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Abstract: The initial processes of the phase transition dynamics of liquid crystals (LCs) subject to UV
pulse irradiation were clarified using a nanosecond time-resolved imaging technique called pattern-
illumination time-resolved phase microscopy (PI-PM). Two types of LCs were studied: a photo-
responsive LC and dye-doped LCs. We found two steps of molecular disordering processes in the
phase transition, namely local disordering proceeding anisotropically, followed by the spreading
of the isotropic phase. These two processes were separated for a photo-responsive LC while being
simultaneously observed for the dye-doped LCs. It was found that the photomechanical dyes induced
the phase transition process faster than the photothermal dyes.

Keywords: liquid crystals; time-resolved imaging; phase transition; dye-doped liquid crystals

1. Introduction

In LCs, there is long-range ordering of the molecules, orienting all the molecules
approximately in the same direction, called the director, while the molecules can flow as in
a standard liquid. This anisotropic structure provides varieties of unique thermal, optical,
electric, and mechanical properties. Liquid crystals (LCs) have been used for display
purposes in industry, and the LC state can be found in living matter [1]. A phase transition,
transforming the LC into the isotropic phase, can be induced by increasing the temperature.
However, the application of an electric or magnetic field can be used to reorient the director.
The onset of this process is characterized by the Freedericksz threshold. On the other hand,
it was first reported by Haas et al. that the phase could be controlled in photo-responsive
LCs by light irradiation [2]. This research was extended for the control of the phase and
alignment by adding a small amount of photo-responsive guest molecules. Ichimura et al.
demonstrated the control of LC alignment by the structural change of the azobenzene
moiety attached to the substrate [3]. Ikeda et al. proposed the phase control of the LCs at a
lower temperature than the phase transition temperature [4–7].

The interaction between the guest molecules and the host LCs has attracted much
attention; the photomechanical motion of molecules could move the macroscopic struc-
ture pioneered by Ikeda and Yu [8]. Motion caused by the photomechanical force was
demonstrated for wavy motion [9], flow was controlled by a photomechanical tube [10],
and molecular manipulation by the control of order parameter via polymerization [11,12].
In addition, a huge enhancement of the optical nonlinearity was found and its mechanism
and applications were extensively studied [13–27].

From the mechanistic viewpoint on the phase transition, the molecular dynamics
during the process must be clarified, and time-resolved measurements must be used
for the LC dynamics. Khoo et al. have led the field of study by using grating-type
photoexcitation and clarifying the temperature and flow-induced orientation [28], and
the phase transition dynamics were studied using similar experiments [29–31]. However,
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the photo-induced orientation change or the phase transition is highly dependent on the
light irradiation conditions for the dye-doped LCs, and was observed with time-resolved
imaging [32]. It was difficult to precisely control the optically induced change due to
the inhomogeneity of the focused light irradiation due to the random orientation which,
in turn, was used for the light source of microscopy [33]. We developed a heterodyne
transient grating technique, where the irradiation light was homogeneous in a broad region
and could provide a reproducible response, and the multiple processes depending on the
light intensity were clarified [34]. The phase transition and photo-induced orientation
change were distinguished and the anisotropic phase transition/recovery was clarified
by the observation of the extraordinary and ordinary refractive index change [35], and
also revealed that the front surface of phase transition moved at ~100 m/s [36]. In recent
years, we have studied the origin of the optical nonlinearity from the dynamics of the
LCs by using time-resolved methods and found that the enhancement occurred on the
millisecond time scale [37]. Furthermore, a new time-resolved imaging technique was
developed, and the origin was clarified by visualizing the images of the optically induced
flow of the LCs [38].

In this study, a time-resolved imaging technique called the PI-PM method [39], with
a time resolution of a few nanoseconds, was applied for the study of the phase transi-
tion dynamics of the photochemical phase transition of LCs. This method could directly
visualize the phase transition process. We clarified the initial dynamics of the collective
behavior of the LC molecules leading to the phase transition and found that the phase
transition proceeded via single or multiple steps, and the process depended on the director
direction. We could successfully explain the processes by a model function representing
the autocatalytic reaction.

