi| (5)

Relative squared error (RSE) =
∑n

i=1 (Pi −Mi)
2

∑n
i=1
(
Mi −Mi

)2 (6)

Relative root mean squared error (RRMSE) =
1∣∣M∣∣
√

∑n
i=1 (Pi −Mi)

2

N
(7)

Performance index (ρ) =
RRMSE

1 + R
(8)

Objective function (OF) =
(

nT − nTE

n

)
ρT + 2

(nTE

n

)
ρTE (9)

where n, Mi, Pi, Mi and Pi shows the total number of data points been partitioned into
subsets, measured value, predicted value, mean of measured values, and mean of predicted
value, respectively of the ith domain. The T and TE are the subscripts that correspond to
the train and test datasets, respectively.

3. Mix Proportions for Bagasse Ash Concrete (BAC)

A series of experimental tests of bagasse ash concrete (BAC) was completed to validate
the behavior of the MEP model through the validation requirement. The modified bagasse
ash concrete mixes (BAC) and normal concrete (NC) samples were casted at 25 ◦C, and
cured for 28 days to compare their mechanical properties. Various doses of bagasse ash
(BA), ranging from 0% to 40%, were used as a cement replacement. The water-to-cement
ratio for all the specimens was kept constant to compare the BAC with NC. Table 3 presents
the complete formulation of the mix design proportions. Standard concrete cylinders
(300 mm × 150 mm) and beams (100 mm × 100 mm × 500 mm) were produced with
varying dosages of BA. The f′c, fSTS, fFS were tested at 28 days of curing age according to
ASTM C39, ASTM C496, and ASTM C293 standards, respectively. The final results of the
tested specimens were used to verify the behavior of the MEP models.

Table 3. Detailed mix design proportions of the control and modified concrete.

Mix Cement
Kg/m3

CA
Kg/m3

BA
Kg/m3 W/C

FA
Kg/m3

Water
Kg/m3

Density (Kg/m3)

Cement CA FA BA

NC 366 1013.5 0 0.5 742.3 183

3150 2510 1680 2450
10BA 329.4 1013.5 36.6 0.5 742.3 183
20BA 292.8 1013.5 73.2 0.5 742.3 183
30BA 256.2 1013.5 109.8 0.5 742.3 183
40BA 219.6 1013.5 146.4 0.5 742.3 183
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4. Results and Discussion
4.1. Mechanical Properties of BAC

The fundamental mechanical properties of BAC, namely f′c, fSTS and fFS were evaluated
in the laboratory through testing beams and concrete cylinders using BA from 0 to 40% as
a partial cement replacement. It can be noticed from Figure 2 that the strength of concrete
increases up to 10BA (10% cement replaced with BA) and consistently decreases for 20BA,
30BA, and 40BA. The maximum strength gained is at 10% cement replacement and may
be due to the small finest BA particle dispersed throughout the mix. The silica reacts
with lime (resulted from cement hydration) and produces more calcium silicate hydrate
(CSH) [49,75]. Additionally, the finer particle size fills the voids and increases the packing
density. The strength reduction for higher replacement levels, i.e., 20BA, 30BA, and 40BA,
is 6.5%, 17.3%, and 30.3%, respectively. This reduction might be attributable to a lack of
sufficient Ca(OH)2.
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Figure 2. Experimentally tested results of (a) compressive strength, (b) tensile strength, (c) flexural strength of bagasse ash
concrete (BAC).

As shown in Figure 2, the maximum fSTS has been achieved by 10BA followed by 20BA.
The increase in fSTS relative to NC samples is 25.3% and 15.8% for 10% and 20% substitution
of BA, respectively. However, maximum fSTS has been achieved at 10% substitution of BA
as a replacement of cement. The fSTS decreases by 7.9% and 23.8% for 30% and 40% BA
replacement, respectively. For fFS, the maximum strength is also attained by 10% BA.
The increased fSTS and fFS at 10% BA might be attributed to the micro-fibrous character
of BA, associated with CSH production and the generation of aluminates, developing in
a needle-shaped structure [76,77]. The interlocking and bonding of such needles occur
between hydrated pastes, which immediately enhances fSTS and fFS of BAC.

