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Abstract: Multiple-mesa-fin-channel array patterned by a laser interference photolithography sys-
tem and gallium oxide (Ga2O3) gate oxide layer deposited by a vapor cooling condensation sys-
tem were employed in double-channel Al0.83In0.17N/GaN/Al0.18Ga0.82N/GaN heterostructured-
metal-oxide-semiconductors (MOSHEMTs). The double-channel was constructed by the polarized
Al0.18Ga0.82N/GaN channel 1 and band discontinued lattice-matched Al0.83In0.17N/GaN channel 2.
Because of the superior gate control capability, the generally induced double-hump transconductance
characteristics of double-channel MOSHEMTs were not obtained in the devices. The superior gate
control capability was contributed by the side-wall electrical field modulation in the fin-channel.
Owing to the high-insulating Ga2O3 gate oxide layer and the high-quality interface between the
Ga2O3 and GaN layers, low noise power density of 8.7 × 10−14 Hz−1 and low Hooge’s coefficient of
6.25 × 10−6 of flicker noise were obtained. Furthermore, the devices had a unit gain cutoff frequency
of 6.5 GHz and a maximal oscillation frequency of 12.6 GHz.

Keywords: double-channel metal oxide semiconductor high-electron mobility transistors; Ga2O3

gate oxide layer; flicker noise; multiple-mesa-fin-channel array; vapor cooling condensation system

1. Introduction

In the past few decades, despite the fact that impressive gallium nitride (GaN)-
based depletion- and enhancement-mode single-channel metal-oxide-semiconductor high-
electron mobility transistors (MOSHEMTs) are successfully manufactured and widely
utilized in various practical systems [1–4], compelling devices with enhanced performance
are still in urgent demand. To enhance performances of GaN-based MOSHEMTs, it is
required to increase the electron mobility and sheet electron density of two-dimensional
electron gas (2-DEG) channel induced by the polarized AlGaN/GaN heterostructured
interface. In general, high Al content in AlGaN barrier layer was explored to increase sheet
electron density. However, in addition to the degradation of the associated electron mobil-
ity, the epitaxial growth technique of AlGaN layer with high Al content was an extremely
difficult challenge [5,6]. Consequently, vertically laminated multiple 2-DEG channels were
recently employed [7,8]. However, multiple-hump transconductance (gm) characteristics
exhibited in the transconductance–gate–source voltage (gm–VGS) curves due to the effective
gate modulation of the multiple channels [7–10]. Recently, using the structure of multiple-
mesa-fin-channel array, the associated enhanced performance of GaN-based MOSHEMTs
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was demonstrated owing to their superior gate control and heat dissipation [11–13]. In
this work, to extend the linear transconductance in a wider gate-source voltage range, the
multiple-mesa-fin-channel array was used in lattice-matched AlInN/GaN/AlGaN/GaN
heterostructured-double-channel MOSHEMTs. Furthermore, because of the inherently
advantageous properties of gallium oxide (Ga2O3) [14,15], and the low density of interface
states between Ga2O3 film and GaN-based semiconductors [16], in this work, a vapor
cooling condensation system was employed to deposit it at approximately 80 K as gate
oxide layer of MOSHEMTs. In this work, the combination structures of a 30-nm-thick
Ga2O3 gate oxide layer, lattice-matched double channel, and multiple-mesa-fin channel
array were simultaneously used for fabricating AlInN/GaN/AlGaN/GaN MOSHEMTs.
The associated performances were also measured and analyzed.

