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Abstract: The plasma jet cutting process has a high potential for the machining of aluminium and
its alloys. Aluminium is well known as a highly thermally conductive and sensitive material, and
because of that there exist uncertainties in defining process parameters values that lead to the best
possible cut quality characteristics. Due to that, comprehensive analysis of process responses as
well as defining optimal cutting conditions is necessary. In this study, the effects of three main
process parameters—cutting speed, arc current, and cutting height—on the cut quality responses:
top kerf width, bevel angle, surface roughness Ra, Rz, and material removal rate were analyzed.
Experimentations were conducted on aluminium EN AW-5083. In order to model relations between
input parameters and process responses and to conduct their optimization, a novel hybrid approach of
response surface methodology (RSM) combined with desirability analysis was presented. Prediction
accuracy of developed responses regression models was proved by comparison between experimental
and predicted data. Significance of process parameters and their interactions was checked by analysis
of variance (ANOVA). Desirability analysis was found as an effective way to conduct multi-response
optimization and to define optimal cutting area. Due to its simplicity, the novel presented approach
was demonstrated as a useful tool to predict and optimize cut quality responses in plasma jet cutting
process of aluminium alloy.

Keywords: plasma jet cutting; cut quality; aluminium alloy; modelling; optimization

1. Introduction

The plasma jet cutting process is a modern non-conventional manufacturing process
mostly used in shipbuilding and the metal processing industry. In this process, highly
ionized gas containing a very high amount of energy is used to cut different metals such
as mild steel, stainless steel, wear- and abrasion-resistant steel, aluminum, copper, etc. at
various thicknesses up to 150 mm. Cut quality in this process is mostly affected by different
process parameters that are set by a technologist or process engineer. Usually, it is the
case that appropriate process parameters settings improve some quality characteristics
and worsen others. Due to that, it is desirable to conduct comprehensive research in
order to define optimal cutting areas where different cut quality responses simultaneously
have optimal solutions. In order to do that, many researchers worldwide performed
investigations in order to describe the effects of different process parameters on cut quality
responses and to define their optimal values.

Table 1 summarizes some of the recent studies. These studies are classified according
to investigated material, analyzed process parameters and process responses, and methods
that were applied in order to define significant parameters, describe relations between
inputs and outputs and determine optimal process responses values.
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Table 1. Summarized literature review.

Material Process Parameters Responses Modelling/Optimization
Techn. Ref.

EN31 steel GP, AC, torch height MRR
SR GRA, ANOVA [1]

St37 carbon steel CS, SD, arc voltage Ra, Rz Taguchi
ANOVA [2]

AISI 316 stainless steel feed rate, AC, AV, torch height kerf, chamfer, dross,
SR, MRR RSM, GRA, PCA [3]

E30 mild steel AC, CS, CH BA Regression analysis,
ANOVA, ANOM [4]

316L stainless steel thickness, AV, CS, GP KW, taper GRA, ANOVA [5]

304L stainless steel GP, CS, AC, SD SR, KW RSM, GRA, Taguchi [6]

EN10025 stainless steel AC, plate thickness, CS Rz ANN [7]

S235JRG2 structural steel AC, CS Ra ANN [8]

Hardox-400 steel CS, plasma flow rate, AV CSU ANOVA [9]

Mild steel
CS, AV, plasma gas mass flow
rate, shield gas mass flow rate,
shield gas mixture

kerf position and
shape, CSU Regression analysis, ANOVA [10]

St 52-3N steel CS, AC, GP, CH Ra, Rtm [11]

SS420 stainless steel AC, CS, CH Ra, MRR Taguchi, ANOVA, GRA [12]

St37 mild steel plate thickness, CS, AC, AV,
GP, pierce height, SD BA ANN, ANOVA [13]

EN10025 stainless steel plate thickness, CS, AC KW, SR, BA [14]

AISI 304 stainless steel CS, material thickness, AC Ra RSM, ANOVA [15]

Titanium cutting gas, CS CSU, KW, BA, Rz,
HAZ, Temperature [16]

Monel 400™ alloy CS, GP, AC, SD MRR, kerf taper,
HAZ width

Regression a., Fuzzy logic,
ANOVA, Sensitivity analysis [17]

Abbreviations: GP—gas pressure, AC—arc current, CS—cutting speed, SD—standoff distance, AV—arc voltage, CH—cutting height,
SR—surface roughness, BA—bevel angle, KW—kerf width, CSU—cut surface unevenness, GRA—grey relational analysis, RSM—response
surface method, PCA—principal component analysis, ANOM—Analysis of means, ANN—Artificial neural network.

