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Abstract: In this paper, the density functional theory accompanied with linear combination of atomic
orbitals (LCAO) method is applied to study the atomic and electronic structure of the Ti3+ and Ti2+

ions substituted for the host Al atom in orthorhombic Pbnm bulk YAlO3 crystals. The disordered
crystalline structure of YAlO3 was modelled in a large supercell containing 160 atoms, allowing
simulation of a substitutional dopant with a concentration of about 3%. In the case of the Ti2+-doped
YAlO3, compensated F-center (oxygen vacancy with two trapped electrons) is inserted close to the Ti
to make the unit cell neutral. Changes of the interatomic distances and angles between the chemical
bonds in the defect-containing lattices were analyzed and quantified. The positions of various defect
levels in the host band gap were determined.

Keywords: YAlO3; substitutional point defects; Ti-dopant; electronic structure; ab initio modelling

1. Introduction

It has long been well known that compounds of Y, Al and O form the following three
crystal structures: Y3Al5O12 (YAG), Y4Al2O9 (YAM) and YAlO3 (YAP). There are numer-
ous studies of their spectroscopic properties, in pure form and with different impurities.
For example, Ce3+ spectra in YAG were studied recently in Refs. [1–4]. The same Ce3+

impurity in YAM was a subject of spectroscopic investigations in Refs. [5,6], whereas triply
(Yb3+/Ho3+/Tm3+) doped YAM nanoparticles were investigated in Ref. [7].

Yttrium aluminum perovskite (YAP) plays an important role in materials science
research as an excellent model system for in-depth studies of the defect formation and their
influence on its optical properties, on the one hand, and development and improvement of
the already existing applications, on the other. Such an interest is explained by two main
factors. First of all, there exists the possibility of doping with many transition metal (TM)
and rare earth (RE) ions, and not all crystals can offer such an opportunity. Various TM ions
can occupy the Al site, whereas RE ions can be easily incorporated at the Y site. The second
important circumstance is that YAP has a wide band gap, which in different publications
was reported to range from 8.5 eV to 9.0 eV [8,9]. Many defects and/or impurity ion
energy levels can be located within the forbidden gap, which will manifest themselves
in the appearance of additional absorption/emission peaks in the defect-containing YAP
spectra [9–14].

Materials 2021, 14, 5589. https://doi.org/10.3390/ma14195589 https://www.mdpi.com/journal/materials

https://www.mdpi.com/journal/materials
https://www.mdpi.com
https://orcid.org/0000-0003-2795-9361
https://doi.org/10.3390/ma14195589
https://doi.org/10.3390/ma14195589
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/ma14195589
https://www.mdpi.com/journal/materials
https://www.mdpi.com/article/10.3390/ma14195589?type=check_update&version=1


Materials 2021, 14, 5589 2 of 13

Historically, interest in YAP as an attractive material for doping with transition metal
and rare earth ions has been driven due to its potential application [13,14] in solid-state
lasers capable of operating at shorter wavelengths than classical Al2O3:Ti lasers [15]. It
is expected that tunable laser crystal material, such as Ti-doped YAlO3, can demonstrate
absorption range from 350 to 550 nm, as well as fluorescence range from 540 to 800 nm [16].
Because of these expectations, research on optical, luminescence and laser properties has
been under the study of several research centers. Yamaga et al. [15] have performed
detailed low temperature measurements of the zero-phonon lines of Ti3+ ions in YAP, YAG
and Al2O3 at 10 K. The emission spectrum of Ti3+ in YAP consists of an intense zero-phonon
line at 539.7 nm and with full width at half maximum (FWHM) of 30 cm−1 accompanied
by a rather weak line at shorter wavelength 537.1 nm with FWHM of 55 cm−1. It was
reported that the zero-phonon lines of Ti3+:YAP are strongly polarized perpendicular to
the tetragonal axis and those of Ti3+:Al2O3 parallel to the trigonal axis. Detailed study
of the donor and acceptor states and corresponding charge-transfer (CT) transitions in
YAP:Ti3+/Ti4+ was done by Basun at al [9]. In particular, through the conductivity, optical
absorption and luminescence measurements, it was found that the Ti3+ ground state is
situated at about 4.60 ± 0.1 eV below the conduction band. Furthermore, a titanium-
bound exciton band at about 3.60 eV above the Ti3+ ground state was identified. Another
important result is that CT transition from the Ti4+ to Ti3+ ground state was found to
be at 4.20 ± 0.1 eV. The results obtained suggest that the band gap energy Eg of YAP is
8.8 ± 0.2 eV. This value is in good agreement with data of Lushchik et al. [8]; from there we
can conclude that Eg is in the range 8.5–9.0 eV. Two different processes, namely, Ti3+/Ti4+

