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Abstract: A hermetic Micro-Electro-Mechanical Systems (MEMS) package with a metal lid is investi-
gated to prevent lid-off failure and improve its reliability during the precondition test. While the
MEMS package benefits from miniaturization and low cost, a hermetic version is highly sensitive to
internal pressure caused by moisture penetration and the reflow process, thus affecting its reliability.
In this research, the finite element method is applied to analyze the contact stress between the
metal lid and the silver epoxy by applying the cohesive zone model (CZM). Moreover, the red dye
penetration test is applied, revealing a microcrack at the metal lid/silver epoxy interface. Further
analyses indicate that the crack is caused by internal pressure. According to the experimental testing
and simulation results, the silver epoxy material, the curing process, the metal lid geometry, and the
bonding layer contact area can enhance the bonding strength between the metal lid and the substrate.

Keywords: Micro-Electro-Mechanical Systems; moisture sensitivity level test; reflow process; finite
element method; cohesive zone model; bonding strength; precondition test

1. Introduction

The MEMS package is widely used in automotive, medical, and consumer electronic
devices for measuring the mechanical, thermal, optical, and magnetic phenomena. There-
fore, it needs to be highly reliable to maintain its functionality and safety for several years.
A metal lid is included in the MEMS package to provide protection from the external
environment, while also reducing the cost, weight, and size, thus improving production
efficiency. While the hermetic MEMS package offers considerable benefits, it also causes re-
liability issues for the lid bonding technology and hermeticity. Hsu et al. [1] investigated the
characteristics of polymeric materials in the CMOS image sensor (CIS). They found that the
hygroscopic swelling of polymer material is induced by absorbing the moisture in humid
environments, which weakens the interfacial strength and causes delamination failure. To
improve performance and reliability in RF-MEMS applications, Jeong et al. [2] developed
novel wafer-level hermetic package technology. As a part of their study, low-temperature
bonding technology was applied through gold/tin eutectic solder at the peripheral edge.
The results revealed that thermal cycling, high-temperature storage, high-humidity storage,
and a pressure cooker test failed to induce failure. Zhang et al. [3] investigated the bond-
ing strength of a nanosilver sintered hermetic cavity with copper and silicon lids. Their
results showed that the copper lid suffered delamination in the bonding layer, whereas the
silicon lid exhibited great bonding quality. Farisi et al. [4] developed a low-temperature
wafer-level hermetic packaging technology based on thermal compression bonding. Their
analyses revealed that the bonding shear strength of the newly proposed technology ex-
ceeded 100 MPa and its leak rate was below 1.67 × 10−15 Pa·m3·s−1. Huang et al. [5] also
developed low-cost and low-temperature hermetic technology based on a eutectic PbSn
solder and Cr/Ni/Cu bonding pad. The bonding strengths of glass–glass, silicon–glass,
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and silicon–silicon pairs were measured at 4.5, 7, and 5.3 MPa, respectively. Jang et al. [6]
proposed a diffusion-based governing equation to investigate the effects of polymer seal
diffusion properties and geometries on the MEMS package performance. The numerical
results revealed that both factors affected the lag time. Premachandran et al. [7] developed
a wafer-level vacuum package with a wafer cap under the vacuum (1 mTorr). The package
performance measured up to standard, evaluated via shear test and reliability tests. Jiang
et al. [8] used a laser-assisted bonding method for a cavity-based package with a liquid
crystal polymer (LCP). Their results showed that both silicon and glass substrates had high
bonding quality. They also measured shear strength in the 20.8–26.1 MPa range, depending
on the bonding assembly (glass–glass, silicon–glass, silicon–silicon, and silicon–package).
Sandvand et al. [9] analyzed the bonding material stress in the MEMS pressure sensor
for the glass-frit bonding process by conducting a finite element analysis. The authors
observed microcracks at the outer perimeter of the glass-frit material due to the high stress
levels induced by the thermal cycling test. As can be seen from the above, the bonding
strength and the hermeticity of the MEMS package with the vacuum cavity have been
thoroughly investigated. Nonetheless, the MEMS package reliability needs to be improved
further for its greater use in automotive, medical, and consumer applications.