Besides the above literature, a few papers also investigated the machinability and cut
quality characteristics in the plasma jet cutting process of aluminium and its alloys [18–24].
Peko et al. [18] developed an ANN model in order to predict the influence of cutting height,
cutting speed, and arc current on kerf width in plasma jet cutting process of aluminium
alloy 5083. The ANN model was verified using mean squared error (MSE) and correlation
coefficient (R) measures between experimental and predicted responses on validation and
testing datasets. After the prediction accuracy of the model was checked, 2D and 3D
plots that describe the effect of process parameters on kerf width response were generated.
Peko et al. [19] investigated the influence of cutting speed, arc current, and cutting height
on dross height in plasma jet cutting of aluminium 5083. In order to define the relations
between input parameters and response, mathematical modeling was performed using
the fuzzy logic technique. The developed model was checked on the new experimental
trials using mean average percentage error (MAPE) and coefficient of determination (R2)
measures. After validation of the fuzzy logic model, optimal cutting conditions were
defined and checked by confirmation experiments. Kadirgama et al. [20] presented a
mathematical model for HAZ prediction in air plasma cutting of aluminium alloy 6061. The
input process parameters were output current, standoff gap, and pressure. Mathematical
modeling was performed by response surface method. A partial swarm optimization
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algorithm was used for optimization of the HAZ function and to define corresponding
process parameters levels that lead to minimal HAZ width. Peko et al. [21] developed an
ANN model in order to predict the influence of cutting speed and arc current on the surface
roughness Ra in the plasma jet cutting process of aluminium alloy 5083. Experimental work
was conducted according to a Taguchi L9 orthogonal array. The developed ANN model
was checked on the datasets for test and validation using R and MSE between experimental
and predicted data as validation measures. Finally, based on the mathematical model, 2D
and 3D plots were generated in order to analyze the influence of each process parameter
as well as their interaction on Ra response. From the generated plot, optimal cutting area
with minimal surface roughness was approximately defined. Peko et al. [22] researched
the influence of process parameters such as cutting speed, arc current, and cutting height
on the bevel angle response in the plasma jet cutting of aluminium 5083. Experiments
were conducted according to the Taguchi L27 experimental plan. The main effects plot and
interactions effects plot of the S/N ratio of bevel angle as well as ANOVA were used to
define the influence of process parameters and their interactions on the bevel angle. Nearly
optimal bevel angle and corresponding process parameters values were defined using
the Taguchi optimization approach. Hamid et al. [23] conducted experimental research
on aluminium alloy 5083 of thickness 10 mm. They investigated the influence of arc
current, feed rate, gas pressure, and cutting distance on surface roughness and conicity
responses. The experimental plan was designed according to Taguchi L9 orthogonal array.
Gray relational analysis was used in order to conduct multi-objective optimization and to
approximately define process parameters values that lead to minimal surface roughness
and conicity. ANOVA results showed that cutting current and cutting speed are the most
significant parameters on analyzed responses. Patel et al. [24] analyzed the influence of
arc current, standoff distance, gas pressure, and cutting speed on MRR, top and bottom
kerf width, and bevel angle in plasma jet cutting process of aluminium 6082 of thickness
5 mm. In order to discuss the influence of process parameters, main effects plots for each
response were generated. These plots define approximately process parameters levels that
lead to optimum of each response. ANOVA was performed to define contribution of each
process parameter. Results showed that arc current, standoff distance, and cutting speed
are significant parameters for all responses.

The above literature review [18–24] yields the fact that no general computational
relationships between input process parameters and multiple cut quality characteristics
in plasma jet cutting process of aluminium were defined. The presented papers mostly
analyzed influence of process parameters on singular cut quality response such as kerf
width [18], dross height [19], HAZ width [20], and surface roughness [21]. The literature
review showed that no exact optimization of multiple cut quality responses was performed.
In most cases, the optimal cutting area was defined approximately according to gener-
ated parameters affects plots [18,19,21], by using Taguchi optimization [22,24] or applying
grey relational analysis for the purpose of simultaneous optimization of two process re-
sponses [23]. The weakness of the Taguchi method and GRA is in searching for optimal
process parameters setting only on discrete parameters values used in the experimental
matrix [22,25]. Another conclusion of the literature review concerns the fact that the plasma
jet cutting process of the aluminium, especially alloy 5083, has been insufficiently studied
and that further research is called for in order to determine an optimum configuration
of the process parameters that lead simultaneously to the optimal various cut quality
characteristics. Starting from these considerations, this paper conducts the experimental
investigation of the plasma jet cutting of aluminium alloy 5083. The research presented in
this paper investigates the influence of three process parameters, namely, cutting speed, arc
current, and cutting height on the cut quality response: top kerf width, bevel angle, surface
roughness parameters Ra, Rz, and material removal rate. The novelty of this paper is hybrid
approach of response surface methodology (RSM) combined with desirability analysis
that was used to analyze system’s responses and to conduct simultaneous optimization
of cut quality characteristics. In comparison with artificial intelligence (AI) methods and
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metaheuristic algorithms, this approach is, due to its simplicity, very widely used in various
manufacturing industries to effective design optimal settings of process parameters [26].
AI methods such as ANN and fuzzy logic as well as metaheuristic algorithms have higher
computational complexity, and they are based on sound knowledge and experience of
the problem, as well as creativity and comprehension of ANN and evolutionary mecha-
nisms [27]. In this paper, the generated mathematical models of cut quality characteristics
were verified by comparison between experimental and predicted data. ANOVA was
applied to determine significance of process parameters and their interactions on analyzed
responses. Finally, multi-response optimization was conducted and optimal plasma jet
cutting region of aluminium alloy 5083 was defined. Based on that application value of
RSM, the desirability of the hybrid approach in investigation of machinability of 5083 alloy
in plasma jet cutting process was proved.

This paper is structured as follows. Section 1 presents the latest research in plasma
jet cutting process of different materials. Section 2 describes the experimental setup and
experimental results. Section 3 presents mathematical models of cut quality responses,
verification of the models, and ANOVA. Discussion of the results is conducted in Section 4.
Section 5 presents the results of multi-objective optimization. Section 6 gives appropriate
findings and directions for further research in this area.