2. Theory and Method

The principle of the PI-PM method was described in previous papers and is shown
in Figure S1 in Supporting Information (SI) [38,39]. In brief, an arbitrary pump light
pattern is irradiated to a sample, causing photoisomerization and the following molecular
rotation and disordering for the LCs. Because these processes induce a refractive index
change, a refractive-index pattern was formed as the same pattern of the pump beam. The
refractive index was imaged by the self-imaging technique [40], and a temporal change in
the refractive index images was recorded.

In the case of LCs, the physical origin of the photo-induced refractive index change is
typically divided into three components:

∆n(t) = ∆nT(t) + ∆nS(t) (1)

where the terms on the right side correspond to the index changes due to temperature
increase and order parameter. In previous studies of the photo-induced dynamics of LCs,
the ∆nT(t) term was caused by the density change due to the disordering [41], while
the ∆nS(t) term was the ordering change of the LCs. The main origin of the disordering
dynamics of the LC is the ∆nS(t) term, whose sign is dependent on whether the polarization
of the probe light is perpendicular or parallel to the LC director axis, while the sign of the
∆nT(t) term is not dependent on the polarization of the probe light [34].

Since the orientational change of molecular assembly propagates in a collective manner
owing to the long-range molecular interaction, the photo-induced disordered region acts
as a catalyst for the following disordering in the phase transition. This process is similar to
the autocatalytic reaction in chemistry, where the reactant itself works as a catalyst [42,43].
A time response for the autocatalytic reaction can be described by a sigmoidal curve and
can be fitted with a logistic function [44–46]. Assuming that the change in the refractive
index is proportional to the disordered area of the phase transition region, the temporal
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change in the refractive index can be fitted with a logistic function [47]. The area of the
disordered region, y, is represented as [48]

y(t) =
ymax − ymin

1 + e−kt + ymin (2)

where k, ymin, and ymax are the rate constant, the phase transition region at time 0, and the
saturated phase transition region, respectively. In the analysis, instead of using Equation
(2), we used Equation (3) because our experimental data were extended into a logarithmic
time scale.

y =
ymax − ymin

1 + e−A(log t−log thalf)
+ ymin (3)

where log thalf corresponds to the time when the signal intensity becomes equal to half
of ymax − ymin. In this analysis, A is an adjusting parameter for the fit, and the physical
meaning of the phase transition time is included in log thalf.

We used 4-methoxybenzylidene-4-n-butylaniline (MBBA) as photo-responsive ne-
matic LCs (Figure 1a). MBBA has a C-N double bond, which causes trans–cis photoi-
somerization by UV irradiation. The formation of cis isomers scatters the alignment of
molecules, causing disordering. Concerning the study of phase transition dynamics for the
dye-doped LC, 4-cyano-4-pentylbiphenyl (5CB) was used as a host nematic LC (Figure 1b).
The photo-responsive guest molecules used were 4-hydroxyazobenzene (PPAP), 4-butyl-4′-
hydroxyazobenzene (BHAB), 2-nitrophenol (o-NP), and 4-nitrophenol (p-NP) (Figure 1c–f).
With regard to the azo-doped LCs (photomechanical system), not only was there a pho-
tothermal effect, but the photomechanical effect owing to the trans–cis photoisomerization
of guest molecules played a role in the host LCs disordering. On the other hand, o-NP and
p-NP induced only photothermal effects, leading to disordering (photothermal system).
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Figure 1. The molecular structures of the LCs and photo-responsive guest molecules are shown:
(a) 4-methoxybenzylidene-4-n-butylaniline (MBBA), (b) 4-cyano-4-pentylbiphenyl (5CB), (c) 4-
hydroxyazobenzene (PPAP), (d) 4-butyl-4′-hydroxyazobenzene (BHAB), (e) 2-nitrophenol (o-NP),
and (f) 4-nitrophenol (p-NP).