4.2. Formulation of BAC Mechanical Properties

The MEP findings for f′c, fSTS and fFS are evaluated in order to obtain empirical
formulations for predicting the abovementioned characteristics related to the five input
variables (w/c, BA%, CC, FA, and CA). For f′c, fSTS and fFS, the resulting MEP formulae are
presented as Equations (10)–(12), respectively. Firstly, the essential input parameters were
selected based on significant correlation and literature study for the derived equations.
The MEP model was then trained on the data acquired from published literature. After
acquiring the results predicted by the model, i.e., the RMSE and NSE values, the model
is considered to be successfully trained on the given data. At the end of this process, the
model provides empirical equations based on the number of input parameters. Finally, the
derived Equations (10)–(12), were tested given the testing dataset.

Figure 3a,b shows a comparison plot of experimental and projected f′c along with the
expression for the regression line for all three sets, i.e., training, and testing. The slope
of the line is known to be exactly equal to one for an ideal situation. Figure 3 shows that
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the established MEP model included the influence of all five inputs and delivered a high
correlation between experimental and projected results, as evidenced from the slopes of
training and testing, i.e., 0.8951 and 0.9315, respectively. The graph also infers that the
established model has been trained and has a high generalization relationship and thus
will perform well on unseen data as well.

f′c (MPa) = (1.1x1 + 1.1x2) +

(
8x0

2 × x4

x3 − x4

)(
16x0

3(1.1x1 + 1.1x2) +
4(5x1 − x3)

1.1x1 + 1.1x2

)2
(10)

fSTS (MPa) =
(

x0 +
x0

2

x0 − 0.375

)
−

 x0 − 0.375

(x0 − x1) +
(

x0
x0−0.375

)
+

(x0 − 0.375)2

(x02 − 0.375)2 −
(

x0 × x1
2

x2

)
+

x0
2 × x3

x4 − 0.375
(11)

fFS (MPa) =

(
2x3x0

x4 + (3x2 + 0.97)2(2x1 − 89x0)

)
+

 2x0
(x1−89x0)

(100x0−48.5)

 (12)

where;
x0 =

w
c

; x1 = BA%; x2 = CC; x3 = FA; x4 = CA
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Figure 3. Comparison of actual and model predicted compressive strength (a) variation in data (b) scattered plot.

Figure 4a,b shows a similar comparative analysis for the fSTS results. It can be observed
that a good correlation exists between experimental and projected fSTS. The slopes of the
regression lines for the training, and testing datasets are close to ideal scenario, i.e., 0.9351,
and 0.8903, respectively. The model developed for fSTS also performs extremely well on
the training set. As a result, the problem of model over-fitting has been mitigated to a
higher extent.

The graphical results of MEP model for fFS can be observed in Figure 5a,b, which
displays the regression line slope for training, and testing sets equals to 0.9494, 0.9026,
respectively. It can also be observed that a better correlation between experimental and
projected results was achieved for fFS which highlighted an excellent performance of MEP
on both training and testing set.
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4.3. Models Validation by Experimental Data

A literature survey revealed that BA concrete behaves differently at high and low
replacement levels. The results of the model validation, by experimental data, are shown in
Figures 6–8 for f′c , fSTS and fFS, respectively. The slopes of the regression lines are 0.9014,
0.9273, and 0.9332 for f′c, fSTS and fFS, models which are nearly equal to 1 for the ideal case.
During the models’ validation, the R value was observed to be 0.93, 0.92, and 0.92 for f′c,
fSTS and fFS data, respectively. The results revealed that the modeling outcome is in line
with the experimental results, and the MEP model considered the effect of the parameters
essential for concrete. Therefore, it has been confirmed that the ML techniques can be easily
used to model the complicated processes and interaction among concrete ingredients in
predicting the properties of concrete given the significant input variables.
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4.4. Statistical Analysis and Generalizability of the Models

