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Abstract: Functionally graded material (FGM) based on Inconel 625 and AISI 431 stainless steel
powders was produced by applying the direct laser deposition (DLD) process. The FGM starts with
layers of Inconel 625 and ends with layers of 431 stainless steel having three intermediate zones with
the composition (100-X)% Inconel 625-X% 431 stainless steel, X = 25, 50, and 75, in that order. This
FGM was deposited on a 42CrMo4 steel substrate, with and without preheating. Microstructures
of these FGMs were evaluated, while considering the distribution of chemical composition and
grain structure. Microstructures mainly consisted of columnar grains independent of preheating
condition; epitaxial growth was observed. The application of a non-preheated substrate caused the
formation of planar grains in the vicinity of the substrate. In addition, hardness maps were produced.
The hardness distribution across these FGMs confirmed a smooth transition between deposited
layers; however, the heat-affected zone was greatly influenced by the preheating condition. This
study suggests that an optimum Inconel 625/AISI 431 FGM obtained by DLD should not exceed 50%
AISI 431 stainless steel.

Keywords: functionally graded material; direct laser deposition; microstructure; chemical composi-
tion; hardness

1. Introduction

Functionally graded materials (FGMs) can be considered as a particular class of
composites with a spatial variation of composition/microstructure along a specific direction.
However, FGMs may not encompass sharp distinguishable interfaces as observed in
traditional composite materials [1]. The application of FGMs can overcome challenges that
exist in conventional materials and processing. It enables designers to use two complex
materials that would be difficult to bond, creating compositional gradients that allow for
a gradual transition between both materials without discontinuities that jeopardize the
structural integrity of the component. This setting leads to fewer internal stresses and
cracking, consequently improving strength [2,3].

The Functionally Graded Additive Manufacturing (FGAM) concept can be developed,
i.e., the production of FGMs that are different in distribution or composition through
a layer-by-layer approach [4,5]. Regarding this concept, the application of direct laser
deposition (DLD), also designated by laser metal deposition (LMD), will be noticeable for
depositing gradients of metals and alloys on a substrate. Densification will be obtained
by solidifying consecutive melt pools generated by the laser [6]. This technique has the
advantage of locally synthesizing metal/alloy gradients by mixing different powders with
the desired compositions, gradually varying the mixture at intended locations [7]. However,
the production of FGM components can face challenges, such as the control of mixing,
melting, and cooling rate, subsequently forming intermetallic phases and cracking. The
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lack of bonding between tracks/layers may happen, that is, caused by unmelted particles
due to using dissimilar powders that have different properties.

Regarding the DLD process, the laser/substrate relative velocity, laser scanning pat-
tern, laser power, laser beam diameter, hatch spacing, powder feed rate, powders com-
position, powder gradient variation, and preheating conditions are vital parameters that
must be considered [7,8]. Moreover, laser deposited materials experience complicated
thermal history, presenting rapid solidification, high cooling rates, steep thermal gradi-
ents, and cyclic reheating and cooling. These conditions can produce non-equilibrium
microstructures with variations layer to layer or even within individual layers. Therefore,
the deposition process should be optimized while considering the characteristics of input
materials [9,10].

The production of FGM by DLD has been the subject of study by several research
groups. However, these products are currently limited to small samples. The construction
of a component with functional gradient properties depends not only on the position of
materials but also on optimizing process parameters required to control the microstruc-
ture and improve the mechanical properties in multi-material with functional gradient.
High-performance and versatility FGMs can meet performance requirements and have
been widely used in the fields of aerospace, biological, electromagnetic, nuclear, and
photoelectric engineering [7,11].

This process uses a deposition system equipped with two or more powder feeders
and can create dissimilar gradients traditionally difficult to reach. The ability to mix two
or more types of powders and control the feed rate of each flow makes DLD a flexible
process for manufacturing complex components for the innovative development of alloys
and formation of materials with a gradient of functionality [4,12,13]. This method makes it
possible to produce materials with a gradient at the microstructure level; this gradient was
achieved due to the reduced and localized melting and the strong mixing movement in
the melt. Thus, materials can be adapted for flexible, functional performance in particular
applications. Moreover, additive manufacturing technology (AM) has surpassed the
prototyping concept to produce solid components for end-users.