The optical configuration of the PI-PM is shown in Figure S1. A stripe pattern of UV
light with the grating spacing of 60 µm was irradiated as a pump light, and by matching
the probe polarization and the LC director, the images of the change in the extraordinary
refractive index (∆ne(t)) were obtained. Those in the ordinary refractive index (∆no(t))
were measured by setting them perpendicularly. The pump polarization was set parallel to
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the LC director. The irradiation intensity of the pump light was changed in the range of
2.67–6.58 mJ/pulse, and the probe light intensity was 0.02 mJ/pulse.

MBBA, 5CB, PPAP, BHAB, p-NP (Tokyo Kasei, Tokyo, Japan), and o-NP (FUJIFILM
Wako Pure Chemical, Osaka, Japan) were used as purchased without further purification.
The concentrations of the guest dyes were adjusted so that the absorbance was 0.1~0.2
at the pump wavelength for the polarization parallel to the LC director to ensure light
absorption throughout the depth direction. The sample was put into an LC cell (E.H.C,
Tokyo, Japan) with a sample thickness of ~3 µm, an ITO layer, and a rubbed polyimide film
for a planar alignment inside. The LC cell was covered by an aluminum frame, and the
temperature was controlled by a heater controller (TC200, Thorlabs, USA). The temperature
was set at 30.0–31.0 ◦C. The phase transition temperature of 5CB from the nematic to the
isotropic state was 35.1 ◦C. The ITO and polyimide layer in the cell had a minor absorption
at the pump wavelength, but the effect was negligible compared with the absorption of
MBBA and dyes, which was confirmed because no refractive index change was observed
for pure 5CB under the same experimental condition [49].

3. Results
3.1. Photo-Responsive LC

Figure 2 shows the image sequences of the ∆ne(t) and ∆no(t) responses for MBBA
at a pump intensity of 4.22 mJ/cm2. In both of the image sequences, the contrast of the
stripe pattern of the refractive index change was observed. The contrast became larger
and took maxima around 10−6 s, and disappeared with a decay of about 10−4 s. The white
region in Figure 2a corresponds to a decrease of the refractive index, while the black
region in Figure 2b indicates an increase. The opposite sign of the refractive index change
was reasonable, considering the sign of the refractive index change was due to the order
parameter variation.
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Figure 2. The image sequences of MBBA recorded by the PI-PM method are shown: (a) ∆ne(t) and
(b) ∆no(t) images were captured when the probe polarization was parallel or perpendicular to the
director axis, respectively. The pump intensity was 4.22 mJ/pulse.

We recorded ∆ne(t) and ∆no(t) images on the different pump light intensities. To
assign the components in the responses, the stripe amplitude was obtained by applying a
Fourier transform in the x-direction of the refractive index images. The temporal changes
of the amplitude are shown in Figure 3 and correspond to the temporal changes of the
refractive index change [50]. Insets in Figure 3 show the responses until a millisecond for
the pump intensity of 4.22 mJ/pulse.
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Figure 3. The temporal changes of the stripe amplitudes of the refractive index images for different
intensities of the pump light: (a) ∆ne(t) (b) ∆no(t) responses. The pump light intensities were 2.67,
3.14, 4.22, 4.84, and 6.58 mJ/pulse. The insets show temporal changes until a millisecond at a pump
intensity of 4.22 mJ/cm2. The time axis is shown in a logarithmic timescale.

From the overall responses shown in the insets of Figure 3, the signal intensity for
each probe polarization increased until several microseconds, followed by a decay until
a millisecond. The rising component corresponds to the disordering and the subsequent
decay component corresponds to the ordering processes, with the result agreeing well with
the previous results [35,36]. At any pump intensity, ∆ne(t) responses started to increase
within the time resolution (3 ns). On the other hand, ∆no(t) responses started to rise after
~10 ns. Furthermore, we found that the responses for each probe polarization consisted of
two rising components: the first component on the order of 10−8 s, followed by the second
component on the order of 10−6 s.