In the present research, the reliability of a hermetic MEMS package with a metal lid is
evaluated through the precondition test. The hermetic MEMS package adopted for this
purpose comprises of a ceramic substrate, two dies, and a metal lid. The metal lid and
the ceramic substrate are bonded together with silver epoxy under atmospheric pressure,
as the aim is to reduce cost and improve the fabrication process efficiency. However, as
moisture inside the MEMS package cavity is a potential risk, during the reliability test, the
aim is to prevent the lid-off and improve the bonding strength between the metal lid and
the ceramic. Thus, in the analyses, focus is given to the curing process, the silver epoxy
material, the metal lid geometry, and the bonding layer contact area.

2. Fabrication Process

The hermetic MEMS package with the metal lid used in this study was fabricated as
shown in Figure 1. As can be seen from the diagram, once the stacked dies were bonded to
the ceramic substrate with silver epoxy, the lid attachment and the precondition test were
conducted.

(a) Lid attachment: The metal lid is attached to the ceramic substrate with silver epoxy,
which is applied between the metal lid and the ceramic substrate of the peripheral
MEMS package. To fully cure silver epoxy, it is exposed to the 175 ◦C temperature for
2 h. Subsequent evaluations confirm that silver epoxy fully adheres with the metal lid
and the ceramic substrate.

(b) Moisture sensitivity level (MSL) 1 test: The MSL 1 test is carried out to determine the
sensitivity level of the hermetic MEMS package under humid conditions. For this pur-
pose, the hermetic MEMS package is exposed to high humidity and high temperature
(85 ◦C/85% RH). When the moisture penetrates into the MEMS package cavity via
silver epoxy, it weakens the metal lid/silver epoxy and the ceramic substrate/silver
epoxy bonding strength.

(c) Reflow process: During the reflow process, the moisture concentration inside the
MEMS package causes damage to the metal lid/silver epoxy interface. When the
MEMS package is exposed to the maximum temperature of 265 ◦C for three cycles,
vapor pressure and thermal pressure are induced by the residual moisture in the
hermetic cavity. Furthermore, thermal stress is generated at the metal lid/silver epoxy
and the ceramic substrate/silver epoxy interface due to the coefficient of thermal
expansion (CTE) mismatch.
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Figure 1. The fabrication process of MEMS package with metal lid.

3. Root Cause

As shown in Figure 2, the precondition test results in an interfacial crack on the
exterior of the hermetic MEMS package. The crack extends from the exterior along the
metal lid/silver epoxy interface. This causes a phenomenon known as “lid-off” indicating
that the metal lid is separated from the ceramic substrate. In the MEMS package, lid-off
failure occurs because upward force is applied on the metal lid. To determine its root cause
in the precondition test, the experimental design shown in Figure 3 was adopted in this
study. The shear test and the red ink penetration test were performed to record the results,
which are denoted as Result A (only reflow), Result B (only MSL-1), and Result C (reflow
and MSL-1).
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Figure 3. The process flow of investigating root cause.

The shear test and the red dye penetration test results are presented in Figure 4. As
can be seen from Result A (only reflow), the red ink is located at the outside of the MEMS
package, indicating that no cracks have occurred at the interface or in the silver epoxy
under the reflow process. When the MEMS package is exposed to high humidity, the
moisture penetrates into the silver epoxy. As the residual moisture weakens the metal
lid/silver epoxy bonding strength, the red ink penetrates inside the silver epoxy and the
package, as indicated by both Result B (only MSL-1) and Result C (MSL-1 and reflow). The
maximum shear force also decreases as a result of moisture penetration. Result C further
reveals that the metal lid has separated from the silver epoxy, as the moisture inside the
MEMS package cavity vaporizes and generates vapor pressure during the reflow process.
Hence, the vapor pressure and the thermal pressure have a potential to cause the lid-off.
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4. The Shear Test in the Different Manufacture Condition