Regarding the production of FGM by the DLD technique, some studies mentioned
the use of different systems. For the SS316/Inconel 625 system, there was an increase
of mechanical and wear resistance due to the formation of secondary phases with the
increase of Inconel 625 alloy content [11,14–16]. The increase in wear and hardness was also
observed in the SS316/Inconel 718 system [17]. The FGM produced by using SS410/Inconel
625 materials demonstrated that the depositions were defected free and with good integrity
along with the entire interface [18]. The effect of preheating on FGM was evaluated by
using the Inconel 625/Ti6Al4V system, which was shown to promote the formation of
thinner and more uniform secondary phases and free of cracks [19]. It is worth noting that
there are many investigations producing FGMs by using nickel superalloys in recent years.
For these alloys, a percentage increase of alloying elements, such as Cr and Mo, promotes
the increase of mechanical strength and wear and corrosion resistance.

Recognizing the importance of metallic FGM and its complexity, this article explores
the deposition of Inconel 625 superalloy powder gradually mixed with 431 stainless steel
alloy, evaluating the influence of compositional variation, as well as preheating, on the mi-
crostructure and mechanical proprieties. The former condition was performed by preheat-
ing the substrate metal used for deposition. Although several investigations allocated the
production of gradient materials by using Inconel 625 superalloy with other alloys [14–16],
to the knowledge of the authors, the production of FGM consisting of Inconel 625 and AISI
431 has not been reported yet.

2. Experimental Procedure

This study included the production of compositional gradients as functionally graded
material (FGM), using Inconel 625 powder (a nickel-based superalloy supplied as Met-
coClad 625 by Oerlikon Metco (Westury, New York, NY, USA), so-called M625 in this
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study) mixed with AISI 431 stainless steel powder (a martensitic stainless steel supplied
as Metco 42C from the same supplier, so-called M42C) in gradient. According to the
supplier’s data sheets, M625 has a particle size range of 45–90 µm, and M42C is in a size
range of 45–106 µm; the chemical composition of these alloys is presented in Table 1. More-
over, Figure 1 illustrates the morphology of these powders; the M625 particles are seen
in spherical form, and M42C particles have irregular shape (non-spherical). Microscopic
characterizations in this study involved a scanning electron microscopy (SEM), FEI-Quanta
400 FEG equipment FEG (ESEM, Hillsboro, OR, USA), using secondary electron (SEM/SE)
and backscattered electron (SEM/BSE) imaging modes. Moreover, semi-quantitative chem-
ical analysis was performed by using energy dispersive X-ray spectroscopy (EDX) (EDAX
Genesis X4M, Oxford Instrument, Oxfordshire, UK). Structural analysis, such as crystallo-
graphic information, was performed by electron backscatter diffraction (EBSD) (EDAX-TSL
OIM EBSD, Mahwah, NJ, USA) technique, applying inverse pole figure (IPF) maps.

Table 1. Chemical composition (wt.%) of the FGM powder alloys used in this study.

Powders Fe Ni Cr Mo Nb Si C

M42C 78.6 1.9 17.3 - - 2.0 0.2
M625 4.1 60.8 21.3 9.2 4.6 - -
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In this study, the substrate used for deposition was 42CrMo4 steel, machined plates in
100 × 120 × 15 mm, supplied in quenched and tempered condition. This steel is widely
used for manufacturing industrial components, such as gears, automotive components,
and drilling joints [20–22]. In the current study, the production of FGM was performed on
two substrates: (1) one substrate in room temperature and (2) another one preheated to
300 ◦C by a manual gas system. For the latter condition, the temperature was controlled by
a digital thermometer, since it is essential to have a uniform temperature distribution in the
substrate surface. The application of without and with preheating procedures (so-called
without and with PHT in this study) aimed to evaluate the effect of cooling rate on the
evolution of microstructure in deposited layers and substrate.

