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Abstract: In the automotive industry, corrosion protected galvanized advanced high strength steels
with high ductility (AHSS-HD) gain importance due to their good formability and their lightweight
potential. Unfortunately, under specific thermomechanical loading conditions such as during resis-
tance spot welding galvanized, AHSS-HD sheets tend to show liquid metal embrittlement (LME).
LME is an intergranular decohesion phenomenon leading to a drastic loss of ductility of up to 95%.
The occurrence of LME for a given galvanized material mainly depends on thermal and mechanical
loading. These influences are investigated for a dual phase steel with an ultimate tensile strength of
1200 MPa, a fracture strain of 14% and high ductility (DP1200HD) by means of systematic isothermal
hot tensile testing on a Gleeble® 3800 thermomechanical simulator. Based on the experimental
findings, a machine learning procedure using symbolic regression is applied to calibrate an LME
damage model that accounts for the governing quantities of temperature, plastic strain and strain
rate. The finite element (FE) implementation of the damage model is validated based on the local
damage distribution in the hot tensile tested samples and in an exemplary 2-sheet resistance spot
weld. The developed LME damage model predicts the local position and the local intensity of liquid
metal induced cracking in both cases very well.

Keywords: liquid metal embrittlement; advanced high strength steel; resistance spot welding; dam-
age modeling; finite element modeling; machine learning; symbolic regression; genetic programming

1. Introduction

Modern advanced high strength steels (AHSS) combine high tensile strength with
ductility and are therefore highly in demand in the automotive industry. To fulfil emission
norms in conventionally-driven vehicles and to compensate the heavy weight of batteries
in e-mobility, it is essential to achieve lightweight design. Facing these demands, AHSS
are excellent candidate materials for the use in the car body in white at comparatively low
costs while enhanced safety can be guaranteed. On top of that, the high ductility AHSS
grade (AHSS-HD) offers exceptional formability. To protect the car body from corrosion,
the steel sheets are galvanized, i.e., covered with a thin zinc layer that acts as cathodic
protection [1]. The main method of joining these sheets is resistance spot welding (RSW)
due to its reliability, potential for automation and cost efficiency. Per vehicle, up to 5000 of
such spot welds are placed.
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During RSW, the galvanized AHSS-HD sheets exhibit high temperatures far above
the melting point of zinc (419 ◦C) and liquid metal embrittlement (LME) might occur
under specific conditions. LME basically describes brittle cracking of an otherwise ductile
metal. During LME, zinc penetrates at the steel grain boundaries at low strains, so grain
cohesion decreases, which can lead to damage or even complete structural failure. The
propagation of the crack is limited by the supply of zinc to the crack tip and the local
loading conditions [2,3]. The initial cracks form due to wetting of the susceptible base
metal and lead to rapid crack progression along the grain boundaries after reaching a
critical crack length. Stress-assisted grain penetration is seen as the occurring penetration
mechanism while low-energy grain boundaries suppress LME [4]. Razmpoosh et al. [5]
described that ordered grain boundaries show less embrittlement than high-misorientation-
angle grain boundaries. Besides the strength level of the AHSS-HD and the type of coating,
the main influences to LME are the material pairing, temperature and the level of plastic
strain [6]. The occurrence of tensile plastic strain combined with temperatures above 700 ◦C
is used in the literature as a rule of thumb to estimate the risk of crack formation [7–10].
Other influences such as loading speed [11], microstructure and alloying metals are also
reported to have an impact on LME susceptibility [12,13]. Different testing methods such
as hot dip testing of cups with residual stresses [14], modified welding process parameters
and welding tests with applied external tensile load [15,16], fracture mechanics testing [17]
or hot tensile testing [18–20] have been proposed to investigate the influence of LME
to steel. Among those, uniaxial hot tensile tests are most widely employed because of
their ease of use, repeatability and reliability. The thermal and mechanical loading can be
varied within a wide range of parameters relevant for LME. Resistance heating allows high
heating rates and strain rates in the same order of magnitude as expected during RSW. The
results allow comparability to similar tensile tests for other base material-coating pairs. The
literature reports research results for different steel grades such as TRIP (transformation-
induced plasticity) with a yield strength of 1100 MPa [21] and TWIP (twinning-induced
plasticity) [22] steels. By contrast, this work focuses on a dual phase (DP) steel with high
ductility and an ultimate tensile strength (UTS) of 1200 MPa. To use the full potential
of this steel grade, it is necessary to reliably determine LME critical loading conditions.
Implementing this knowledge into a finite element (FE) code allows to predict LME and
to ultimately optimize the RSW process. This will serve as the basis for suggesting LME
prevention measures, e.g., modification of the electrode tip geometry [23] or the welding
conditions [24].