In the shear test, the thrust force is applied on the bottom side of the metal lid to
remove it from the MEMS package. During this process, the maximum shear force is
measured to determine the shear strength of both the metal lid and the silver epoxy. To
investigate the influence of the internal pressure on the likelihood of lid-off failure, a
hermetic MEMS package with vent hole was designed, as shown in Figure 5. The vent hole
was drilled at the corner and the top of the metal lid, allowing the internal pressure to be
released during the reflow process. To analyze the maximum shear force under different
manufacturing conditions, the hermetic MEMS package with a vent hole was compared
to that without a vent hole, as shown in Figures 6 and 7. As can be seen from Figure 6,
the maximum shear force of the hermetic MEMS package without a vent hole after the
precondition test (1.39 kgf) is lower than that measured for the hermetic MEMS package
without a vent hole before the precondition test (3.18 kgf). However, the maximum shear
force of hermetic MEMS package with a vent hole measured before the precondition test is
similar to that obtained after the test. These results indicate that the internal pressure is a
critical factor for lid-off failure under the reflow process.
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To improve the maximum shear force of the hermetic MEMS package, additional tests
were performed while controlling for the degree of curing and the pre-heat conditions, as
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these factors affect the material characteristics and the interfacial contact strength of the
silver epoxy. To obtain fully cured and incompletely cured epoxy, the following conditions
were respectively applied: 175 ◦C/1 h + 190 ◦C/1 h and 175 ◦C/1 h. As fully cured silver
epoxy is harder and has a higher Young’s modulus, its maximum shear force is higher
than that of the partially cured epoxy. Our analyses further indicate that when the fully
cured epoxy is used in the hermetic MEMS package with a vent hole and the pre-heat
(110 ◦C/0.5 h) step is performed, the maximum shear force increases by about 60% relative
to the partially cured epoxy. In addition, when the fully cured epoxy is used in the hermetic
MEMS package without a vent hole, the maximum shear force increases by about 48.5%
after pre-heating. By observing the experimental testing results, the pre-heat does not have
an effect on the hermetic MEMS package with a vent hole. The pre-heat condition can
relieve the internal pressure applied on the metal lid without a vent hole in the curing
process.

5. Finite Element Method

The metal lid detaches from the ceramic substrate because of internal pressure during
the reflow process. To analyze the stress and the deformation of the hermetic MEMS
package with a metal lid under the reflow process, a finite element model was adopted by
using ANSYS APDL. Specifically, the CZM method was used to calculate the contact stress
at the metal lid/silver epoxy interface, which were denoted as contact and target elements.
The MEMS package structure comprised of stacked dies, a die attach, a ceramic substrate, a
metal ring, a silver epoxy, and lid metal, as shown in Figure 8. For modeling this structure,
a two-dimensional finite element model with quadratic elements was established and was
matched with scanning electron microscope (SEM) cross-section images. The material
properties of the finite element model are presented in Table 1. During modeling, internal
pressure was applied on the inside surface of the metal lid to simulate air pressure and
vapor pressure in the cavity under the reflow process.
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Table 1. The material properties of the finite element model.

E (MPa) ν CTE (ppm/K)

Die 131 × 103 0.27 2.8

Lid 190 × 103 0.30 16.3

Substrate 310 × 103 0.30 7.1

Au 77.2 × 103 0.42 14.4

Die Attach 7.1 × 103 @25 ◦C
0.6 × 103 @260 ◦C

0.30 18 < 175 ◦C
35 > 175 ◦C

Silver Epoxy
3900@25 ◦C

2000@150 ◦C
300@250 ◦C

0.30 40 < 120 ◦C
150 > 120 ◦C

The internal pressure inside the cavity can be obtained by using the ideal gas equation,
as the following equations:

PV = nRT (1)

PInternal = PAir + PVapor (2)

PAir_265◦C = PAir_25◦C · T265◦C
T25◦C

(3)

PVapor_265◦C = P85◦C/85%RH · T265◦C
T85◦C

= (0.85 · P85◦C,SAT) · T265◦C
T85◦C

(4)

where P is the pressure, V is the volume, n is the number of moles of gas, R is the idea
gas constant (8.317 J · mol−1 · K−1), T is the absolute temperature, PInternal is the internal
pressure, PAir is the air pressure, PVapor is the vapor pressure, PAir_25◦C is the air pressure at
25 ◦C, P85◦C,SAT is the saturated vapor pressure at 85 ◦C, and RH is the relative humidity.