pair formation and corresponding hole trapping at oxygen ions adjacent to a lattice defect
are responsible for the broad parasitic photo-induced absorption [17].

A few examples that emphasize the diversity of applications of the doped YAP host
are as follows: (i) scintillating applications (especially when doped with the La3+, Ce3+,
Pr3+ ions) [18–28]; (ii) thermoluminescent material (YAP with Mn ions) [29–34]; (iii) solid-
state laser applications [35,36] and (iv) electroluminescent devices [37]. Various aspects
of the doped YAP crystal were studied theoretically, such as crystal field splittings of the
Mn3+ and Mn4+ energy levels [38], splittings of the Ce3+ 4f and 5d states [39] and Ce3+ 4f
ground state position in the YAP band gap [40,41]. The titanium impurities in YAP were
studied experimentally in a number of references, for example, Ti3+ and Ti4+ excitation
spectra [42–45], EPR spectra of Ti3+ [17,46] and charge transfer processes [9]. The trap
defect levels in the YAP band gap were analyzed experimentally in Refs. [18,47]. The
existing measurements of the structural optical, thermal and mechanical properties of pure
and Ti-doped YAlO3 important for practical applications are summarized in Table 1.

As seen in the above given references, a vast majority of publications were focused on
the Ti3+ or Ti4+ ions. However, if the Ti3+ ions capture an electron, another type of impurity
center, Ti2+, will be formed. Such a center in YAP is less studied, and the present paper
offers a theoretical insight into its properties.

One of the key factors that plays a crucial role in assessing perspectives of a given
material for its optical applications is the location of the impurity ion ground state in the
host band gap. In view of this, in the present paper we continue our earlier studies of
the defects electronic structure in the YAP crystal [34,38,39,48,49] by performing the first
principles calculations for the pristine YAP, Ti3+ and Ti2+ doped YAP as well as for the F
color center (the oxygen vacancy with two electrons) in the YAP lattice. All calculations
have been performed within the formalism of hybrid density functional theory (DFT).
Comparison of the calculated results for the defect-containing YAP with those for the
pristine material allowed us to establish the influence of defects on the structural and
electronic properties of the studied host material.
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Table 1. Structural and optical properties of orthorhombic YAP and YAP:Ti.

a0, b0, c0 (Å) 5.179, 5.329, 7.370 [50]

Y sites/cm3 1.97 × 1022

Bulk modulus, B (GPa) 192 [50]

Hardness (Knoop value) 1310 [13]

Melting point (◦C) 1875 [13]

Thermal conductivity (W/cm-◦C at 25◦C) 0.11 [13]

Thermal expansion coefficient (10−6/◦C,
at 25◦C)

2.2 [13]

Optical transmission (absorption
coefficient < 1.0 cm−1) 0.29–5.9 µ [13]

Refractive index (6328 Å)
(a = z, b = y, c = x)

na = 1.97
nb = 1.96
nc = 1.94

[13]

Band gap energy, eV 8.5–9.0
8.8 ± 0.2

[8]
[9]

Ti-ion related optical absorption bands (eV)