With regard to the phase transition of LCs, a partial phase transition was proposed
in previous research [51]. We also posited a similar proposal: a local phase transition was
induced nearby the photo-excited molecules, followed by a phase transition in an entire re-
gion. Based on the above results and previous research, we suppose that the two-step phase
transition process occurred: a local phase transition process corresponding to anisotropic
disordering in the LC orientational direction (~10−8 s), and the subsequent phase transition
process induced by an isotropic expansion of the disordered region (~10−6 s). In the first
disordering process, the phase transition was induced in the director direction, followed by
that in the perpendicular direction. These findings and results of this study indicate that
the molecular interaction in the director direction was first lost, and then the disordering
followed in the other directions.

Since each step of the phase transition process is regarded as one of the auto-catalytic
reactions, we extended a logistic function model of Equation (3) to a function for a two-step
auto-catalytic reaction. The model function is shown as

y =

(
y1 − y0

1 + e−A1(log t−log thalf,1)

)
+

(
y2

1 + e−A2(log t−log thalf, 2)

)
+ y0 (4)

where y1, y2, and y0 are the areas of the disordering regions caused by each disordering
process, log thalf, 1 and log thalf, 2 are the log half-times for each disordering process, and
A1 and A2 are the adjusting parameters. Figure 4 shows examples of the fitting curves
for the responses with Equation (4). We used the data points until the signal response
was saturated, and several extra data points were added so that the fitting result was not
affected by the noise fluctuation. Reasonable fitting curves of ∆ne(t) and ∆no(t) responses
were obtained. In both cases, the coefficients of determination R2 > 0.98.



Materials 2021, 14, 5491 6 of 13

Materials 2021, 14, x FOR PEER REVIEW 6 of 14 
 

 

saturated, and several extra data points were added so that the fitting result was not af-

fected by the noise fluctuation. Reasonable fitting curves of ∆𝑛e(𝑡) and ∆𝑛o(𝑡) responses 

were obtained. In both cases, the coefficients of determination 𝑅2 > 0.98. 

 

Figure 4. The examples of the fitting curves for (a) ∆𝑛e(𝑡) and (b) ∆𝑛o(𝑡) responses by a model 

function of Equation (4): the response curves for the pump intensity 4.22 mJ/pulse are shown. The 

fitting parameters were (a) 𝑦0 = 3.81 × 103, 𝑦1 = 3.02 × 104, 𝑦2 = 2.66 × 104, log 𝑡half,1 = −8.15, 

log 𝑡half,2 = −6.88 and (b) 𝑦0 = 6.32 × 102 , 𝑦1 = 5.62 × 103 , 𝑦2 = 9.90 × 103 , log 𝑡half,1 = −7.92, 

log 𝑡half,2 = −6.78. 

To understand the probe polarization and pump intensity dependences, the re-

sponses were fitted with the model function. Figure 5 shows the fitting parameters’ de-

pendences on the polarization and pump intensity, where 𝑦1 and 𝑦2 were normalized 

by the values at the pump intensity 6.58 mJ/cm2 (𝑦1,max and 𝑦2,max) to confirm the depend-

ence on the polarization. Figure 5a,b demonstrate that y1 and y2 depended on the pump 

intensity, except for the first component of ∆𝑛o. Since they represent the area of the dis-

ordered region when each process has finished, the result means that the area of the dis-

ordered region increased anisotropically as the pump intensity increased in the first pro-

cess, while it increased isotropically in the second process. Figure 5c demonstrates that 

the log half-times did not depend on pump intensity for the first process, while the second 

process became slower as the pump intensity increased. This result indicates that the ini-

tial processes proceeded around the same time for different pump intensities. On the other 

hand, the second phase transition took more time until the end of the disordering process 

because the region of the phase transition expanded in a larger area as pump intensity 

increased. The adjusting parameters remained to be similar values for different pump in-

tensities (Figure S2). 