2. Materials and Methods
2.1. Experimental Setup

Experimentations were performed on CNC machine FlameCut 2513 (Arpel Automa-
tion, Belgrade, Serbia) with the use of compressed air as plasma gas. The specifications
of the CNC machine are given in Table 2. As arc current source an LG 100 IGBT Inverter
Air Plasma Cutting Machine was used. For preparing compressed air, a plasma gas com-
pressor (SCK5 200 PLUS, ALUP Kompresoren Gmbh, Reutlingen, Germany) was applied.
A purifier and air-drying system were integrated in the compressor. Figure 1 shows the
CNC plasma cutting machine together with cutting torch parts, arc current source, and
compressor. Workpiece material was aluminium alloy EN AW-5083 H111. Chemical
composition, mechanical, and physical properties of workpiece material are presented in
Table 3. The aluminium alloy 5083 is a high magnesium alloy with a good strength in the
non-heat treatable alloy, good corrosion resistance, and machinability. The arc welding
performance is good. The main alloying element in the 5083 alloy is magnesium, which
has good corrosion resistance and weldability, as well as moderate strength. Excellent
corrosion resistance makes this alloy widely used in marine applications such as ships, as
well as in automobiles, aircraft welding parts, and subway light rails [28]. Aluminium is
very sensitive to heat input and application of thermal manufacturing technologies such
as plasma jet cutting. Due to that, in previous experimental works authors conducted
investigation of the influence of variable process parameters on the heat affected zone and
material structure [29]. Based on the obtained results, it was concluded that significant
structural changes in the heat affected zone did not occur. In fact, here is the case of non-
heat-treatable aluminium alloy such as 5083 alloy, which is not sensitive to the heat input
during plasma jet cutting process. Significant structural changes are expected to occur
during plasma jet cutting and especially welding process of the heat treatable alloys. In the
heat-affected zone of these alloys, heat treatment effects would be undone, for the reason
of the intermetallic compound precipitates grain size going larger, which would eventually
lead to hardness and material strength values decrease [29]. Workpiece sheet thickness is
3 mm. This thickness is very widely used in different industrial applications, especially
in shipbuilding for the construction of hulls and marine structures [30]. Experimental
trials were conducted according to full-scale experimental design by varying three process
parameters on three levels: cutting speed v (mm/min), arc current I (A), cutting height
H (mm), as shown in Table 5. Constant process parameters were outlet nozzle diameter:
1.2 mm and plasma gas pressure: 6 bar. The levels of variable and constant process pa-
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rameters were selected after the detailed literature survey, pilot runs, and industry expert
opinions. In each experimental trial, the straight cut length of 80 mm was used.

Table 2. Specifications of CNC machine FlameCut 2513.

Model FlameCut 2513

Overall sizes (mm) 3720 × 2500 × 1850

Weight (kg) 1300

Tool travels (X, Y, Z) 3000 mm × 1500 mm × 200 mm

Maximum tool speed 20,000 mm/min

Supply 400 V/50 HZ

Drive AC Servo

X, Y, Z drive Ball screw

Accuracy 0.1 mm/m

Plasma type User defined

Materials 2021, 14, x FOR PEER REVIEW 5 of 24 
 

 

height H (mm), as shown in Table 5. Constant process parameters were outlet nozzle di-

ameter: 1.2 mm and plasma gas pressure: 6 bar. The levels of variable and constant process 

parameters were selected after the detailed literature survey, pilot runs, and industry ex-

pert opinions. In each experimental trial, the straight cut length of 80 mm was used. 

Table 2. Specifications of CNC machine FlameCut 2513. 

Model FlameCut 2513 

Overall sizes (mm) 3720 × 2500 × 1850 

Weight (kg) 1300 

Tool travels (X, Y, Z) 3000 mm × 1500 mm × 200 mm 

Maximum tool speed 20,000 mm/min 

Supply 400 V/50 HZ 

Drive  AC Servo 

X, Y, Z drive Ball screw 

Accuracy 0.1 mm/m 

Plasma type  User defined 

 

Figure 1. CNC machine FlameCut 2513, cutting torch, arc current source, and compressor. 

Table 3. Properties of aluminium EN AW-5083 H111. 

Chemical Composition 

Al Ti Cr Zn Si Mg Cu Fe Mn 

Balance 0.15 0.05–0.25 0.25 0.40 4–4.90 0.10 0.40 0.40–1 

Physical Properties 

Density 
Melting 

point 

Thermal ex-

pansion 

Modulus of 

elasticity 

Thermal con-

ductivity 
Electrical resistivity 

2.65 g/cm3 570 °C 25 × 10–6/K 72 GPa 121 W/m·K 0.058 × 10–6 Ω.m 

Mechanical Properties 

Proof stress Tensile strength Elongation Shear strength Hardness vickers 

145 MPa 300 MPa 23% 175 MPa 75 HV 

Cut quality responses that were investigated are top kerf width Wu (mm), bevel angle 

α (°), surface roughness Ra (µm), Rz (µm), and material removal rate MRR (mm3/min), as 

shown in Figure 2.  

Figure 1. CNC machine FlameCut 2513, cutting torch, arc current source, and compressor.

Table 3. Properties of aluminium EN AW-5083 H111.