The consolidation of powders, required for the FGM production, was achieved by
direct laser deposition (DLD) technique, using a six-axis robot KUKA KR90 R3100 model
(Augsburg, Germany) connected to robotic and laser control units. This system was
equipped with a laser system (LDF 3000–100), a fiber-coupled laser diode providing a
wavelength range of 900–1030 nm, reaching a nominal beam power of 6000 W.
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The depositions started with 100% M625 on the 42CrMo4 substrates (without PHT and
PHT conditions), followed by depositing layers of 75% M625–25% M42C, 50% M625–50%
M42C, 25% M625–75% M42C, and ended to 100% M42C. Feeding of powder mixtures
was performed in a coaxially delivering mode for constructing compositional gradients.
Moreover, argon shield gas, with 99.99% purity, was used as protection gas with a flow
rate equal to 5.5 L/min to minimize contamination and oxidation of the melt pool during
the DLD process. For the deposition of M625 layers, the following processing conditions
were used: laser power (LP) = 2000 W, scanning speed (SS) = 6 mm/s, and feeding rate
(FR) = 15 g/min. The last layers (100% M42C) were deposited with the following conditions:
LP = 1500 W, SS = 10 mm/s, and FR = 15 g/min. These procedures were carried out by
applying a spot size equal to 2.5 mm; the trajectory of depositions involved continuously
parallel depositing, applying a 40% overlapping between tracks, followed by depositing
successive layers rotated in 90◦ in each layer. Afterwards, printed specimens, without
PHT and PHT conditions, were cooled down to room temperature. The application of
these conditions was based on previous studies [23,24]. Process optimization is essential,
since FGMs produced by laser deposition present microstructural variations across layers
affected by different parameters, such as thermal gradients; these effects are caused by
remelting and reheating cycles or cooling rate [9].

Regarding microscopic and mechanical characterizations, FGM specimens with and
without PHT were prepared by using conventional metallographic techniques. Samples
from each deposition were cut by using a metallographic cutoff machine with refrigeration
to avoid substrate and cladding overheating. Samples were mounted in resin and polished
down to 1 µm diamond suspension. However, an additional polishing step, using a 0.06 µm
silica colloidal suspension mixed with ammonium hydroxide solution 25%, was needed
for EBSD analysis, allowing us to obtain Kikuchi patterns [25]. The samples were taken
perpendicular to the substrate surface to allow the observation of the different layers.

Similar FGM specimens were used for the microhardness test, using a fully automated
DURASCAN 70 microindenter—EMCO TEST (EMCO-TEST PRÜFMASCHINEN GMBH,
Kuchl, Austria). The HV hardness maps were produced by 700 indentations, applying a
load of 300 g, considering 0.1 mm as the distance between the centers of every two adjacent
indentations. This procedure scanned an area of 5.7 × 1.1 mm.

3. Results and Discussion
3.1. Microstructural and Chemical Evaluations

The microstructure of a FGM without PHT, from 100% M625 to 100% M42C, is illus-
trated in Figure 2. In this microstructure are observed some inclusions and porosities, ap-
parently reduced by the increase in M42C alloy. However, this addition has ended up with
the formation of cracks; the morphology of these defects reveal that they formed in the last
layers, 100% M42C, and propagated to the layers beneath, that is, 25% M625–75% M42C.

M42C deposits are prone to cracking, and strict control of processing conditions is
mandatory [23,26]. The main reason for cracking is the stresses caused by processing
conditions nucleating microcracks in the brittle martensite. In this case, this was even
more critical as the first layers remelted the top surface of 25% M625–75% M42C layer, and
unexpected phases may have formed, increasing the brittle character of this region.

The inclusions (round black spots) are mainly complex oxides formed along the FGM,
and the irregular porosities are likely caused by elemental segregation [27,28].

Figure 3 illustrates a higher magnification of the black rectangle in Figure 2, where an
irregular porosity was detected. The morphology of the microstructure shown in the SEM
image of Figure 3 consists of a dendritic structure embedding interdendritic regions. The
elemental maps show a matrix homogeneous in Fe, Ni, and Cr and zones rich in Nb and
Mo (white regions in SEM image). In regions with higher segregation, remelting occurs
during the next deposition, since every layer is highly affected by the heat conducted from
successive deposition, and liquation cracks formed and remained in the FGM [28,29]. This
can explain why this defect decreases with an increasing amount of M42C powder.
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This second phase can be the Laves phase, resulting from the microstructural segrega-
tion of Nb and Mo elements from the liquid due to rapid solidification during deposition.
The formation of the Laves phase, or even of carbides, in the austenitic matrix has been
observed in several studies [30–34]. Its presence was also revealed by microscopic obser-
vations and EDS analysis in a similar study on laser cladding of Inconel 625 alloy [24].
The amount of the Laves phase can be reduced by post-deposition heat treatments that
homogenize the material by reducing chemical composition gradients [35].
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The formation of secondary phases in FGM depends on the processing history [36],
being possible to minimize the proportion of Laves phase in the microstructure by preheat-
ing the substrate [24]. The application of PHT reduces the cooling rate of the deposited
material, allowing the diffusion of Nb and Mo elements in the matrix, and thus reducing
the amount of the interdentritic Laves phase. The effect of the interdentritic Laves phase on
the material hardness is not consensual. It has been reported that phase Laves can either
increase hardness [32] or decrease it [37], in this case, due to the reduction of carbides in
the matrix as a consequence of the Nb and Mo segregation to the interdendritic regions.