Figure 4. The examples of the fitting curves for (a) ∆ne(t) and (b) ∆no(t) responses by a model
function of Equation (4): the response curves for the pump intensity 4.22 mJ/pulse are shown. The
fitting parameters were (a) y0 = 3.81× 103, y1 = 3.02× 104, y2 = 2.66× 104, log thalf,1 = −8.15,
log thalf,2 = −6.88 and (b) y0 = 6.32× 102, y1 = 5.62× 103, y2 = 9.90× 103, log thalf,1 = −7.92,
log thalf,2 = −6.78.

To understand the probe polarization and pump intensity dependences, the responses
were fitted with the model function. Figure 5 shows the fitting parameters’ dependences
on the polarization and pump intensity, where y1 and y2 were normalized by the values
at the pump intensity 6.58 mJ/cm2 (y1, max and y2, max) to confirm the dependence on the
polarization. Figure 5a,b demonstrate that y1 and y2 depended on the pump intensity,
except for the first component of ∆no. Since they represent the area of the disordered
region when each process has finished, the result means that the area of the disordered
region increased anisotropically as the pump intensity increased in the first process, while it
increased isotropically in the second process. Figure 5c demonstrates that the log half-times
did not depend on pump intensity for the first process, while the second process became
slower as the pump intensity increased. This result indicates that the initial processes
proceeded around the same time for different pump intensities. On the other hand, the
second phase transition took more time until the end of the disordering process because
the region of the phase transition expanded in a larger area as pump intensity increased.
The adjusting parameters remained to be similar values for different pump intensities
(Figure S2).

Figure 6 shows a model drawing of the phase transition dynamics based on the above
results. There are two types of phase transition processes: local disordering occurred first,
followed by the second phase transition. In the local disordering process, the disordering
extended into the director axis as the pump intensity increased, while the disordering
in the perpendicular direction to the director remained the same. The second process
corresponds to the expansion of the isotropic region; the area and time for the phase
transition increased as the pump intensity increased because it took time for the larger area
of the phase transition and because the region expansion speed does not depend on the
pump intensity [36].
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each disordering process.
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3.2. Dye-Doped LC

In this section, the phase transition dynamics for the dye-doped LCs are shown.
Figure 7 shows the image sequences of the ∆ne(t) and ∆no(t) responses for 5CB doped
with different dyes at a pump intensity of 2.67 mJ/cm2. Similar to the results for MBBA
in Figure 3, the contrast became larger until ~1 µs, followed by a gradual decay (~100 µs).
The image sequence and the corresponding time response of the refractive index change
for the BHAB-doped 5CB for the longer time region is shown in Figure S3 in SI. For all
the dye molecules, the sign of the responses between the ∆ne(t) and ∆no(t) was opposite,
reflecting that the refractive index change due to 5CB was observed.
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Figure 7. The image sequences corresponding to ∆ne(t) and ∆no(t) of each sample recorded by the
PI-PM method are shown. The pump intensity was 2.67 mJ/pulse. The samples were 5CB doped
with (a) PPAP, (b) BHAB, (c) o−NP, and (d) p−NP. The examples of overall image sequences are
shown in Figure S3a.

Figure 8 shows the temporal responses of the amplitudes for the refractive index
images for each sample. ∆ne(t) responses showed a rise first, followed by the rise of ∆no(t)
responses for all the samples. This result is similar to the result of the MBBA as shown in
Figure 3. The responses for each probe polarization showed a single rising component until
~1 µs, while the response for MBBA showed a two-step rise (Figure 3). This result indicates
that the local disordering and the expansion of the phase transition were not separated,
and both processes were mixed in the case of the dye-doped LCs. Similar to the MBBA
case, the phase transition was induced first in the director direction, followed by that in the
perpendicular direction.



Materials 2021, 14, 5491 9 of 13Materials 2021, 14, x FOR PEER REVIEW 10 of 14 
 

 

 

Figure 8. The temporal changes of the amplitudes of the stripe contrast in the refractive index im-

ages for each sample: (a) ∆𝑛e(𝑡)response; (b) ∆𝑛o(𝑡) response. The time axis is shown in a logarith-

mic time scale. The pump intensity was 2.67 mJ/pulse. The samples were 5CB doped with PPAP, 

BHAB, o−NP, and p−NP. The examples of overall responses are shown in Figure S3b. 