Chemical Composition

Al Ti Cr Zn Si Mg Cu Fe Mn

Balance 0.15 0.05–0.25 0.25 0.40 4–4.90 0.10 0.40 0.40–1

Physical Properties

Density Melting
point Thermal expansion Modulus of

elasticity Thermal conductivity Electrical resistivity

2.65 g/cm3 570 ◦C 25 × 10−6/K 72 GPa 121 W/m·K 0.058 × 10−6 Ω·m
Mechanical Properties

Proof stress Tensile
strength Elongation Shear strength Hardness vickers

145 MPa 300 MPa 23% 175 MPa 75 HV
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Cut quality responses that were investigated are top kerf width Wu (mm), bevel angle
α (◦), surface roughness Ra (µm), Rz (µm), and material removal rate MRR (mm3/min), as
shown in Figure 2.
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Figure 2. Cut quality responses.

Kerf width measurements were made on three equidistant positions along the length
of the cut. A Universal Toolmaker’s (Guiyang Xintian Oetech Co., Ltd., Guizhou, China)
Microscope was used as a measurement device, as shown in Figure 3a,b, which presents
an example of top and bottom kerf width that were measured on the microscope. Specifi-
cations of the measurement device are presented in Table 4. Bevel angle was calculated
using Equation (1), where s (mm) is plate thickness, and Wu (mm) and Wi (mm) are top
and bottom kerf widths, respectively. Surface roughness Ra and Rz measurements were
conducted in the middle of the cut surface height at five equidistant positions along the
length of the cut surface. Pre-experiments showed that difference in surface roughness by
cut surface height is not visible. Taylor Hobson Talysurf 6 was used as measurement device
for surface roughness, as shown in Figure 4. Surface roughness was measured according to
standards EN ISO 4287/4288 with the sampling length 8 mm, evaluation length 40 mm,
10 µm radius stylus tip, and Gaussian cut-off filter 8. A stylus speed of 0.5 mm/s was used
in conjunction with a 0.8 mN static stylus force and the stylus cone angle used was 90◦. In
the measurement process, attention was paid on measurement errors that can be random
and systematic. In order to avoid random errors measurements of Wu, Ra and Rz were
repeated several times until the values converged and average values of each response
were considered for the further analysis. Systematic errors were avoided by using correctly
calibrated measurement devices in controlled environment under room temperature and
pressure. Material removal rate response was calculated according to Equation (2).

α (◦) =

∣∣∣∣tan−1
(

Wu−Wi
2·s

)∣∣∣∣ (1)

MRR
(

mm3/min
)
=

(
Wu + Wi

2

)
·v·s (2)
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Table 4. Specifications of Universal Toolmaker’s Microscope.

Model JX13B

X-coordinate (mm) 200 mm

Y-coordinate (mm) 100 mm

Resolution ration (mm) X and Y coordinate: 0.0002 mm

Accuracy (1 + L/100) µm (L—length of workpiece in mm)

Metering force 0.1 N

Locating stability 0.001 mm

Limit error gauged for head diameter 0.0005 mm

Objective magnification 1× 3× 5×
Gross magnifying power 10× 30× 50×
Object working distance 79 mm 69 mm 49 mm

Object visual field 20 mm 6.7 mm 4 mm

Overall sizes (mm) 1300 × 1250 × 800
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2.2. Experimental Results

Full-scale experimental design and cut quality responses values for each experimental
trial are listed in Table 5.
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Table 5. Experimental plan and cut quality responses values.

Exp.
Trial

Process Parameters Cut Quality Responses

v (mm/min) I (A) H (mm) Wu
(mm) α (◦) Ra (µm)

Rz MRR
(mm3/min)Cod. Real Cod. Real Cod. Real (µm)

1 −1 2000 −1 45 −1 1 2.179 7.782 15.30 66.00 10,614.00
2 −1 2000 −1 45 0 1.5 2.192 6.993 13.00 62.00 10,944.00
3 −1 2000 −1 45 1 2 2.185 6.013 14.60 74.00 11,214.00
4 −1 2000 0 65 −1 1 2.058 3.805 17.70 71.00 11,151.00
5 −1 2000 0 65 0 1.5 2.375 4.745 16.70 59.00 12,756.00
6 −1 2000 0 65 1 2 2.202 2.252 17.40 85.00 12,504.00
7 −1 2000 1 85 −1 1 2.024 3.367 19.30 85.00 13,203.00
8 −1 2000 1 85 0 1.5 2.209 3.633 19.10 76.00 14,397.00
9 −1 2000 1 85 1 2 2.343 1.327 21.60 83.00 14,475.00

10 0 4000 −1 45 −1 1 1.976 9.044 13.20 66.00 17,982.00
11 0 4000 −1 45 0 1.5 2.044 9.722 11.80 53.00 18,360.00
12 0 4000 −1 45 1 2 1.920 8.876 10.10 51.00 17,418.00
13 0 4000 0 65 −1 1 1.944 5.313 7.40 34.00 19,980.00
14 0 4000 0 65 0 1.5 1.849 5.048 9.90 53.00 19,008.00
15 0 4000 0 65 1 2 1.957 5.682 7.70 40.00 19,902.00
16 0 4000 1 85 −1 1 1.993 2.891 13.00 60.00 22,098.00
17 0 4000 1 85 0 1.5 2.020 3.272 11.30 51.00 22,182.00
18 0 4000 1 85 1 2 2.111 2.796 11.80 58.00 23,574.00
19 1 6000 −1 45 −1 1 1.952 11.539 10.60 52.00 24,111.00
20 1 6000 −1 45 0 1.5 2.001 12.662 11.70 52.00 23,886.00
21 1 6000 −1 45 1 2 1.988 10.444 9.60 45.00 25,830.00
22 1 6000 0 65 −1 1 2.242 8.643 8.90 42.00 32,148.00
23 1 6000 0 65 0 1.5 2.166 9.648 6.40 34.00 29,808.00
24 1 6000 0 65 1 2 2.199 9.360 5.60 34.00 30,681.00
25 1 6000 1 85 −1 1 2.296 7.360 5.50 34.00 34,353.00
26 1 6000 1 85 0 1.5 2.377 8.428 5.70 36.00 34,785.00
27 1 6000 1 85 1 2 2.492 7.360 5.30 31.00 37,881.00