This work presents a quantitatively reliable experimental testing method for analyzing
the LME susceptibility of DP1200HD sheets. The experimental results are used to develop
an LME damage model based on a well-structured and repeatable machine learning
workflow using symbolic regression. The damage model is implemented into a FE model
whose predictions are validated against crack networks in tensile testing samples and on
RSW spot welds.

2. Materials and Methods
2.1. Experimental

The investigated DP steel offers a UTS of 1200 MPa and provides high ductility with a
fracture strain of 14% (DP1200HD). For comparison reasons, bare, i.e., uncoated (UC) and
electrolytically galvanized (EG) flat tensile specimens with a zinc layer of 7 µm thickness on
both faces were machined from a 1.6 mm thick sheet material. The long axis of the samples
and, hence, the loading direction, is oriented in the direction of rolling. The total length of
the dog bone-shaped specimen was 180 mm with a strain gauge length of 45.28 mm and a
width of 20 mm as shown in Figure 1a. Figure 1b shows the initial microstructure.

The investigated DP1200HD steel showed an initial microstructure consisting of
martensite and ferrite, which both transform to pure austenite above the AC3 temperature
(870 ◦C) while AC1 lies at 775 ◦C. Table 1 shows the chemical composition of the steel.
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Figure 1. (a) Geometry of the hot tensile testing specimen and (b) the initial microstructure.

Table 1. Chemical composition of the DP1200HD steel.

C (%) Si (%) Mn (%) Cr (%) Cu (%) Nb (%) Fe

0.21 1.46 2.53 0.03 0.016 0.002 Balanced

A Gleeble® 3800 was used to simulate realistic welding conditions. Similar to the
actual RSW process, conductive materials were subjected to resistance heating at the
Gleeble® thermomechanical testing facility [8]. The length measurements were carried
out by multiple means: (i) monitoring the stroke along the longitudinal path, (ii) an
L-gauge measuring the longitudinal elongation as well as (iii) a C-gauge for the transversal
contraction. Type K thermocouples were applied for temperature control and measurement.
They exhibit an accuracy of ± 2.2 ◦C for temperatures between 0 ◦C up to 293 ◦C and
± 0.75% from 293 ◦C up to 1260 ◦C according to ASTM E230. A control thermocouple was
placed in the center while two others were placed 11 mm and 22 mm away from the center
along the tensile axis for measuring the thermal gradient. The samples were heated to
testing temperature and subsequently subjected to tensile load until fracture. The fractured
samples were then cooled on air. The experiments were performed for a temperature range
from 25 ◦C up to 1200 ◦C for the UC condition and from 500 ◦C up to 1000 ◦C for EG with
a constant heating rate of 300 ◦C/s and strain rates ranging from 0.01 s−1 up to 10.0 s−1.
Altogether, 105 tests were performed and the onset of LME was determined up to 12.5 ◦C
accurately. The standard copper clamping jaws were substituted with steel jaws, while
additional graphite foil and tantalum sheets were added between jaws and sample for
providing a homogeneous temperature distribution. For each set of parameters, at least
two repeated tests were carried out. The raw data was analyzed with Origin 2018 as well
as a specific Python script that computes the ratio of the deformation energies of EG over
UC. It automatically uses the matching data sets of the hot tensile tests for an accurate and
precise data evaluation without adding human errors. Finally, the cut open samples were
digitized and further evaluated.