2. Materials and Growth Methods

The double channel epitaxial layers for fabricating AlInN/GaN/AlGaN/GaN MOSHEMTs
were grown on a silicon (Si) substrate by metal-organic chemical vapor deposition (MOCVD,
AIXTRON Group, Herzogenrath, Germany). Trimethylgallium (TMG), triethylgallium
(TEG), trimethylaluminum (TMA), trimethylindium (TMI), and ammonia (NH3) were the
precursors. Hydrogen and nitrogen were used as the carrier gases. The designed epitaxial
layers, illustrated in Figure 1a, consisted of an AlN nucleation layer (250 nm), a step-graded
AlGaN buffer layer (1.1 µm), an undoped GaN buffer layer (1.9 µm), a GaN channel 1 layer
(100 nm), an AlN spacer layer (1 nm), an Al0.18Ga0.82N barrier 1 layer (25 nm), a GaN
channel 2 layer (10 nm), an AlN spacer layer (1 nm), an Al0.83In0.17N barrier 2 layer (8 nm),
and a GaN cap layer (2 nm). The AlN and AlGaN layers were grown at 1040–1100 ◦C
in hydrogen ambient using TMG, while the Al0.83In0.17N layer was grown at 765 ◦C in
nitrogen ambient using TEG in order to incorporate enough indium to the layer so as to
achieve the same lattice constant as GaN’s. From the high-resolution transmission electron
microscopy (HRTEM) image (JEOL Ltd., Tokyo, Japan) depicted in Figure 1b, the growth
thicknesses of the epitaxial layers were similar with the designed thicknesses. Furthermore,
as observed in Figure 1b, the channel region shows good matching with low dislocation
density. Using a 1-dimensional (1D) Schrödinger-Poisson solver, the simulated band dia-
gram and electron concentration distribution of the epitaxial layers are depicted in Figure 2.
The simulation showed that double 2-DEG channels were constructed by the induced
polarization in Al0.18Ga0.82N/GaN interface (channel 1) and the band discontinuity in
lattice-matched Al0.83In0.17N/GaN interface (channel 2). Electron mobility of 1770 cm2/V-s
and sheet electron density of 1.11 × 1013 cm−2 in the double channels were obtained using
Hall measurement (Ecopia Corp., Anyang, South Korea)at room temperature.
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Figure 1. (a) Schematic structure and (b) high-resolution transmission electron microscopy image of 
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Figure 2. Simulated band diagram and electron concentration distribution in epitaxial layers. 
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Figure 2. Simulated band diagram and electron concentration distribution in epitaxial layers. 
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3. Device Fabrication

Figure 3 illustrates the 3-dimensional schematic configuration of the studied devices.
Prior to patterning strip channel array as multiple-mesa-fin-channels using a He-Cd laser
interference photolithography system, the fabrication processes of the devices started with
a spread of photoresist AZ6112 on the sample. By adjusting the incident angle of the
two-intersected He–Cd laser beams, 500-nm-wide strip channel arrays were patterned.
Using a developer to remove the He–Cd laser illuminated photoresist, the patterned pho-
toresist strip channel array was obtained. After depositing laminated metals of Ni/Au
(20/100 nm) with an electron-beam evaporator, the Ni/Au metal mask was formed by
lifting off the remaining Ni–Au metals above the photoresist strip channels. To fabricate the
multiple-mesa channel, the unmasked region of the sample was etched down to the GaN
buffer layer using a photoelectrochemical (PEC) etching method. The etching process and
technology of the PEC etching method were demonstrated and reported previously [17].
Under a patterned Ni metal mask (500 nm), the mesa isolation region with an area of
310 µm × 320 µm was formed by etching down to the Si substrate using BCl3 etchant in a
reactive-ion etching system. To completely remove the undesired native oxide residing on
the surface of GaN cap layer, the sample was then surface-treated using an (NH4)2Sx chem-
ical solution at 60 ◦C for 30 min. The (NH4)2Sx surface-treatment method was previously
demonstrated and reported [18]. The source electrode and drain electrode of Ti/Al/Pt/Au
(25/100/50/300 nm) laminated multiple metals were deposited using an electron-beam
evaporator and then thermally annealed in a rapid-thermal-annealing system under a
nitrogen atmosphere at 850 ◦C for 1 min. The separation between source electrode and
drain electrode was approximately 10 µm. Prior to using a vapor cooling condensation
system to deposit a 30 nm thick Ga2O3 gate oxide layer at approximately 80 K under liquid
nitrogen cooling, the surface-treatment technique of a (NH4)2Sx chemical solution was
utilized to treat the sample again. The deposition processes and performance of Ga2O3
films deposited by the vapor cooling condensation system were previously demonstrated
and reported [19,20]. Using a standard photolithography method to pattern two-finger
gate regions, Ni/Au (20/300 nm) gate laminated metals were deposited using the electron-
beam evaporator, and the two-finger Ni/Au gate metals were manufactured using a lift-off
process. Gate width and length were 50 and 1 µm, respectively. Furthermore, Ni/Au gate
metals were placed in the central regions between source electrode and drain electrode.
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Figure 3. Three-dimensional schematic configuration of MOSHEMTs with multiple-mesa-fin-channel
array.