2.3. Modelling and Optimization

The process mathematical model defines relations between input parameters and
process responses. Therefore, it is possible to predict the response for each input parameter
value. In this paper, relationships between process parameters and cut quality responses
were determined by developing a regression based mathematical models. The regression
models were generated using experimental data from Table 5 in software MINITAB 17.
Normally, a second-order polynomial is applied to form mathematical models. The second-
order model for three parameters is given in Equation (3), where Y is cut quality response:
top kerf width; bevel angle; surface roughness Ra, Rz and material removal rate; X1, X2
and X3 are coded values of cutting speed, arc current, and cutting height; and B0, B1, B2
etc. represent the regression coefficients that need to be determined. Once the model is
generated, the coded values of the input process parameters need to be substituted in the
equation to get the predicted response. In order to convert process parameters from real
values in coded values, and vice versa, Equation (4) can be used, where pmax, pmin represent
maximal and minimal real process parameters values, preal real process parameters values,
and pcod coded process parameters values.

Y = B0 + B1X1 + B2X2 + B3X3 + B11X2
1 + B22X2

2 + B33X2
3

+B12X1X2 + B13X1X3 + B23X2X3
(3)

preal =

(
pmax + pmin

2

)
+

(
pmax − pmin

2

)
·pcod → pcod = 2·

(
preal − pmin
pmax − pmin

)
− 1 (4)

Once the regression models of cut quality responses are created they need to be
validated. Validation was conducted in comparison between experimental responses
and those predicted by mathematical functions. As validation measures, mean absolute
percentage error (MAPE) and coefficient of determination (R2) was used. MAPE was
calculated according to Equation (5) and R2 was calculated according to Equation (6),
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where yi is response y value for observation i, y is the mean of response y value, ŷi is
predicted value of response y for observation i, and SSR is sum of squared regression also
known as variation explained by the model, calculated according to Equation (7). SST is
the sum of squared total also known as total variation in the data, calculated according to
Equation (8). MAPE and R2 are widely used in many researches as good measures to check
prediction accuracy of developed mathematical models [31–35].

MAPE =
100%

n

n

∑
i=1

∣∣∣∣yi − ŷi
yi

∣∣∣∣ (5)

R2 =
SSR
SST

(6)

SSR = ∑
i
(ŷi − y)2 (7)

SST = ∑
i
(yi − y)2 (8)

In order to find out process parameters values that lead simultaneously to minimal top
kerf width, minimal bevel angle, minimal surface roughness Ra, Rz and maximal material
removal rate multi-objective optimization of cut quality responses was conducted. Opti-
mization was performed using desirability analysis in MINITAB 17 software. Desirability
analysis is technique introduced by Derringer and Suich [36] that is useful to solve opti-
mization problems in industry especially those with multi-response quality characteristic
situation [36,37]. Desirability analysis technique transforms each predicted response to a
dimensionless value called individual desirability, which varies over the range of 0 to 1. If
the desirability value is 1, then response is on its target, and if it is 0 then the response value
is outside of acceptable range. In the case of multi-response (multi-objective), optimization
composite desirability is calculated. Composite desirability is the weighted geometrical
mean of the individual desirability of each response [37]. Composite desirability function
will be maximized or minimized depending on process responses characteristics that need
to be optimized using optimization algorithm. Composite desirability depends on the
weight and importance of each response that is considered in process optimization. The
weight determines the shape of the desirability function and the way that the desirabil-
ity is distributed in the interval between the lower or upper bound and the target [38].
Weight can be determined in the range from 0.1 to 10 to emphasize or de-emphasize the
importance of hitting the target value. If the weight is 1, then it is a neutral setting that
represents equal importance on the target and on the bounds. If weight > 1, then more
emphasis is on the target, and vice versa, if weight < 1 less emphasis is on the target [38].
The importance determines the relative importance of multiple responses. Importance
values are between 0.1 and 10. If all responses are equally important then default value
of 1 should be selected. Larger values of importance represent more important responses,
smaller values less important responses [39].

3. Results
3.1. Top Kerf Width

The regression model for prediction of top kerf width Wu in coded form is given in
Equation (9):

Wu = 1.9793 − 0.0030 v + 0.0793 I + 0.0407 H + 0.2140 v2 + 0.1003 v·I + 0.0539 I·H (R2 = 0.822) (9)

Prediction accuracy of developed model was checked by comparison between pre-
dicted and experimental top kerf width data. Figure 5 shows that developed regression
model has high accuracy in estimating top kerf width with a calculated MAPE of 2.48%
and R2 of 0.822. In order to check significance of each parameter on top kerf width ANOVA
was conducted. ANOVA results are presented in the Table 6.
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Figure 5. Experimental top kerf width vs. predicted top kerf width.