In addition, RSW tests with a broad range of welding parameters were carried out
by means of a C-type welding gun and an X-type welding gun equipped with a Nimak
pedestal welder and a Matuschek controller. The welding parameters in the presented
example used for model validation were as follows: electrode force = 4.5 kN, welding
current = 6.9 kA, welding time = 380 ms and holding time = 300 ms. The electrode type
was chosen to be a F1–16-20–6 [25], manufactured from a copper alloy according to [26].

2.2. Modeling

In this work, we develop an LME damage model based on experimental data and a
machine learning procedure to be used as an input to the FE solver. It is usually preferable
to deal with analytical models represented by mathematical equations in a closed form.
Hence, symbolic regression is applied for the machine learning task.
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2.3. Symbolic Regression

Symbolic regression (SR) is a machine learning approach capable of extracting non-
trivial patterns from input data. The user defines all allowed functions and the software
applies them to find an equation that matches the input data. In contrast to other machine
learning approaches such as Artificial Neural Networks (ANN), SR finds an explicit mathe-
matical formula which describes a target variable as a function of input variables. Therefore,
in SR, in contrast to classical regression, not only the model parameters but also the model
structure is optimized. The search space is infinite and is comprised of mathematical oper-
ations, functions, constants and variables. Therefore, SR is usually applied with genetic
programming (GP) to evolve from an initial set of solutions (this includes model structures
and model parameters), such that an optimum solution is found according to a given fit
metric. In order to reduce the dimension of search space, the mathematical building blocks
shall be provided to the algorithm. By applying genetic algorithms such as crossover and
mutation, GP creates new solutions or populations, similar to natural evolution, which
better satisfy the fit function. A solution in GP is represented as an expression tree. For
example, a solution such as y = 3ex + 2/x is represented as it is shown in Figure 2.

Figure 2. An example of an expression tree representing the function y = 3ex + 2/x.

A tree is comprised of instruction and leaf nodes. Instruction nodes embed operations
and functions while leaf nodes contain constants and variables. It is clear that more
complex trees are readily constructed by combining simpler trees as branches. Each tree is
constrained by depth (i.e., the number of layers) and length (i.e., the number of nodes). For
more detail, the interested reader is referred to the original work by John Koza in which he
presented SR during his GP developments [27].

We use the open-source software, HeuristicLab, version 3.3.15, for SR modeling [28].
The following settings and parameters are set for the optimizer. The ‘Offspring selec-
tion genetic algorithm’ is selected for the evolution of the initial solutions, with popula-
tion size = 10,000, mutation probability = 5%, maximum tree length = 30, maximum tree
depth = 10, number of elites = 2, maximum selection pressure = 100, generation = 100,
crossover operator = MultiSymbolicData-AnalysisExpressionCrossover, mutator = Multi-
SymbolicExpressionTreeManipulator, selector = proportional and analyzer = Multianalyzer.
The functions and operations are limited to {+, *, -, /, EXP()} applicable on the instruction
nodes while the leaf nodes are fed with numeric constants and input variables of the train-
ing dataset. The optimization stops when the maximum number of generations is reached
or the selection pressure reaches the limit of 100. Inspecting the optimization history a
posteriori confirms that this criterion suffices to achieve convergence. The optimization
procedure was repeated ten times starting from random initial configurations in order
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to avoid getting trapped in local minima. The best model is selected as the one with the
lowest root mean squared error.

After analysis of the experimental data (see Experimental Results), the influencing
factors of the damage model are identified. These characteristic quantities, i.e., temperature,
plastic strain and strain rate behave not necessarily proportional to the fracture strain.
Therefore, again, SR is employed to find the mathematical expression for the fracture strain
ε f as a function of strain rate

.
ε and temperature T. This damage model is to be used in the

FE models of the RSW process.