4. Results and Discussion

Figure 4 depicts the HRTEM image of the fin-channel. From the observation of
HRTEM image, the height, width, and spacing of the multiple-mesa-channel were 69.8 nm,
496.6 nm, and 490.6 nm, respectively. Consequently, the total real channel width within a
50-µm-wide gate region was about 25.2 µm. By applying various gate-source voltage (VGS)
levels, typical drain-source current (IDS)–drain-source voltage (VDS) characteristics of the
studied devices, shown in Figure 5, were obtained using the measurement of an Agilent
4156C semiconductor parameter analyzer. Under the operating voltage of VDS= 10 V, its
normalized saturation drain-source current was 352.0 and 842.7 mA/mm of the devices at
VGS = 0 V and 5 V, respectively. At the operating voltage of VDS = 10 V, the dependence
of drain-source current and extrinsic transconductance (gm) on gate-source voltage are
depicted in Figure 6. Maximal extrinsic transconductance was 148.9 mS/mm. In general,
the double-hump transconductance behaviors were caused by the effective gate modulation
of the upper and lower channels in the double-channel MOSHEMTs, respectively [8–10].
However, double-hump transconductance characteristics did not appear in the gm–VGS
curve of the studied devices. In the studied devices, the wider smooth gm value distribution
caused by the collapse paving of double-hump transconductance behavior was contributed
to the superior gate control of fin-channel. The superior gate control was attributed to
the side-wall electric field modulation in the fin channel. By defining the on-resistance
(Ron) as the inverse slope of the IDS–VDS characteristics at VGS = 5 V and VDS = 0 V, the
associated on-resistance of 6.1 Ω-mm was obtained. Furthermore, when threshold voltage
(Vth) was defined as the gate-source voltage corresponding to the drain-source current
of 1 µA/mm, Vth was −3.2 V. To measure high-frequency performance of the studied
devices using an Agilent 8510C network analyzer, Figure 7 illustrates the small-signal high-
frequency performance of frequency-dependent short-circuit current gain and maximal
available power gain. Figure 7 shows that the unit gain cutoff frequency (fT) and maximal
oscillation frequency (fmax) were 6.5 and 12.6 GHz, respectively. In general, to evaluate
electron trapping and electron detrapping behaviors induced from defects, traps, and
interface states residing in electronic devices, the measurement of low-frequency noise
performance was effective [21]. Under the operation of VDS = 1 V, Figure 8 depicts the
frequency (f)-dependent normalized noise power density spectra (SIDS(f)/IDS

2) of the
studied devices measured by an Agilent 4156C semiconductor analyzer, an HP 35670A
dynamic signal analyzer, and a BTA 9812B noise analyzer. The normalized noise power
density gradually decreased with an increase in gate-source voltage. Due to the quite good
variation between normalized noise power density and 1/f, flicker noise was the dominant
noise of the devices. At the operating condition of f = 10 Hz, VDS = 1 V, and VGS = 5 V, the
normalized noise power density was approximately 8.7 × 10−14 Hz−1. Using a mobility
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fluctuation model [22], Hooge’s coefficient α, a useful figure-of-merit parameter, could be
expressed as:

α =
(

SIDS(f)/IDS
2
)
·f·(LGWGnch(VGS −Vth)/|Vth|) (1)

where LG =1 µm and WG = 25.2 µm are the gate length and real gate width on multiple-
mesa-fin-channels, respectively. The nch = 1.11 × 1013 cm−2 is the sheet electron density
of the double-channel and Vth = −3.2 V is the threshold voltage. By substituting those
parameters into Equation. 1, the α value of 6.25× 10−6 was calculated for devices operating
at f = 10 Hz, VDS = 1 V, and VGS = 5 V.
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5. Conclusions

In this work, a MOCVD system was utilized to grow Al0.83In0.17N/GaN/Al0.18Ga0.82N/
GaN heterostructured-epitaxial layers on Si substrates. According to the simulated energy
band structure, polarization in Al0.18Ga0.82N/GaN interface and the band discontinuity in
lattice-matched Al0.83In0.17N/GaN interface induced channels 1 and 2, respectively. The
resulting double-channel epitaxial layers and multiple-mesa-fin-channel array were utilized
for fabricating MOSHEMTs. Benefittig from the better gate control capability caused by the
modulation of side-wall electrical field in fin-channel, the double-hump transconductance
behavior, which occurred in double-channel MOSHEMTs, was not obtained. The multiple-
mesa-fin-channel array used in double-channel MOSHEMTs could effectively pave the
collapse of transconductance due to their better gate control capability. Owing to the
high-insulating Ga2O3 gate oxide layer deposited by the vapor cooling condensation
system and the inherent high-quality interface between the Ga2O3 and GaN layers, the
low-flicker-noise performance was achieved. Under the operation of f = 10 Hz, VGS = 5 V,
and VDS = 1 V, the low Hooge’s coefficient α was approximately 6.25 × 10−6.
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