Table 6. ANOVA for top kerf width.

Source DF SS MS F-Value p-Value (%)

v 2 4.6374 2.31869 25.58 0.000 40.587
I 2 1.8349 0.91745 10.12 0.006 16.059
H 2 0.5124 0.25621 2.83 0.118 4.484
v·I 4 2.6035 0.65088 7.18 0.009 22.786
v·H 4 0.4632 0.11581 1.28 0.355 4.054
I·H 4 0.6490 0.16226 1.79 0.224 5.680

Error 8 0.7250 0.09063 - - 6.345

Total 26 11.4255 - - - -
The standard tabulated value of F-ratio: F0.05,2,8 = 4.46, F0.05,4,8 = 3.84.

Using developed regression model response surfaces and contour plots that show the
effects of process parameters on top kerf width were generated, as shown in Figure 6.

3.2. Bevel Angle

The regression model for prediction of bevel angle α in coded form is given in
Equation (10):

α = 5.847 + 2.529 v − 2.369 I − 0.313 H + 1.115 v2 + 0.807 I2 − 0.803 H2 + 0.415 v·H (R2 = 0.957) (10)

Figure 7 shows that developed regression model has high bevel angle prediction
accuracy with the MAPE of 10.06% and R2 of 0.957. In order to check significance of
each parameter on bevel angle, ANOVA was conducted. ANOVA results are presented in
Table 7.

From the developed mathematical model, response surfaces and contour plots of the
effects of process parameters on the bevel angle were derived. These plots are shown in
Figure 8.
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Table 7. ANOVA for bevel angle.

Source DF SS MS F-Value p-Value (%)

v 2 265.579 132.789 78.66 0.000 42.558
I 2 243.737 121.869 72.19 0.000 39.058
H 2 25.498 12.749 7.55 0.014 4.085
v·I 4 37.913 9.478 5.61 0.019 6.075
v·H 4 32.129 8.032 4.76 0.029 5.148
I·H 4 5.676 1.419 0.84 0.537 0.909

Error 8 13.505 1.688 - - 2.164

Total 26 624.037 - - - -
The standard tabulated value of F-ratio: F0.05,2,8 = 4.46, F0.05,4,8 = 3.84.
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3.3. Surface Roughness Ra

The regression model for prediction of surface roughness Ra in coded form is given in
Equation (11):

Ra = 9.685 − 4.744 v + 0.150 I − 0.400 H + 1.756 v2 + 1.506 I2 − 2.708 v·I (R2 = 0.935) (11)

From Figure 9 it is visible that developed regression model has high prediction ac-
curacy of surface roughness Ra with the MAPE of 8.48% and R2 of 0.935. ANOVA was
performed in order to check significance of process parameters and their interactions on
surface roughness Ra. ANOVA results are shown in Table 8.

Using developed mathematical model response surfaces and contour plots that show
the effects of process parameters on the surface roughness Ra were generated. These plots
are presented in Figure 10.
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Table 8. ANOVA for surface roughness Ra.

Source DF SS MS F-Value p-Value (%)

v 2 240.243 120.121 98.46 0.000 70.122
I 2 13.150 6.575 5.39 0.033 3.838
H 2 3.227 1.613 1.32 0.319 0.941
v·I 4 69.796 17.449 14.30 0.001 20.372
v·H 4 4.606 1.151 0.94 0.486 1.344
I·H 4 1.824 0.456 0.37 0.821 0.532

Error 8 9.760 1.220 - - 2.848

Total 26 342.606 - - - -
The standard tabulated value of F-ratio: F0.05,2,8 = 4.46, F0.05,4,8 = 3.84.
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Figure 10. Effects of process parameters on surface roughness Ra: (a) H = 1.5 mm, (b) I = 65 A, and (c) v = 4000 mm/min.

3.4. Surface Roughness Rz

The regression model for prediction of surface roughness Rz in coded form is given in
Equation (12):

Rz = 46.93 − 16.72 v − 0.39 I − 0.50 H + 4.94 v2 + 7.28 I2 − 7.50 v·I (R2 = 0.854) (12)

From Figure 11 it can be derived that mathematical model for surface roughness Rz
has high prediction accuracy with calculated MAPE of 9.00% and R2 of 0.854. In order
to define contribution of each process parameter or even their interactions ANOVA was
performed. Results of ANOVA are visible in Table 9.

The mathematical model was applied to generate plots which present the effects of
process parameters on surface roughness Rz. Response surfaces and contour effects plots
are shown in Figure 12.
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Table 9. ANOVA for surface roughness Rz.

Source DF SS MS F-Value p-Value (%)

v 2 130.384 65.1919 39.70 0.000 68.634
I 2 11.893 5.9466 3.62 0.076 6.260
H 2 0.892 0.4459 0.27 0.769 0.469
v·I 4 25.128 6.2819 3.83 0.050 13.227
v·H 4 7.222 1.8055 1.10 0.419 3.801
I·H 4 1.314 0.3285 0.20 0.931 0.691

Error 8 13.137 1.6421 - - 6.915

Total 26 189.969 - - - -
The standard tabulated value of F-ratio: F0.05,2,8 = 4.46, F0.05,4,8 = 3.84.
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3.5. Material Removal Rate

The regression model for prediction of material removal rate MRR in coded form is
given in Equation (13):

MRR = 20,056 + 9012 v + 3144 I + 436 H + 1318 v2 + 1991 v·I (R2 = 0.987) (13)

Figure 13 confirms high prediction accuracy of developed regression model for ma-
terial removal rate with calculated MAPE of 3.45% and R2 of 0.987. In order to define
significance of process parameters and their interactions, ANOVA was carried out. Results
of ANOVA are presented in Table 10.