Thus, we assumed that an overall phase transition process corresponded to a single 

auto-catalytic reaction and fitted the responses with a single logistic model function 

(Equation (3)). Figure 9 shows examples of the fitting curves for the responses. The rea-

sonable fitting curves of the ∆𝑛e(𝑡) and ∆𝑛o(𝑡) responses were obtained with 𝑅2 > 0.94. 

 

Figure 9. The examples of the fitting curves for the (a) ∆𝑛e(𝑡) and (b) ∆𝑛o(𝑡) responses by a model 

function of Equation (3). The data correspond to the responses for 5CB doped with BHAB. The 

pump intensity was 2.67 mJ/pulse. The fitting parameters were (a) 𝑦𝑚𝑎𝑥 = 2.09 × 104 , 𝑦𝑚𝑖𝑛 =

1.38 × 103, log 𝑡half = −7.71, (b) 𝑦𝑚𝑎𝑥 = 4.23 × 103, 𝑦𝑚𝑖𝑛 = 7.62 × 102, log 𝑡half = −7.46. 

Figure 10 shows the fitting parameters’ dependences on the polarization and pump 

intensity, where ymax were normalized by the values at the pump intensity, 6.21 mJ/cm2 

(ymax,max_int). From Figure 10a,b, these parameters depended on the pump intensity, indi-

cating that the area of the disordered region increased isotropically as pump intensity in-

creased. Figure 10c,d show that the log half-time for the photomechanical dyes was faster 

than that for the photothermal dyes in any pump intensity, meaning that the photome-

chanical molecules induced faster disordering of LC than the photothermal molecules (the 

information of the adjusting parameters is included in the supporting information (Figure 

S4)). 

Figure 8. The temporal changes of the amplitudes of the stripe contrast in the refractive index images
for each sample: (a) ∆ne(t) response; (b) ∆no(t) response. The time axis is shown in a logarithmic
time scale. The pump intensity was 2.67 mJ/pulse. The samples were 5CB doped with PPAP, BHAB,
o−NP, and p−NP. The examples of overall responses are shown in Figure S3b.

Thus, we assumed that an overall phase transition process corresponded to a sin-
gle auto-catalytic reaction and fitted the responses with a single logistic model function
(Equation (3)). Figure 9 shows examples of the fitting curves for the responses. The reason-
able fitting curves of the ∆ne(t) and ∆no(t) responses were obtained with R2 > 0.94.
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Figure 9. The examples of the fitting curves for the (a) ∆ne(t) and (b) ∆no(t) responses by a model
function of Equation (3). The data correspond to the responses for 5CB doped with BHAB. The pump
intensity was 2.67 mJ/pulse. The fitting parameters were (a) ymax = 2.09× 104, ymin = 1.38× 103,
log thalf = −7.71, (b) ymax = 4.23× 103, ymin = 7.62× 102, log thalf = −7.46.

Figure 10 shows the fitting parameters’ dependences on the polarization and pump
intensity, where ymax were normalized by the values at the pump intensity, 6.21 mJ/cm2

(ymax, max_int). From Figure 10a,b, these parameters depended on the pump intensity, in-
dicating that the area of the disordered region increased isotropically as pump intensity
increased. Figure 10c,d show that the log half-time for the photomechanical dyes was
faster than that for the photothermal dyes in any pump intensity, meaning that the pho-
tomechanical molecules induced faster disordering of LC than the photothermal molecules
(the information of the adjusting parameters is included in the supporting information
(Figure S4)).
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Figure 10. The parameter dependences on the probe polarization and the pump intensity: (a,b) the
area parameters of the disordered region when the disordering processes finished, whose parameter
values were divided by a pump intensity of 6.21 mJ/cm2; (c,d) the log half-time for the disordering
process. The pump light intensities were 2.67, 3.93, 5.16, and 6.21 mJ/pulse.