Figure 4 illustrates several details of the FGM microstructure. The images show that
the microstructure is predominantly composed of columnar dendrites grains, a charac-
teristic of laser-deposited structures [38,39]. This structure is formed since the thermal
gradient and the solidification rate favor columnar–dendritic solidification morphology
grains. There are two narrow zones of the cladding where planar and equiaxed grains
morphologies can occur; a planar interface zone forms at the interface with the substrate
due to the very high thermal gradient, and equiaxed morphology can be observed near the
surface of the melt pool, resulting from the decreasing thermal gradient as the cladding
solidifies. Typically, in this process, columnar grains grow parallel to the main heat flow
across the material being solidified.
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During the deposition of several layers of the same material, each new layer remelts
the surface of the last deposited, replacing the zone of equiaxed grains with columnar ones.
As a result, the equiaxed region is limited to the upper surface of the cladding. However,
Figure 4(A4,B4) evidenced some equiaxed grains appearing inside the FGM, mainly in
the upper region of the 50% M625 + 50% M42C zone. This effect can be explained by the
composition of the liquid formed and the difficulty in solute redistribution, which can
cause the appearance of equiaxed morphology, as reported in other studies [33,40].
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SEM images of Figure 4(A1,B1) reveal a dilution zone resulting from the melting of
the substrate during laser processing and ensuring the bonding between the cladding and
substrate. Moreover, well-bonded layers are seen all across the FGM (Figure 4(A2–6,B2–6)).
The remelting of the upper region of the last deposited layer and the mixing with melted
powders ensure the bonding between these layers and a continuous chemical composition
gradient across the entire FGM, as shown in Figure 5.
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The presence of Fe from the substrate in the first M625 layers is more pronounced in
the PHT condition. This difference is caused by the thermal energy having caused a higher
dilution of the preheated substrate, with more Fe incorporating the melt pool, as observed
in other studies [23]. As shown in Figure 5, the fluctuation of the Fe concentration in the
PHT condition implies the depletion of the Ni, Cr, and Mo. However, Fe from the substrate
melt depletes at about 1.5 mm of the FGM regardless of preheating conditions; afterward,
the Fe concentration increases with increasing M42C powder. Regarding other elements,
the Cr distribution seems constant throughout the FGM; this homogeneity results from this
element existing in both M625 and M42C powders in similar amounts. Some fluctuations
in Nb and Mo profiles are stronger for the PHT condition in layers close to the substrate,
up to about 1.5 mm; as expected, concentrations of these elements decrease with increasing
M42C percentage. This increment in steel powder is also associated with a decrease in Ni.

Figure 6A,B reveals an influence of PHT on the microstructure of the first M625
layers, i.e., in the substrate vicinity. Without PHT, a layer with almost 50 µm of planar
grains was formed, while with PHT, only columnar structures are observed. As already
mentioned, this zone of planar grains is formed due to the very high thermal gradient
in the contact zone of the melt pool with the cold substrate; PHT significantly reduces
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this gradient, and solidification conditions lead to the formation of columnar structures.
These observations are consistent with similar studies [24,41]. This layer with planar grains
has been interrupted by proceeding the solidification; that means that the solid–liquid
interface growth rate and thermal gradient in the melt pool changed in favor of columnar-
dendritic growth.
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Figure 6. SEM/BSE images showing (A,B) the FGM/substrate interface and (C,D) higher magnification images for
secondary phases analysis from the 50% M625 + 50% M42C layers. (A,C) are from FGM produced without PHT, and (B,D)
with PHT.

The microstructural evolution in the FGM was evaluated in detail through localized
chemical analysis, using EDS. The EDS analysis of the zones illustrated in Figure 6A,B and
presented in Table 2 also confirmed that preheating caused the increase of Fe in the 100%
M625 layers of the FGM (zones Z1 and Z3), and strongly promoted the diffusion of alloying
elements of the M625 layer into the substrate with PHT (zones Z2 and Z4). This diffusion
of Ni, Mo, Nb, and Cr into the preheated substrate, associated with the depletion of Fe, can
affect the mechanical properties, such as hardness, of the substrate in the diffused zone.
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Table 2. EDS analysis (wt.%) performed on the FGM zones illustrated in Figure 6. Z1, Z2, Z5, Z6,
and Z7 are from FGMs without PHT, and Z3, Z4, Z8, and Z9 from FGMs with PHT.