Generated model was used to analyze the effects of process parameters on the material
removal rate. In order to do that, response surfaces and contour plots were created, as
shown in Figure 14.
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Figure 13. Experimental material removal rate vs. predicted material removal rate.

Table 10. ANOVA for material removal rate.

Source DF SS MS F-Value p-Value (%)

v 2 271.674 135.837 1416.68 0.000 89.520
I 2 27.436 13.718 143.07 0.000 9.040
H 2 0.720 0.360 3.76 0.071 0.237
v·I 4 1.712 0.428 4.46 0.034 0.564
v·H 4 0.896 0.224 2.34 0.143 0.295
I·H 4 0.270 0.068 0.70 0.611 0.088

Error 8 0.767 0.096 - - 0.252

Total 26 303.477 - - - -
The standard tabulated value of F-ratio: F0.05,2,8 = 4.46, F0.05,4,8 = 3.84.
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Figure 14. Effects of process parameters on material removal rate: (a) H = 1.5 mm, (b) I = 85 A, and (c) v = 2000 mm/min. 
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4. Discussion of Parameters Effects on Process Responses

From the presented results, for all process responses it can be derived that the devel-
oped mathematical models showed high prediction accuracy, and due to that they can
be further applied in analysis of process parameters effects. ANOVA for top kerf width
presents that the most significant parameters on the top kerf width are cutting speed, arc
current, and their interaction. Cutting height as well as interactions cutting speed× cutting
height and arc current × cutting height have an insignificant effect on the top kerf width.
The effects of cutting speed, arc current, and cutting height are shown in Figure 6. Response
surfaces and contour plots from Figure 6 highlight that increase of the arc current results
with the increase of the top kerf width. Regarding the cutting speed effect, Figure 6b)
presents that the lowest (2000 mm/min) and the highest (6000 mm/min) cutting speeds
lead to the wider kerf at the arc current of 85 A. In [6], the results of analysis showed that
higher cutting speeds produce an erratic arc, creating a deviation of the arc from the axis
of the torch producing a larger kerf. In [40], it was established that cutting heat input is
proportional to the arc current and arc voltage multiplication and inversely proportional to
the cutting speed. According to that, higher arc current and lower cutting speed lead to the
higher heat input, resulting in the increase of the top kerf width, as shown in Figure 6b.
Figure 6c shows that increase of the cutting height at the higher arc currents (>65A) and
cutting speed of 4000 mm/min leads to the increase of the top kerf width. The same
conclusions were derived in [6]. A higher value of standoff distance creates a lack of arc
coherence leading to deflection of the arc and producing a larger kerf [6]. According to the
derived conclusions, the lowest values of the top kerf width can be achieved when cutting
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process is defined in the area of cutting speed of 4000 mm/min and lower arc currents
(<65 A).

The ANOVA for bevel angle presents that all three parameters as well as interactions
cutting speed × arc current and cutting speed × cutting height have a significant effect on
the analyzed response. Interaction arc current × cutting height does not have a significant
influence on the bevel angle. Bevel angle determines the difference between top kerf width
and bottom kerf width. The smaller the bevel angle is, the more perpendicular cut is and
the better cut quality is. The response surfaces and contour plots from Figure 8 show that
the increase in the cutting speed and the decrease of the arc current result in the increase of
the bevel angle. In [41], it was also demonstrated that with an increase in cutting speed and
a decrease of the arc current, cutting energy decreases. Accordingly, kerf widths decrease
while the bevel angle increases due to a faster decrease of bottom kerf width than top kerf
width. From Figure 8 it is visible that increase of the cutting height leads to the slightly
smaller bevel angle. As explained in [6], higher cutting height results with the plasma arc
deflection that leads to the wider top and bottom kerf width and minor difference between
them. Finally, this generates a decrease in the bevel angle. In order to get minimal bevel
angle values, plasma jet cutting process should be defined in the area of the lower cutting
speed (<4000 mm/min), higher arc currents (>65 A) and higher cutting heights (>1.5 mm).
Above presented conclusions are confirmed with the Figure 15. Figure 15 presents bevel
angles obtained in the experimental trials at different process parameters values.
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Regarding surface roughness characteristics Ra and Rz ANOVA highlights that cutting
speed and arc current as well as their interaction have significant effect on the process
response. Other parameters and interactions do not affect significantly surface roughness
characteristics Ra and Rz. Cut surface roughness formation in plasma jet cutting process
is mainly induced by molten metal fluctuation, flow perturbation of plasma jet, cutting
torch vibration and motion of anode spots within the groove of cut [40]. Response surfaces
and contour plots from Figure 10 present that increase of the cutting speed results with the
decrease of the surface roughness Ra and Rz. Increase of the cutting speed leads to the more
intensive fluctuation of the molten metal that results with the lower surface roughness
of the cut. Furthermore, at lower cutting speeds motion of anode spots appears and that
results with the higher roughness [40]. The same trends were shown in [6,14,40]. Regarding
arc current effects from Figure 10 it is visible that at low cutting speed (2000 mm/min)
increase of the arc current results with the higher cutting energy and increase of the surface
roughness. Fluctuation of the molten metal from the groove of the cut is less intensive and
that leads to the rougher cut surface [40]. At high cutting speed (6000 mm/min) increase
of the arc current leads to the slightly decrease of the surface roughness. Higher cutting
energy combined with the more intensive fluctuation of the molten metal result with the
lower surface roughness [40]. Figure 16 shows surface roughness obtained at different
process parameters values. According to the above derived assertions in order to achieve
minimal surface roughness Ra and Rz plasma jet cutting process needs to be concentrated
in the area of the higher cutting speeds (>4000 mm/min) and higher arc currents (>65 A).
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ANOVA results for material removal rate present that the most significant parameters
that affect process response are cutting speed, arc current, and their interaction. Cutting
height and interactions cutting speed× cutting height and arc current× cutting height have
an insignificant effect on the material removal rate. Material removal rate is proportional
to top and bottom kerf width, cutting speed, and workpiece thickness (Equation (2)).
Response surfaces and contour plots from Figure 14 show that increase of the arc current
results with the increase of the material removal rate. A high concentration of plasma
energy is transferred to the workpiece at higher arc current and that leads to quick melting
and the vaporization of the metal and higher material removal rate [17]. At higher cutting
speeds the unstable plasma arc is formed [6,40]. That leads to the larger top and bottom
kerf width and accordingly higher material removal rate. From Figure 14 it is visible
that cutting height has negligible effect on the material removal rate response. However,
increase of the cutting height results with the slightly increase of the material removal
rate. As it was already stated in [6], higher cutting height results with the deflection of
the arc due to the lack of arc coherence. That leads to the wider kerf and higher material
removal rate.