7.08 (Ti3+-related)
5.76 (Ti4+-related)
5.27 (Ti4+-related)
5.39 (Ti3+ → Ti4+)
4.42 (Ti3+-related)

4.42 (2T2g → 4S, Ti3+)
4.20 (Ti4+ → Ti3+)

2.88 (2T2g → 2E, Ti3+)
2.87 (Ti3+)
2.81 (Ti3+)
2.53 (Ti3+)
2.52 (Ti3+)

2.50 (2T2g → 2E, Ti3+)

[9]
[9]
[9]
[16]
[9]
[43]
[9]
[43]
[16]
[9]
[9]
[16]
[43]

Ti-ion luminescence band

3.02 (Ti4+)
2.10 (Ti3+, d-d transition)
2.06 (Ti3+, d-d transition)

1.99 eV (Ti3+, d-d transition)

[9]
[43]
[9]

[16]

F center:
optical absorption (eV)

luminescence (eV)
5.84 and 5.15

2.95
[51]
[51]

F+ center:
optical absorption (eV)

luminescence (eV)
6.5, 5.63, and 4.3

3.49
[51]
[51]

The paper is organized as follows: Section 2 contains all relevant details of the YAP
structure and calculating settings, Section 3 describes all calculated results in relation to the
experimental data and (when available) calculated values, and, finally, Section 4 concludes
the paper with a short summary.

2. Computational Details

The DFT approach is based on the Hartree-Fock method using the HSE06 Hamilto-
nian [52,53] as implemented in total energy CRYSTAL17 computer code [54], which was
used in all calculations. The computer simulation began from complete geometry optimiza-
tion to be sure our modelling was able to reproduce the basic crystal parameters, e.g., lattice
constant and optical band gap of ideal YAP. Then, the influence of the presence of the Ti3+

dopant and the Ti2+ dopant and its compensating F-center on YAP atomic and electronic
structures were studied using a supercell (SC) approach. The localized Gaussian-type
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functions (GTFs) in the form of basis set (BS) centered on atomic nuclei for expansion of
crystalline orbitals as linear combinations of atomic orbitals (CO LCAO) were employed.
The hybrid exchange–correlation functional HSE06 has been used according to direction
given in Refs. [52–54]. The Triple-Zeta Valence with Polarization quality BSs for titanium,
alumina and oxygen were taken from Ref. [55], while for yttrium the Hay-Wadt effective
core pseudopotential BS was taken directly from Ref. [54]. Use of LCAO GTF approach
greatly facilitates the calculation of effective charges and bond population from the wave
functions using the Mulliken population scheme [56,57].

YAP possesses a perovskite structure of the GdFeO3 type [58]. Its orthorhombic unit
cell (Pbnm space group) contains four formula units with two non-equivalent oxygen
positions. In order to simulate the isolated substitution defect, the orthorhombic unit
cell was extended to a 2 × 2 × 2 SC. The SC retains the orthorhombic symmetry and
contains 160 atoms with the distance between periodically repeated defects of 10.38 Å [48].
To model the F-center, we employed “ghost” BS [53], meaning the atomic orbitals of
removed oxygen are left behind. This technique facilitates the accurate description of the
electron distribution within the vacancy and allows us to mimic the F+-center, which is a
compensating defect to simulate a Ti2+ substitutional dopant. The equilibrium geometry
is obtained using an analytical optimization method as implemented in the CRYSTAL
code [54]. To provide a balanced summation in both direct and reciprocal lattices, the
reciprocal space integration has been performed by sampling the SCs Brillouin zone with
a 3 × 3 × 3 Pack-Monkhorst mesh [59] that gives 14 k-points in total. The calculations
have been considered as converged only when the total energy differs by less than 10−8 a.u.
in two successive cycles of the SCF (Self-Consistent Field) procedure. Within the self-
consistency, the accuracies (tolerances) of 10−8 were chosen for calculations of Coulomb
and exchange integrals [54]. The visualizing software VESTA (https://jp-minerals.org/
vesta/en/, accessed on 25 September 2021) was used to present equilibrium YAP structures
in Figure 1.
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Figure 1. Equilibrium structure of 2 × 2 × 2 supercell of orthorhombic Pbnm YAlO3 with (a) F-center,
(b) Ti3+ ion and (c) Ti2+ ion substituted for host Al3+ atom. The supercell contains 160 atoms in a
periodically repeated unit. The Ti dopant is shown as a dark-grey ball, the compensating F-center is a
small pink ball, and the Y, Al, and O sublattices are shown in light blue, brown, and red, respectively.
The “b” crystallographic axis is perpendicular to the figure plane and is directed outward.