2.4. Finite Element Method

The LME damage model was implemented in the commercial software package
Abaqus 2019 [29] by means of a FORTRAN 77-based user subroutine of the type UVARM.
In order to verify the implementation, single element tests were carried out representing
the hot tensile tests at the material point level. For the sake of validation, 3-dimensional
models capturing the full geometrical and multi-physical details of the hot tensile tests
were developed. The thermal and mechanical boundary conditions were set in accordance
to the temperature measurements and the loading prevalent at the fracture point for all
different thermo-mechanical tests conducted with the Gleeble®. As element type, the
electrical-, thermal- and mechanically-coupled hexahedral elements labeled Q3D8 were
used. A mesh convergence study proofed that a structured mesh with an element size of
0.1 mm sufficiently discretize the sample. The necessary material models were taken from
a previous publication on validated FE modeling of the RSW process by the authors [30].
This RSW model for the welding parameters described in the Experimental section was also
applied as a second means of validation of the damage model in this work. The RSW model
covers the evolution of the electrical, thermal, mechanical and metallurgical fields during
the complete spot welding process. Phase transformations such as from the base material
to austenite and subsequently to the melt during heating and all relevant transformations
during cooling were considered. Details on the model are provided in Ref. [30].

3. Results and Discussion
3.1. Experimental Results

Figure 3 shows macroscopic images of three EG test samples and their according
stress-strain curves for UC (black) and EG (red) material state for a strain rate of 0.1 s−1.
Micrographs for axial center cuts through the fracture surface were machined and are
shown on the bottom of Figure 3. For UC samples, typical ductile necking occurs which
is also observed for EG at 600 ◦C in Figure 3a. Figure 3b shows reduced necking for the
EG steel and surface cracks neighboring the main crack. Both phenomena are clear signs
of LME at 725 ◦C. At 900 ◦C, these signs become even more pronounced as shown in
Figure 3c. The tendencies of the stress-strain curves corroborate the conclusions drawn
from examining the micrographs.

For the investigated specimens, LME only occurs as anticipated in EG samples but
not in UC samples. As the name liquid metal embrittlement implies, the zinc coating has
to be liquid (419.53 907 ◦C) [31]. The defined minimum temperature to obtain LME is
additionally dependent on the different material pairings and strain rates. Following the
scheme exemplarily shown in Figure 3, all available samples were examined. The results
are summarized in Figure 4. The black dots represent the temperatures at which hot tensile
tests were done. The red coloured area in Figure 4 marks the parameter space in which
LME occurred. Jung et al. [7] stated that the onset of LME is somehow promoted by the
transformation to the austenitic phase. By contrast, in our study, the onset of LME for
the investigated DP1200HD is for high strain rates clearly below the AC1 temperature of
775 ◦C. Hence, LME does not depend on the occurrence of austenite but also happens in
the martensitic and ferritic microstructure present at temperatures as low as 575 ◦C. Similar
findings are reported in the very recent paper of Bhattacharya et al. [32].
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Figure 3. Macro documentation of the fracture surface (top view), stress-strain curves and micrographs of the axial cuts for
EG samples with a strain rate of 0.1 (1/s) at (a) 600 ◦C, (b) 725 ◦C and (c) 900 ◦C.

Figure 4. Testing schedule and visible LME in red for a variation of strain rates and temperatures.
The dots mark the exact testing temperature.

In Figure 4, the inverse behavior of the temperature critical for LME becomes evident.
When decreasing the strain rate, the critical temperature for triggering LME becomes higher.
This phenomenon can be explained by the formation of intermetallic iron zinc phases (e.g.,
α-Fe(Zn)) that have a higher melting point than pure zinc and do postpone the formation
of LME. Low strain rates combined with high temperatures are the reason for the formation
of these intermetallic phases [14]. The intermetallic phases form at the interface of Fe-Zn
and suppress the contact between steel and liquid zinc while acting as a protection layer of
the base steel [33]. High-magnitude tensile stresses can cause fracture of the α-Fe(Zn) layer
and continue in the steel sheet, while liquid zinc can penetrate the cracks and initiate LME.