5. Multi-Objective Optimization of Cut Quality Responses

In order to find out process parameters values that lead simultaneously to optimal
cut quality responses of minimal top kerf width, minimal bevel angle, minimal surface
roughness Ra, Rz and maximal material removal rate, multi-objective optimization was
conducted. In order to avoid bias in importance estimation of each response multi-objective
optimization was performed using neutral settings of weights and identical importance
value for each output. That means that each process response is the equally important.
Practically, importance of each process response can be defined subjective depending
on current industrial requests for achieving better or worse value of some cut quality
characteristics. According to that, different optimization results will be provided [27].

In Table 11, multi-objective optimization results and respective objectives are listed.
It is presented set of five Pareto-optimal solutions. Pareto-optimal solutions represent
compromise solutions that satisfy different opposed objective functions (min Wu, min α,
min Ra, min Rz, max MRR).

Table 11. Multi-objective optimization results.

Optimized
Response

Optimum Process Parameters Optimum Response Values

Desirabilityv I H Wu α Ra Rz MRR

(mm/min) (A) (mm) (mm) (◦) (µm) (µm) (mm3/min)

min Wu, min α,
min Ra, min Rz,
max MRR

5232.32 80.151 1 2.084 5.751 7.541 39.38 28,985.2 0.717
4515.35 85 1 2.003 4.413 9.936 48.40 25,687.2 0.682
6000.00 80.836 1 2.249 7.216 6.014 33.96 34,017.1 0.675
4395.44 85 1 1.996 4.326 10.31 49.69 25,014.3 0.670
4368.46 85 1 1.989 4.221 10.42 50.02 24,836.2 0.669
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Figure 17 shows desirability contour plot for multi-objective optimization. Optimal
cutting area is the area with the highest composite desirability values. This area is marked
in the contour plot with the darkest green color. This optimal cutting area is also visible in
Figure 18 as white colored zone.
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6. Conclusions

This paper presents the investigation of the machinability of the aluminium alloy
5083 by the plasma jet cutting process. The novelty of this study is in introducing a
hybrid approach of RSM and desirability analysis as a useful instrument to analyze process
responses and to perform simultaneous optimization of multiple cut quality characteristics.
Due to its simplicity and reduced time needed for experimenting this approach is widely
used in many researches and manufacturing industries to effectively set optimal settings
of process parameters. This approach has not been yet presented in the area of analysis
and optimization of plasma jet cutting process responses. Experimental data obtained at
different cutting speed, arc current, and cutting height were used to develop regression
mathematical models to predict cut quality responses: top kerf width, bevel angle, surface
roughness Ra and Rz, and material removal rate. Prediction capabilities of these models
were confirmed by MAPE and R2 values. ANOVA showed that cutting speed, arc current,
and their interactions are significant for all analyzed responses, while for bevel angle
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response cutting height and interaction cutting height × cutting speed also have significant
effect. Desirability analysis was proved as very effective in optimizing simultaneously all
analyzed cut quality responses. As main result of multi-objective optimization Pareto front
of optimal solutions as well as optimal cutting area were defined. Therefore, in industrial
applications operator can set process parameters settings by observing desired values of
cut quality characteristics.

In future research more emphasis will be put on application of artificial intelligence
methods such as ANN and fuzzy logic in modeling relationships between input process
parameters and cut quality responses in plasma jet cutting process of aluminium alloys.
Furthermore, significant attention will be put on utilization of evolutionary metaheuristic
algorithms in multi-response optimization tasks.
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18. Peko, I.; Nedić, B.; Ðord̄ević, A.; Veža, I. Modelling of Kerf Width in Plasma Jet Metal Cutting Process using ANN Approach.
Tech. Gaz. 2018, 25, 401–406.
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