Zone C O Si Nb Mo Cr Fe Ni Mn

Z1 0.9 - 0.5 2.9 7.8 16.6 22.3 49.0 -
Z2 0.9 - 0.3 0.0 0.0 1.5 97.3 0.0 -
Z3 0.7 - 0.5 2.7 6.2 13.6 37.1 39.2 -
Z4 0.7 - 0.4 1.2 3.2 6.9 69.1 18.5 -
Z5 0.7 16.9 0.4 9.2 5.2 28.2 8.8 22.5 8.1
Z6 1.8 - 2.3 12.0 24.4 14.3 10.5 34.7 -
Z7 0.7 - 2.4 11.8 24.3 15.3 10.0 35.5 -
Z8 1.1 12.9 8.3 6.3 6.4 19.9 12.0 27.5 5.6
Z9 1.0 - 1.8 5.2 26.2 16.0 13.9 35.9 -

Figure 6C,D gives more details about the formation of secondary phases in FGMs.
The EDS analysis of the round dark zones, identified as zones Z5 and Z8, are complex
oxides with a composition (Cr, Ni, Fe, Nb, Mo, Mn, Si)xOy. The microstructures also reveal
the presence of lighter (white and gray) regions. The results of Table 2 confirm that these
regions are mainly Laves phase and carbides. A comparison of the chemical composition
of the zones indicated in Figure 6C (Z6 and Z7) and Figure 6D (Z9) shows that preheating
affects their composition by increasing the iron content and decreasing the nickel content,
in accordance with Figure 5.

The PHT effect on the segregation for the interdendritic zones of Nb and Mo elements,
which are the main compositional elements of the Laves phase, is not apparent throughout
the FGM. However, close to the interface, this variation seems evident due to the decrease
of the Laves phase by the PHT effect, as observed by comparing the representations of
zone Z1 in Figure 6A,B. This effect is, in part, explained by the increase in Fe content
in the cladding. Furthermore, the volume fraction of the Laves phase depends on the
alloy solidification process, and higher cooling rates in this region, typical of the cladding
without PHT, reduce the time for Nb and Mo diffusion and lead to their accumulation in
the interdendritic spaces.

Typically, in the DLD process, the interface and heat-affected zone (HAZ) are critical
regions. In fact, the heat input in these regions is much smaller than in conventional
welding processes due to the localized molten region created by the laser. Consequently,
the cooling rate is very high at the beginning of cladding solidification, promoting a
significant microstructural change in the HAZ. This change can increase the hardness and
decrease the toughness in the substrate HAZ.

In this study, preheating the substrate to a temperature of 300 ◦C promoted not only a
microstructural change at the interface, inhibiting the formation of the planar grain layer
(Figure 6), but also in the HAZ, causing the formation of coarser structures and reducing the
formation of martensite, as shown in Figure 7. Thus, PHT leads to a microstructure that can
reduce crack initiation conditions during the in-service use of the coated steel. Figure 7 also
showed a more intense diffusion at the interface of the FGM produced with a pre-heated
substrate, with the mutual interpenetration of the substrate and cladding leading to a
diffuse interface. The analysis of Table 2 confirms this microstructural observation on the
effect of PHT on diffusion; a higher percentage of iron in the cladding (as evidenced by
comparing Z1 and Z3) and a higher percentage of Nb, Mo, Cr, and Ni from the cladding, in
the substrate (as highlighted by comparing Z2 and Z4) was detected.

Previous studies confirmed that PHT positively influenced the microstructure and
the mechanical properties in substrates processed by DLD [42]. In addition, it promoted
a reduction of residual stresses of about 40%, as well as the reduction and attenuation of
distortions [43], permitting a better distribution of stresses between the cladding and the
substrate, as well as preventing the formation of intermetallic phases (as secondary phases),
decreasing hardness, and improving mechanical properties.
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An EBSD analysis was performed to observe the morphology and grain distribution
of the FGMs, as illustrated in Figure 8. As expected, considering SEM/BSE images of
Figure 6A,B, there is a layer with smaller and equiaxed grains in the vicinity of the substrate.
This smaller grain size is more evident in the sample without PHT, due to the influence
of the cold substrate. However, the microstructure in both FGMs is mainly composed of
columnar grains that grow perpendicular to the substrate, i.e., in the direction of deposition
and heat flow. The growth of columnar–dendritic structures along the deposition direction
occurs when the temperature gradient component in that direction is larger than other
temperature components in the melt pool [44,45].