The amount of data points utilized for model development affects its reliability. There-
fore, the ratio between data points and inputs must be higher than five for both training
and testing [78]. For f′c, fSTS and fFS datasets, the aforementioned ratio for the training
set is 18.2, 17.5 and 17.1, respectively; and 6.4, 6.6 and 5.7, for the testing set, respectively.
Moreover, Table 4 presents the outcomes of these statistical metrics for training, testing,
and validation set of f′c, fSTS and fFS, respectively. It shows that all models have a high
correlation coefficient (R) for the training set, i.e., 0.91, 0.90 and 0.91 for f′c , fSTS and fFS,
respectively; and for testing set 0.94, 0.92 and 0.91, respectively. The minimum and max-
imum NSE for f′c, fSTS and fFS models are 0.89 and 0.87; 0.91 and 0.85; and 0.86 and 0.87,
respectively. The MAE and RMSE values are significantly lower for all the three sets in
each model, indicating the excellent accuracy and high generalization capacity of models.
The ST model can be classified as excellent based on RMSE, with values of 2.43, 2.65, and
3.25 for all three sets. Additionally, the findings show that MAE for all models is in a
good range (1.45–3.98). Additionally, the OF for all three models, i.e., f′c (0.036), fSTS (0.031),
and fFS (0.052) are near to zero, signifying excellent performance and thus confirming
that the models successfully tackled the overfitting issue. The RRMSE values for all three
developed models vary from 0.04 to 0.16, reflecting the accurateness of models. Figure 9
graphically shows the error between experimental and model predicted results in order to
interpret the absolute error. The mean absolute error values are 2.87, 0.405 and 0.675 for f′c,
fSTS and fFS, respectively. The max and min absolute errors are 1.95 and 0.075 for f′c, 7.76
and 0.1 for fSTS, 2.15 and 0.08 for fFS, respectively.
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Figure 9. Deviation of the error between the actual and predicted results of MEP models developed for (a) f′c (b) fSTS (c) fFS.
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Table 4. Inferential statistics for the training, testing, and validation datasets.

Models Data R RMSE RSE NSE MAE RRMSE ρ OF

f′c
Training 0.91 3.47 0.16 0.87 2.96 0.04 0.020

Testing 0.94 2.98 0.12 0.89 2.98 0.09 0.046
0.036Validation 0.93 2.87 0.15 0.89 1.67 0.04 0.020

fSTS

Training 0.90 2.43 0.23 0.85 3.67 0.09 0.047

Testing 0.92 2.65 0.26 0.91 3.69 0.12 0.062 0.031

Validation 0.92 3.25 0.31 0.90 3.98 0.10 0.052

fFS

Training 0.91 3.92 0.29 0.86 1.87 0.13 0.068
0.052Testing 0.91 3.34 0.28 0.87 1.45 0.15 0.078

Validation 0.93 3.67 0.19 0.86 2.87 0.16 0.079

The conditions for checking the external predictability of the MEP models are given in
Table 5. The researcher proposed that one of the regression line slopes (k and k’) crossing
the origin must be close to 1 [79]. Additionally, the literature has mentioned that if the
indicator, Rm is higher than 0.5, then the requirements for external validation of models are
satisfied [80]. Table 5 shows that external validation requirements are met for all the three
proposed MEP models for f′c, fSTS and fFS.

Table 5. Statistical indicators for verifying the external predictability of proposed MEP models.

S.No. Mathematical Expression Requirement f′c fSTS fFS Reference

1. R =
∑n

i=1

(
Mi−

¯
Mi

)
(Pi−

¯
Pi)√

∑n
i=1 (Mi−

¯
Mi)

2

∑n
i=1 (Pi−

¯
Pi)

2
R > 0.8 0.92 0.92 0.91 [78]

2. k = ∑n
i=1(Mi−Pi)

Mi
2 0.85 < k < 1.15 1.00 0.99 1.01 [79]

3. k
′
= ∑n

i=1(Mi−Pi)
Pi

2 0.85 < k’ < 1.15 0.98 0.98 1.05 [79]

4.