The findings pertaining to the hermetic MEMS package with and without a vent hole
were once again contrasted to investigate the contact stress and SEM observations, as
shown in Figure 9. For evaluating the crack location, contact stress was defined as normal
interface stress. In the hermetic MEMS package without a vent hole, the highest contact
stress was located at the bottom of the metal lid. The fracture occurred at the same location
during experimental testing. In the hermetic MEMS package with a vent hole, the contact
stress was negligible and no fracture could be observed on the SEM images.
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6. Optimization
6.1. One Factor Design

To decrease the contact stress at the metal lid/silver epoxy interface, one factor design
was performed, considering lid thickness, connecting angle, epoxy height, lid height, lid
size, and substrate height as factors, as presented in Figure 10. These design factors were
chosen to evaluate the contact area effect, the lid geometry effect, and the material property
effect, as indicated in Table 2. The lid thickness, the connecting angle, and the epoxy height
are considered to exhibit the contact area effect since these factors are related to the contact
interface area. The lid geometry not only affects the lid size but also has an influence on
the cavity volume. Therefore, a lid of greater size would have higher contact stress due to
withstanding higher internal pressure.
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Table 2. The design factors for analyzing the contact stress.

Factors Range

The Contact Area Effect
A. Lid thickness 0.1~0.2 (mm)

B. Connecting angle 50~70 (◦)

C. Epoxy height 0.7~0.9 (mm)

The Lid Geometry Effect
D. Lid height 0.8~1.1 (mm)

E. Lid size 2.5~6.1 (mm)

F. Substrate height 0.2~0.5 (mm)

The Material Property Effect G. Lid modulus 120~160 (GPa)

H. Epoxy modulus 3~9 (GPa)

The one factor designs for the contact area, the lid geometry, and the material property
effects are shown in Figures 11–13, respectively. According to the assessments related to the
contact area effect, greater lid thickness, and epoxy height, and a lower connecting angle
reduce the contact stress by increasing the contact interface area. The lowest contact stress
(2.45 MPa) is obtained with the connecting angle of 50◦. According to the lid geometry
effect, the lid size is sensitive to contact stress because the force induced by internal pressure
is based on the lid size. Specifically, the contact stress increases from 1.36 to 7.15 MPa
when the lid size increases from 2.5 to 6.1 mm. Finally, the results related to the material
property effect indicate that the Young’s modulus of the silver epoxy and the lid do not
exert significant changes on contact stress. Thus, even though Young’s modulus of the
silver epoxy is not the critical factor, the moisture absorption, shear strength, and the
material curing characteristics are important for the contact stress.
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6.2. Responsed Surface Method

The response surface method was also adopted to establish the relationship between
the factors that are most influential on contact stress, as shown in Figures 14 and 15. As
lid thickness, lid size, and the connecting angle are the critical factors for contact stress,
their values were considered when interpreting the response surface results. By observing
the relationship between lid thickness and lid size, it is evident that the slope of lid size is
linear and is greater than the lid thickness. While the impact of lid thickness on contact
stress is low, the curve flattens with increasing lid thickness. These results indicate that lid
size is more significant than lid thickness. In addition, according to the response surface
results based on the relationship between the connecting angle and the lid size, both factors
exhibit linear distribution. Thus, for improving the contact stress, lid thickness should be
increased, while its size and the connecting angle should be reduced.
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7. Conclusions

In the research reported here, a hermetic MEMS package with a metal lid was designed
and its reliability was tested. During the precondition test, lid-off failure occurred because
moisture weakens the interfacial bonding strength and increases the internal pressure
during the reflow process. The finite element method, which was adopted to simulate the
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contact stress of the metal lid/silver epoxy interface and the deformation of the metal lid,
revealed that lid thickness, lid size, and the connecting angle are the critical factors for the
contact stress. Although the Young’s modulus of the silver epoxy is not the critical factor,
the moisture absorption, shear strength, and material curing characteristics are important
for the contact stress. In the experimental testing, the pre-heat step and fully curing the
epoxy can enhance the maximum shear force by 60% and 48.5% under the precondition
test. The findings further indicate that increasing the lid thickness, and decreasing the lid
size and the connecting angle can decrease the contact stress, thus reducing the likelihood
of lid-off failure under the precondition test.
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