3. Results and Discussion
3.1. Structural Properties

Figure 1 shows the considered supercells for each of the above-described structural
models. Influence of the structural defects (substitutional atoms and vacancies) on the
YAP lattice geometry is considered by comparing the optimized interatomic distances and
angles between chemical bonds for all above-described structural models.

https://jp-minerals.org/vesta/en/
https://jp-minerals.org/vesta/en/
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Table 2 lists the lattice constants and atomic coordinates obtained in this study, as well
as their experimental values [50], calculated using the HSE06 exchange-correlation function
within DFT [60]. It can be easily seen that the equilibrium lattice constants (a0 = 5.189 Å,
b0 = 5.317 Å, and c0 = 7.388 Å) calculated in this study are in very good agreement with
both those experimentally measured (a0 = 5.179 Å, b0 = 5.329 Å, and c0 = 7.370 Å [50]) and
those previously calculated (a0 = 5.179 Å, b0 = 5.342 Å, and c0 = 7.367 Å [60]). In addition,
the experimental and calculated fractional coordinates of all ions in a unit cell expressed in
the crystal lattice constants’ units are also very close to one another. Thus, we conclude
that the chosen computational approach allows us to obtain reliable data for the Ti-doped
YAP crystal.

Table 2. Structural characteristics of YAlO3 crystal in orthorhombically distorted Pbnm perovskite
structure.

Lattice
Constants

and Volume
Experiment, Ref. [50] Calc. (HSE06), Ref [60] This Study

a0, Å 5.179 5.179 5.189
b0, Å 5.329 5.342 5.317
c0, Å 7.370 7.367 7.388
V, Å3 203.49 203.82 203.86

Fractional Coordinates (In Units of the Lattice Constants)

Atoms: x y z x y z x y z

Y −0.012 0.053 0.25 −0.012 0.055 0.25 −0.011 0.050 0.25
Al 0 0.5 0 0 0.5 0 0 0.5 0
O1 0.084 0.477 0.25 0.084 0.478 0.25 0.082 0.479 0.25
O2 0.705 0.295 0.044 0.706 0.294 0.042 0.708 0.292 0.044

The nearest environment of the Al3+ ions in YAlO3 is a deformed octahedron made of
six oxygens. The second coordination sphere around Al3+ ions contains six Y3+ ions. The
oxygen ions laying on the opposite sides of the central Al3+ ion are located on the same
straight line with the central ion, making the angles of 180 degrees—this is an important
observation, which will be used to illustrate the difference with the defect-containing
YAlO3 lattice.

Isovalent substitution of the Al3+ ion for the Ti3+ ion is accompanied by the expan-
sion of the TiO6 octahedron, which is in line with a greater Ti3+ ionic radius in six-fold
coordination (0.67 Å, if compared with 0.535 Å for Al3+ [61]. All O–Ti–O angles inside
the TiO6 octahedron are not changed, which is anticipated since the electric charges of the
substituting and substituted ions are the same. Therefore, such an isovalent doping leads
only to an expansion of the crystal lattice while keeping all angles between the chemical
bonds the same, as in the neat lattice.