In the literature, the ductility trough, which is typical for LME, indicates the loss of
ductility as a function of temperature for different strain rates [34–36]. In this study, the
most pronounced LME can be found at tests with low strain rates and high temperatures,
which indicates that liquid zinc shows a limited wetting speed at the crack tip. Due to slow
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straining, more time is available for zinc to move along the crack tip. Another aspect is that
due to low strain rates (0.01 s−1), the homogeneous temperature range becomes narrow in
comparison to the tests with higher strain rates. Additionally, intermetallic phases form
between zinc and steel and a reduction of LME is found. Note that the relevant strain
rates for the later application in RSW ranges roughly from 0.1 s−1 up to 10 s−1. Figure 5a
represents the energy ratio that is defined as deformation energy of the EG steel divided by
the deformation energy of the UC steel [37], while Figure 5b shows the fracture strain. It
can be seen that the width of the ductility trough becomes larger with increasing strain rate
while the magnitude of embrittlement stays maximal above a specific temperature except
for 10 s−1 where the magnitude of embrittlement constantly increases with increasing
temperature. The shape of the ductility trough at the highest strain rates can either be
explained by a limited zinc supply speed and, therefore, shorter cracks as well as by crack
shielding mechanisms due to the presence of many short cracks. This is both indicated by
the reduction of elongation, which is not as pronounced as for lower strain rates, as well
as by micrographs showing numerous cracks. A partial embrittlement and some residual
ductility occur.

For strain rates ranging from 0.01 s−1 up to 1.0 s−1, a significant drop of the energy
ratio occurs at a specific temperature, while for 10 s−1, it is not as pronounced. Annealing
plays a major role in this case. The lower the strain rate, the more time is available and more
zinc is able to penetrate at the grain boundaries and cause a more pronounced rupture
behavior, but also more intermetallic phases are formed that delay the start of LME. Above
the vaporization temperature of zinc, a recovery of ductility is found for strain rates up to
1.0 s−1 [38]; see Figure 5a. A damage model solely based on the strain energy was found to
be inappropriate for non-isothermal loading. For the ductile and semi ductile fracture that
is driven by plastic deformation, the plastic fracture strain plotted in Figure 5b is analyzed
to serve as the basis for the damage model outlined below.

3.2. Damage Model
3.2.1. Symbolic Regression

Depending on the strain rate, a minimum temperature TLME, start for detectable LME
can be identified. Figure 6a shows the relation between those critical temperatures and the
pertaining strain rates. The data points line up on a straight line, when the abscissa values
are given in a logarithmic scale. This linear dependency of TLME, start on ln

.
ε is defined

by the constants K and p in Equation (1). For DP1200HD, the parameters are found to be
K = −26 and P = 632.5. Please note that the unit system mm n and s is provided for all
the equations in this paper, henceforth the given numbers will be valid in this unit system.

Below a specific strain rate of 5.0 × 10−5, no LME occurs, because diffusion processes
between steel and zinc reduce the risk of embrittlement.

TLME, start = K ln
( .
ε
)
+ P (1)

For all further considerations, the current temperature Tcurrent at a material point
will be related to a common starting point by introducing the virtual temperature TLME
according to Equation (2). TLME >0 thus signals that LME occurs. It can be seen as a first
indicator for the criticality of embrittlement.

TLME = Tcurrent − TLME, start (2)

As TLME rises, the risk of LME increases. Introducing TLME helps identifying a suitable
description accounting for the strain rate influence in the LME damage model. The fracture
strain can then be plotted as a function of TLME and the strain rate; see Figure 6b.
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Figure 5. (a) Relative fracture energy between EG/UC and (b) fracture strain for all tested strain
rates of EG/UC steel.