In the layers deposited with the 50% M625 + 50% M42C powder mixture, there is a
zone with equiaxed grains, probably formed by the complex chemical composition and
the heat accumulation, which induced a partial reduction of the high thermal gradient.
However, this localized microstructural alteration is again replaced by columnar grains,
not being maintained until the last deposited layers, contrary to what has been seen in
other studies [41]. It should also be noted that the size of columnar grains decreases as
more layers are deposited.

For the first two compositions (100% M625 and 75% M625 + 25% M42C), the grains of
the FGM without PHT (Figure 8A) are thicker and longer than those of the FGM with PHT
(Figure 8B), which shows another effect of reducing the thermal gradient by the application
of PHT.

EBSD images also show that some grains form in one region and spread to the next,
with different compositions. This indicates epitaxial growth in successive layers. This type
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of growth, which favors the bonding between layers, occurs because the deposition of a
new layer remelts the surface of the previous one. This remelting/solidification process
allows the grains from the previous deposition to act as nucleation sites for the solidification
of new grains.
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Figure 8. EBSD inverse-pole-figure (IPF) map of the cross-section of FGMs (A) without PHT and (B) with PHT, showing the
morphology and orientation of grains. The composition of each FGM zone is (100-X)% M625 + X% M42C.

The images in Figure 8 do not show the formation of a preferential orientation in the
microstructure, since no color is dominant in these inverse-pole figures.

3.2. Microhardness Mapping

In this study, the composition gradient from the substrates to the upper layers, with
a continuous increase in the amount of martensitic steel, should show an evolution of
hardness along with the deposited layers. In fact, previous studies on the deposition of
monolayers of these materials indicate average hardness values greater than 500 HV for
M42C [23] and approximately 250 HV for M625 [24]. However, no marked variation in
hardness was measured across the FGMs, as illustrated in the microhardness maps shown
in Figure 9. The figure also shows no significant differences in FGMs processed with and
without PHT, which proves that the influence of PHT on the microstructure is not very
significant, except for the planar morphology of the first deposited layers.

The relatively low hardness of the M42C-rich layers is explained by a slower cooling
rate in these layers, which are the last to be deposited, inhibiting an extensive martensitic
transformation, and by these layers having about 10 wt.% Ni, which, being one austenite
stabilizer, also hinders the martensitic transformation. Finally, except for the last layer, all
others undergo a self-tempering process of the martensite that may have formed.

Figure 9 reveals that the hardest zone obtained is in the heat-affected zone (HAZ)
of the FGM produced without PHT, meaning that preheating application promoted a
reduction in the cooling rate in the substrate, reducing the formation of martensite in this
zone, as already discussed.
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The higher hardness of the FGM with PHT (indicated by a red arrow) was measured
in the M625 region, which can be attributed to compositional fluctuations leading to a local
concentration of hard Laves phase/carbides.

This evolution of hardness shows that, up to 50% of M42C powder, which is signifi-
cantly less expensive, can be added to M625 powder without inducing significant changes
in hardness and microstructure, as discussed above. Larger amounts of M42C should not
be added, as they can lead to cracking.

4. Conclusions

In this study, the production of functionally graded material (FGM) by direct laser de-
position (DLD) technique was evaluated. The deposition started with layers of nickel-based
superalloy (M625 powders) and ended with layers of martensitic stainless steel (M42C
powders). Three mixtures of powders were used in intermediate deposits, sequentially
increasing by 25 wt.% the amounts of M42C powder. Moreover, the influence of preheating
the 42CrMo4 steel substrate on the microstructural and hardness evolution in FGMs were
evaluated. The main conclusions of this study are as follows:

• Cracking-free production of the Inconel 625/AISI 431 steel FGM, applying DLD, is
only verified up to a certain composition. The addition of stainless steel cannot exceed
50 wt.%.

• The metallurgical bonding of deposits to substrates and between the various layers of
the FGM is ensured by the diffusion in the liquid state of the alloy constituents, the
remelting effect, and epitaxial growth.

• The grain microstructure in Inconel 625/AISI 431 FGM is essentially columnar, regard-
less of preheating.

• Preheating influenced the microstructural evolution and microhardness in the sub-
strate and the first deposited layers; the region of planar grains observed in the vicinity
of the substrate only formed without preheating. A marked increase in grain size and
a reduction in martensite was observed in the preheated substrate HAZ, decreasing
the hardness of this region.
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