Presence of the oxygen vacancy or substitution of the Al3+ by the Ti2+ ion considerably
lowers the symmetry of the AlO6 or TiO6 octahedron because the oxygen ions located
on opposite sides of the central ion are no longer on the same straight line, deviating
from the 180◦ angles (Table 3). In the long run, such symmetry lowering may lead to the
enhancement of the emission lines of impurity ions located at those sites. It should be
noted that the presence of the oxygen vacancy considerably shortens the distance to the
nearest Al (or Ti) ion (Figure 2 and Table 3).
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Table 3. Atomic structure of pristine and Ti-doped YAlO3 crystals in orthorhombically distorted
perovskite structure. Bond lengths l are given in Å and bond angles α are in degrees. For atomic
notations please see Figure 2.

YAlO3 YAlO3:F YAlO3:Ti3+ YAlO3:Ti2+

lAl,Ti-O_I 1.92 1.92 2.01 1.94
lAl,Ti-O_II 1.92 1.92 2.01 1.96
lAl,Ti-O_III 1.90 1.90 1.99 2.00
lAl,Ti-O_IV 1.90 1.90 1.99 2.00
lAl,Ti-O_V,F 1.90 1.22 1.97 1.21
lAl,Ti-O_VI 1.90 1.92 1.97 2.08
lAl,Ti-Y_I 3.02 2.98 3.02 2.98
lAl,Ti-Y_II 3.02 3.04 3.02 3.10
lAl,Ti-Y_III 3.15 3.12 3.17 3.15
lAl,Ti-Y_IV 3.15 3.16 3.17 3.25
lAl,Ti-Y_V 3.24 3.17 3.30 3.14
lAl,Ti-Y_VI 3.24 3.26 3.30 3.33
α0_I-Al,Ti-O_II 180.0 178.6 180.0 175.4
α0_III-Al,Ti-O_IV 180.0 178.5 180.0 172.8
α0_V,F-Al,Ti-O_VI 180.0 174.4 180.0 174.7
αY_I-Al,Ti-Y_II 180.0 178.9 180.0 175.4
αY_III-Al,Ti-Y_IV 180.0 179.0 180.0 175.8
αY_V-Al,Ti-Y_VI 180.0 179.4 180.0 176.8
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3.2. Electronic Properties

In the ternary compounds, such as YAP, two pairs of bonding atoms can be selected,
like Y–O and Al–O in this particular case. Their chemical properties are not identical, as they
depend on the atomic numbers, charges, electron configurations and electronegativities
of the ions involved into these bond formations. The peculiar bonding features can be
analyzed by considering the effective Mulliken charges and bond orders as follows. The
calculated Mulliken charges (Table 4) deviate from those prescribed by the formal valences
derived from the chemical formula (+3 for Y and Al, −2 for O), which is an indication of
the covalent bonds between the ions in YAlO3 crystal lattice. The charge of the yttrium
ions is closer to the “+3” value than that of the aluminium ions; therefore, the Y–O ions are
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more ionic, whereas the Al–O ions are more covalent. The oxygen ions effective charges for
a pristine YAlO3 also follow the geometrical structure: the charges of the ions located at
the same distance from the central Al3+ ion are the same. Moreover, the absolute values
of the ions located further from the central ion are slightly greater than those ones of the
closer ions. This can be explained by weaker overlap of the oxygen and aluminium wave
functions and increased degree of ionicity of the corresponding Al–O bonds. F-centers in
pristine and Ti2+-doped YAP attract 0.53 e and 0.66 e, correspondingly.

Table 4. Mulliken population analysis of pristine and Ti-doped YAlO3 crystals in orthorhombically
distorted perovskite structure. Q is Mulliken effective charge in e, bond populations P are in e.
Negative bond population means electronic repulsion. For atomic notations please see Figure 2.