The experimental observations reveal that the fracture strain ε f depends on temper-
ature (T), strain rate (

.
ε) and the presence of zinc (cZn). Clearly, without zinc, no LME

would occur. Therefore, we investigated symbolic regression modeling to approximate
the response surface of fracture strain only as a function of TLME and

.
ε. As can be seen in

Figure 4, the experimental data are quite sparse, especially in the strain rate space (where
data are available only for four strain rate values). Symbolic regression is a data-driven
approach, where the final quality of the trained model depends on the quality and quantity
of the data. The modeled response surface must respect and follow the overall trends of
the data without showing any sharp or abrupt changes in temperature and strain rate
direction. To mitigate the shortcomings of having few experimental data points, some
auxiliary points were added along the temperature axis; see Figure 7.
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Figure 6. (a) Minimum temperature for LME depending on the strain rate and (b) fracture strain of the virtual to 0 ◦C
shifted LME starting temperature.

Figure 7. Experimental data points and added auxiliary points in temperature direction.

Obviously, for strain rate 0.01, we have used more synthetic points to increase the
robustness of the trained model and to cater for the sharply changing trend around
TLME = 15 ◦C. After adding the auxiliary points, a 1-dimensional linear interpolation
is performed to generate a denser grid in temperature direction. For the strain rate di-
rection, since experiments are so scarce, it was more difficult to add auxiliary points in a
reliable way. Therefore, we just performed 1-dimensional linear interpolation in

.
ε., con-

sidering the same temperature axis, by using the interpolated experimental data in TLME
space. Eventually, a total of 31,050 data points was generated. Afterwards, a symbolic
regression optimization is performed to find a mathematical equation which best fits the
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data, from a variety of functions in the search space of the genetic algorithm exponential
function types combined by basic arithmetic operations which provide an optimal fit.
Equation (3) shows an example of such an equation describing the inner correlations of the
data satisfactorily. The model contains five parameters (A, B, C, D, E), each with its specific
dimension. Equation (3) only works in this given unit system, while in a different unit
system, the equation would have a similar structure but the exact values of A, B, C, D and
E would be different. The model parameters can be readily adopted for other materials
with the same method if enough experimental data is available.

ε f =
A

B−TLME+
TLME.

ε
C +

(
( D + TLME )− (E−TLME)

e
.
ε

) (3)

A = 7.17
B = 6.69
C = 12.41
D = 40.87
E = 24.07

3.2.2. Damage Indicator

The basic structure, as shown in Equation (4), of the damage model (DLME) follows
well-accepted ductile damage models [39,40]. The damage model can be applied for every
material point in FE models and is, hence, a local model where the damage is driven by the
plastic strain. In each time increment of the simulation, the plastic strain increment (dεpv)
is related to the current fracture strain ε f in order to calculate the ‘consumed’ ductility of
the material.

DLME =
∫ εpv

0

dεpv

ε f
(4)

In the next step, the damage model is validated by means of a single element FE
analysis that allows to numerically reproduce the hot tensile tests. The implementation
of the damage model is accomplished by the user-defined subroutine UVARM in Abaqus
which returns DLME at each integration point. The calculation starts, when the current
temperature exceeds the critical temperature TLME, start. Subsequently, TLME is calculated
and with this input, the fracture strain ε f is found according to Equations (2) and (3).
Finally, the evolution of DLME is calculated according to Equation (4).

The single element test shows a good correlation between the experimental data and
the model results for the fracture strain, especially for strain rates ranging from 0.01 s−1

up to 1.0 s−1; see Figures 8 and 9. For RSW processes, this is the most relevant range of
strain rates.