Rm = R2 × (1−
√∣∣R2 −R02

∣∣ Rm > 0.5 0.67 0.71 0.64

[80]R0
2 =

∑n
i=1(Pi−Mi

0)
2

∑n
i=1 (Pi−Pi

0)
2 , Mi

0 = k× Pi
R0

2 ∼= 1 0.98 0.98 0.97

´R02 =
∑n

i=1(Mi−Pi
0)

2

∑n
i=1 (Mi−Mi

0)
2 , Pi

0 = k
′ ×Mi

´R02 ∼= 1 0.98 0.99 0.98

4.5. 10-Fold Cross-Validation Results

The 10-fold cross-validation can easily verify the robustness and generalized capability
of ML models. This method has a parameter (k) which denotes the number of subclasses
that a dataset can be split into. The 10-fold means that the given dataset can be segmented
into 10 subsets or folds. This method is generally used to evaluate the ability of a model to
analyze unseen data and also decreases the probability of error with random sampling.

All the three MEP models established for f′c, fSTS and fFS, were evaluated with 10-fold
cross-validation using R and RMSE and graphically presented in Figure 10a,b, respectively.
The figures show the variation in R and RMSE in each subset. However, an excellent
mean accuracy can be seen. For f′c, fSTS and fFS, the mean value of R is 0.85, 0.89, and 0.85,
respectively. In-10 fold, fSTS obtained the minimum and maximum R of 0.91 and 0 0.72,
respectively. Consequently f′c, fSTS and fFS, achieved mean RMSE of 4.54, 3.89, and 4.78,
respectively. The fSTS also has the smallest RMSE equals to 1.86, for the individual subset.
Furthermore, the findings of 10-fold cross-validation demonstrate the MEP models are
accurate and have a robust performance.
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5. Conclusions

The present research implemented a twofold objective. Primarily, the mechanical
properties, i.e., f′c, fSTS and fFS of bagasse ash concrete (BAC) were formulated by applying
a supervised machine learning model, i.e., MEP. The training and testing of the models
were accomplished based on widespread data collected from previous technical literature.
Thereafter, sugarcane bagasse ash (BA) was used as a partial substitute for cement in various
amounts (10%, 20%, 30% and 40%) to evaluate the mechanical properties. The developed
MEP models were further validated through data obtained from experimental testing of
BAC. The efficacy and performance of the projected models were reviewed via inferential
statistical metrics, i.e., RMSE, RSE, NSE, MAE, RRMSE, ρ, OF and R. The final datasets
were also cross-validated with k-fold algorithm, confirming the generalizability of models.
The findings of developed models showed a good relationship with the experimental
results, with R higher than 0.9; RMSE and MAE values less than 5, and OF values nearer to
0, for the all three projected MEP models for f′c , fSTS and fFS. The proposed models also
met the external validation requirements found in the previous technical literature. It is
clear from the current research that the consumption of bagasse ash like waste material
is essential for the production of green concrete and from the sustainability viewpoint.
Moreover, the MEP model, supplemented with validation on practical laboratory dataset
and further cross-validation studies, can provide such models that can directly influence
the civil engineering industry.

The work presented in the current research has certain shortcomings. The main focus
of this research was to examine the consequence of concrete constituents on the mechanical
properties of BAC. Indeed, other important factors also need to be investigated that are
important to mechanical viewpoints, such as curing conditions, type of cement, reactivity
and type of ash, and testing conditions. It is strongly endorsed that further research should
be accomplished with an extensive dataset for model training and testing. Moreover, some
deep learning techniques, i.e., convolution neural network, neuro-fuzzy inference system,
and ensemble modeling, should be considered for comparative analysis and accurate
assessment of concrete properties.
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