YAlO3 YAlO3:F YAlO3:Ti3+ YAlO3:Ti2+

QY_I 2.46 2.42 2.45 2.40
QY_II 2.46 2.46 2.45 2.46
QY_III 2.46 2.45 2.45 2.45
QY_IV 2.46 2.46 2.45 2.46
QY_V 2.46 2.45 2.46 2.43
QY_VI 2.46 2.46 2.46 2.46
QAl,Ti 1.77 1.26 1.56 1.07
QO_I −1.42 −1.44 −1.39 −1.35
QO_II −1.42 −1.43 −1.39 −1.37
QO_III −1.40 −1.43 −1.37 −1.38
QO_IV −1.40 −1.44 −1.37 −1.39
QO_V,F −1.40 −0.53 −1.35 −0.66
QO_VI −1.40 −1.41 −1.35 −1.38
PAl,Ti-O_I 0.28 0.38 0.16 0.11
PAl,Ti-O_II 0.28 0.37 0.16 0.15
PAl,Ti-O_III 0.27 0.34 0.15 0.05
PAl,Ti-O_IV 0.27 0.35 0.15 0.09
PAl,Ti-O_V,F 0.27 −0.62 0.16 −1.44
PAl,Ti-O_VI 0.27 0.18 0.16 −0.24

The atomic orbitals of the constituting atoms in the YAP lattice are hybridized because
of chemical bond formation. Due to these effects, the oxygen 2p ions produce a minor
contribution to the conduction band, whereas the cation’s unfilled states can be traced
down by their small percentage in the valence band. These effects are different in the
Y–O and Al–O pairs and are represented in detail in Table 4, which lists the results of the
Mulliken effective charge and bond order calculations.

Figures 3 and 4 show band structures and density of states (DOS) calculated for
pristine, F-center containing, Ti3+- and Ti2+-YAP. The direct Γ-Γ band gap calculated in
this study for pristine YAP has a width of 7.26 eV [48] and is in good agreement with the
experimentally detected band gap of 8.5 eV [8]. The band structures calculated for all four
perovskite structures under study look similar and agree with band structures published
previously in the literature using different ab initio methods [60]. Position of the bottom of
the conduction band (CB) practically does not change with respect to the top of the valence
band (VB), while the levels induced by defects are present within the YAP’s optical gap.
The VB top and CB bottom of pristine YAP consist of the O 2p and Y 4d states with an
admixture of the Al 3p orbitals, respectively.

In the case of F-center (Figures 3b and 4b), an occupied level is located at 3.36 eV above
of the VB top. This level has a very small dispersion of 25 meV, meaning the F-center can
be treated as an isolated defect within the framework of the chosen model. The defect level
induced by F-center consist mainly of admixture of F-center orbitals with the O 2p and Al 3p
orbitals (Figure 4b) that is in line with relatively short Al–F-center bond of 1.22 Å (Table 3).
An empty level also induced by F-center in pristine YAP is located very close to its bottom
of the CB (Figure 4b) and contains also an admixture of the Y 4d states. In fact, this empty
level may form the bottom of the CB, making YAP to act as an indirect Γ-Z semiconductor.
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The Ti3+ ion substituting the host Al ion in the YAP lattice induces three defect levels
inside its optical gap (Figure 4c). Due to distortion of oxygen octahedra around the Ti
dopant, the eg-t2g splitting of the Ti 3d orbitals takes place. The occupied t2g level is located
5.32 eV above the VB top and has the dispersion (energy interval, in which this level is
localized) of 20 meV. This level consists mainly of the Ti 3d states with a small admixture
of the O 2p states. The other two empty levels are located close to each other at 6.31
and 6.40 eV above the top of the VB, respectively. Their dispersions are 5 and 10 meV,
respectively. Empty levels induced by the Ti3+ dopant consist of the Ti 3d states with a
small admixture of the O 2p and Al 3p orbitals (Figure 3c).