We proposed a model of the phase transition dynamics for the dye-doped LC based
on the above results (Figure 11). The phase transition occurred anisotropically and was
the same process as that observed for MBBA (top row in Figure 6); however, the local
disordering and the following expansion of the isotropic phase were not separated in this
case, although these two processes were separated for MBBA (Figure 6). Since the guest
molecules in the photomechanical system induced not only the photothermal, but also the
photochemical effect in the phase transition owing to photoisomerization, the origin of the
faster phase transition in the photomechanical system is assumed due to the change in the
molecular structure of the guest molecules by the pump light irradiation.



Materials 2021, 14, 5491 11 of 13Materials 2021, 14, x FOR PEER REVIEW 12 of 14 
 

 

 

Figure 11. The schematic model illustration of the phase transition for the dye-doped LCs is sum-

marized. 

4. Conclusions 

We studied the initial processes of the phase transition dynamics of photo-responsive 

and dye-doped LCs by PI-PM, where the image sequences of the refractive index change 

were observed with a high time resolution. Two steps of molecular disordering processes 

leading to the phase transition were observed: local disordering extending anisotropi-

cally, followed by the expansion of the isotropic phase. These two processes were sepa-

rated for a photo-responsive LC; the first step until 10−8 s and the second one until 10−6 s. 

They proceeded at the same time and were observed until 10−6 s for the dye-doped LCs. 

The processes were explained by the model function representing the autocatalytic reac-

tion. It was clarified that the photomechanical dyes could induce the phase transition pro-

cess faster than photothermal ones due to the photoisomerization. These insights into un-

derstanding the processes will help in improving the phase control of LCs and LC devices. 

Supplementary Materials: The following are available online at www.mdpi.com/xxx/s1, Figure S1: 

Experimental setup, Figure S2: Adjusting parameters for MBBA, Figure S3: Overall image sequences 

and ∆𝑛e(𝑡) and ∆𝑛o(𝑡) responses of 5CB doped with BHAB, Figure S4: Adjusting parameters in 

the response fitting for dye-doped LCs. 

Author Contributions: N.S. and K.K. worked on the experiments and analyses and wrote the whole 

paper. Both authors have read and agreed to the published version of the manuscript. 

Funding: This research was funded by the Institute of Science and Engineering, Chuo University. 

Institutional Review Board Statement: Not applicable.  

Informed Consent Statement: Not applicable.  

Data Availability Statement: All the data are available on request. 

Conflicts of Interest: The authors declare no conflicts of interest. 

References 

1. Mitov, M. Cholesteric liquid crystals in living matter. Soft Matter 2017, 13, 4176–4209, https://doi.org/10.1039/C7SM00384F. 

2. Haas, W.E.; Nelson, K.F.; Adams, J.E.; Dir, G.A.U.V. Imaging with Nematic Chlorostilbenes. J. Electrochem. Soc. 1974, 121, 1667. 

Figure 11. The schematic model illustration of the phase transition for the dye-doped LCs is summarized.

4. Conclusions

We studied the initial processes of the phase transition dynamics of photo-responsive
and dye-doped LCs by PI-PM, where the image sequences of the refractive index change
were observed with a high time resolution. Two steps of molecular disordering processes
leading to the phase transition were observed: local disordering extending anisotropically,
followed by the expansion of the isotropic phase. These two processes were separated for
a photo-responsive LC; the first step until 10−8 s and the second one until 10−6 s. They
proceeded at the same time and were observed until 10−6 s for the dye-doped LCs. The
processes were explained by the model function representing the autocatalytic reaction. It
was clarified that the photomechanical dyes could induce the phase transition process faster
than photothermal ones due to the photoisomerization. These insights into understanding
the processes will help in improving the phase control of LCs and LC devices.
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32. Jagodič, U.; Ryzhkova, A.V.; Muševič, I. Localised Opto-Thermal Response of Nematic Liquid Crystal to Laser Light. Liq. Cryst.
2019, 46, 1117–1126. [CrossRef]
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