3.3. Model Validation

The damage model is validated against the local microcrack networks found in a
series of Gleeble® experiments, including specimens with a spot weld. Figure 10 shows the
distribution of the calculated damage indicator along with position and depth of micro-
cracks as found in the Gleeble® experiments for a strain rate of 1.0 s−1 and four different
temperatures. The calculated temperature distribution along the center of the hot tensile
specimen as indicated in Figure 1 by the variable s is displayed as dashed red line, while
the damage indicator distribution is represented by the solid cyan line. A vertical dotted
line marks the sample center. In the case of Figure 10a, no LME is found for a temperature
of 600 ◦C well beyond TLME,start, but minor cracks with the depth d (black dots) can be
found around the necking region. For 700 ◦C, shown in Figure 10b, deeper cracks are
found, especially in the regions with a higher predicted damage indicator. Here, the final
rupture takes place at the location marked by a vertical solid line which coincides well
with the area that is identified as critical by the model. The region comprising LME cracks
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is also captured well for 800 ◦C, as shown in Figure 10c. For 900 ◦C, the position of a
size of the highly cracked region is reasonably well predicted by the model, although the
model shows a somewhat larger width than the experiment. Note that a value of DLME =1
already indicates through-cracks and therefore, total rupture of the specimen. Figure 10c
and d show values for DLME >1. This is due to the fact that the elongation in the model
continues beyond the stage where, in reality, the specimen already ruptures. The fracture
process itself was not modeled. Shear banding occurs due to the meshing in the middle of
the model always at 90 mm. This would require element deletion techniques or a fracture
mechanics analysis.

Figure 8. Comparison between fracture strain of the model versus experiments.

Figure 9. Comparison of modelled fracture strains (cyan solid line) vs. experimentally measured fracture strains (black
dashed line) at strain rates of (a) 0.01 s−1; (b) 0.1 s−1; (c) 1.0 s−1 and (d) 10.0 s−1 as a function of TLME.
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Figure 10. Comparison of the calculated temperature distribution T (red and dashed) and the damage
indicator D (cyan) with the crack depth d measured in the samples (the path is shown in Figure 1
marked with s) in mm (black dots) and the sample center (dotted vertical line) as well as the rupture
location (solid vertical line) for a strain rate of 1.0 s−1 at (a) 600 ◦C; (b) 700 ◦C; (c) 800 ◦C and
(d) 900 ◦C.

After confirming the viability of the damage indicator concept, it was implemented in
an FE-based RSW model. The simulations provided field quantities such as the current flow,
the temperature field, local strain rates and strains necessary for computing the damage
indicator in a post-processing step. For validation reasons, the simulation results showing
the damage indicator is juxtaposed to the according micrograph in Figure 11. The pertaining
welding conditions are described in Experimental and are electrode force = 4.5 kN, welding
current = 6.9 kA, welding time = 380 ms as well as holding time = 300 ms. DLME stays well
beyond 1 and this choice is reasonable since no through-crack is expected. The comparison
of the micrograph with the values gained of the FE simulation shows a good correlation
of the zones containing minor cracks (see area between vertical lines) with the surface
elements exhibiting elevated values of D.

Figure 11. Comparison of the micrograph and the crack lengths against the damage indicator with
matching high-risk zones.
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4. Conclusions

Hot tensile tests covering a wide temperature and strain rate range were carried out to
characterize the LME behavior of a DP1200HD steel. Based on the experimental findings, a
machine learning approach using symbolic regression was applied to formulate an LME
damage model. The FE implementation of this model was validated against crack networks
found in hot tensile tested samples as well as an exemplary resistance spot weld. The main
findings of the paper are as follows:

• Hot tensile tests are an appropriate means to reproducibly and quantitively character-
ize the LME susceptibility of materials.

• The commonly applied rule of thumb for LME occurring in AHSS is based on plas-
tic strain and requires temperatures to be above 700 ◦C. This paper offers a new
perspective in that it shows that LME can be found well beneath austenite’s start
temperature, which indicates that not only austenite but also ferrite and martensite
are prone to LME.

• Symbolic regression was successfully applied to support the damage modeling and
delivered robust results.

• The developed and FE implemented damage model was validated by two different
means and can be applied in, for example, RSW process design.
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