YAP doped with the Ti2+ ions contains a compensating F-center to force a unit cell
to be neutral. Presence of the F-center induces an occupied level in the YAP crystal at
3.20 eV above its VB top (Figure 3d). This level has a dispersion of 25 meV and consists
of an admixture of F-center states, O 2p and Ti 3d orbitals (Figure 4d). The other three
levels induced by the Ti2+ dopant are located at 4.98, 5.93, and 6.30 eV above the VB top,
respectively (Figure 3d). The level at 4.98 eV is occupied, while two others are vacant.
These three levels’ dispersions are 27, 7, and 38 meV, respectively. Presence of defects,
which affects the effective charges of the surrounding ions, also modifies slightly the VB
profile, as is shown by Figure 4.
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We note that the YAP host cannot be directly doped with the Ti2+. However, formation
of Ti2+–F-center complexes is expected in YAP during, e.g., hard irradiation. Formation
of titanium ions in this oxidation state is physically unavoidable for at least two reasons:
(i) the perovskite crystals always contain oxygen vacancies. Removal of the negative charge
would imply removal of the positive charge as well, hence Ti2+ can appear instead of Ti3+;
(ii) the charge transfer transitions from the oxygen ions to the Ti3+ ions would lead to the
formation of the Ti2+. According to the Mulliken population analysis performed in this
study (Table 4), we predict the formation of Ti2+ ion with Mulliken effective charge of
1.07 e if the F-center is created in the Ti-doped YAP crystal. The Mulliken effective charge
calculated for Ti3+-doped YAP if no F-center is present is 1.56 e (Table 4). Fermi level of
Ti3+-doped YAP is positioned 5.31 eV above the top of the VB of the undoped crystal, while
in case of possible formation of Ti2+–F-center complex the Fermi level is located 4.94 eV
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above of the VB top of pristine YAP or 0.37 eV below the Fermi level of Ti3+-doped crystal,
assuming the coexistence of the Ti3+/Ti2+ dopants in YAP under, e.g., ionizing irradiation
conditions when formation of oxygen vacancies (F-centers) is highly expected. In addition,
we note that the formation of the Ti2+-dopant in YAP without the presence of the F-center
is hardly possible and thus is beyond the scope of this study.

Finally, we must emphasize that understanding where the impurity levels are located
in the band gap, how these levels change their position with a change in the charge state of
the impurity ion and how they are located in relation to each other, as well as in relation to
point defects (F-centers)—all this is very important for an accurate and detailed description
of the processes of photo- and thermally stimulated conversion of point defects in wide-gap
halides, oxides and perovskites [62–76].

4. Conclusions

Detailed calculations of the structural and electronic properties of the pristine defect-
containing YAlO3 were performed in the present paper. Among the considered defects were
F-center (oxygen vacancy), Ti3+ and Ti2+ ions, introduced instead of the Al3+ ion. Optimiza-
tion of the crystal structures for each considered case has led to the following conclusions:

(i) Isovalent replacement of the Al3+ ion by the Ti3+ ion keeps the symmetry of the
substitutional site; the only effect is a slight increase of the Ti–O distances as compared
to the Al–O ones because of the difference in ionic radii of the Al3+ and Ti3+ ions. Our
calculated position of the Ti3+ ground state in the YAP band gap (5.32 eV above the
valence band top) agrees nicely with the value of about 5.21 eV derived by Rogers
and Dorenbos in Ref. [77].

(ii) Appearance of the oxygen vacancy or replacement of the Al3+ ion by the Ti2+ ion with
simultaneous formation of the charge compensating defects lowers the symmetry of
the substitutional site by modifying the angles between the chemical bonds in the
AlO6 or TiO6 octahedra.

(iii) Creation of the defects in the pristine YAlO3 structure leads to the formation of
localized dispersionless defects’ energy levels in the host band gap. These levels are
located in the central region of the band gap and closer to the CB bottom; they can
significantly modify the host’s optical properties by causing additional defect-related
absorption peaks in the optical spectra.

We note that appearance of the substitutional defects and F-centers in the ideal YAP
crystal structure will be accompanied by (i) emergence of local vibrational modes and
(ii) splitting of the host’s degenerated vibrational modes due to the symmetry lowering
around these point defects, which is currently out of scope of the present paper.
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