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Abstract: Flexible PVC/BT (Polyvinyl chloride/Barium Titanate) composite thick films with (0–30%)
volume fractions of BaTiO3 were fabricated via the solution casting method. The effects of BaTiO3

filler on the phase, microstructure and dielectric properties of composite films were investigated.
The XRD results revealed that BT particles are embedded in the PVC matrix with no chemical
reaction taking place between the two phases. It was observed that the glass transition temperature
of PVC had increased with the addition of BT. The frequency dispersion in the dielectric constant
versus temperature curves indicated the relaxor nature of the composites. The dielectric constant
(εr) measured at 40 ◦C, increased from 7.6 for pure PVC to 16.1 for 30% of BaTiO3 content in PVC
polymer matrix. It is suggested that BaTiO3 ceramic powder enhanced the dielectric properties of
PVC and may be used as a flexible dielectric material.

Keywords: polymer; perovskites; composites; dielectrics; PVC/BT

1. Introduction

Dielectric materials are used extensively as piezoelectric transducers and actuators, as
ferroelectric memory and energy storage devices, or as dielectric antenna and filter in wireless
telecommunication devices [1–3]. The Electronic Industries Alliance (EIA) classifies dielectric
capacitors into different categories depending on the dielectric constant (εr) of the dielectric
medium [4]. The dielectric constant determines the amount of energy that a capacitor can
store compared to vacuum [5]. Dielectric capacitors are categorized into three sub-classes
depending on their thermal and dielectric properties. Class-1 dielectrics are commonly used in
capacitors, exhibiting temperature-stable performance, low acoustic noise and low dielectric
loss or high quality factor. These dielectrics usually exhibited intermediate values of dielectric
constant (15–500), lower dissipation factor and negligible aging effect [6]. Class-1 dielectric
mainly includes para-electrics such as MgTiO3, MgNb2O6, BaTi4O9 and their substructure
ceramic compounds. Apart from useful properties of ceramic dielectrics, these are brittle and
cause difficulty in the fabrication of complex shapes or can break during moving components
in electromechanical systems. On the other hand, polymers are flexible and can be turned
into any required shape. The prime drawbacks of polymers are their low dielectric properties,
which limits their applications in electronic industries [7,8]. One of the solutions may be the
fabrication of ceramic/polymer composites. Ceramic/polymer composites are investigated
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broadly due to easier processing, good chemical stability and useful mechanical and
dielectric properties [9–13]. Ceramic/polymer composites combine the better dielectric
properties of the ceramic powders (filler) and the mechanical flexibility, chemical inertness
and shape-forming possibility of polymer (matrix).

Among polymers, polyvinyl chloride (PVC) is an amorphous piezoelectric thermo-
plastic polymer which is formed from the C2H3Cl (vinyl chloride) monomer to a long chain
[(C2H3Cl)n] polymer [14,15]. The piezoelectric coefficients d31 of PVC has been reported
in the range of 0.5 to 1.3 pC/N with a glass transition temperature of 80 ◦C [16,17]. PVC
possess low dielectric constant (εr = 4) and can be modified by adding various piezoelectric
ceramic powders [18–22]. Funt has put forward the microwave dielectric properties of PVC
under radio frequencies [23]. Amrhein and Mueller have studied the microwave dielectric
measurements of PVC and its derivatives [24]. Perovskite-structured BaTiO3 ceramic pos-
sesses higher dielectric constant (~4500) and stable tetragonal structures with the space
group (14/m) at room temperature with a saturation polarization of 16 µC/cm2 [25,26].
Olszowy investigated the microwave dielectric properties of PVC/BT composites fabri-
cated through hot pressing method [20]. Many studies reported the effect of BT ceramic on
the dielectric properties of polymer [27]. Recently, Berrag et al. used Cole-Cole’s model to
validate the experimental microwave dielectric data of PVC/BT composites [22].

In this paper, we have investigated the structural, morphological and dielectric prop-
erties of PVC/BT composite thick films with different BT contents (10%, 20% and 30%) as
filler in the PVC matrix.

2. Materials and Synthesis

BaTiO3 ceramic powder was synthesized using research-grade BaCO3 and TiO2 via
the solid-state route (Figure 1). These reactants were weighed in stoichiometric ratios and
mixed/milled for 6 h in polyethylene bottle. For grinding media, we used y-toughened
zirconium balls and to make free flowing slurry, ethanol was added as a lubricant. The
slurry was then dried in an oven for 12 h at 90 ◦C. Moreover, the dried reactant powders
were calcined at 900 ◦C for 2 h at a heating/cooling rate of 5◦C/min in air. In order to
obtain fine powder, the calcined BT powder was ground with pestle and mortar.
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Figure 1. A schematic representation for the preparation of BT, PVC and PVC/BT composites. Figure 1. A schematic representation for the preparation of BT, PVC and PVC/BT composites.

PVC/BaTiO3 composite films were synthesized via the solution casting method.
Different volume fractions of PVC were dispersed in Di-Methyl formamide (DMF) using
an ultrasonicator for 30 min. BaTiO3 powder was added in different portions and magnetic
stirred at 70 ◦C for 12 h to obtain uniform PVC/BaTiO3 suspension. The PVC/BaTiO3
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suspension was then casted onto a flat aluminum sheet (3 cm × 3 cm) which is then kept
in an oven at 70 ◦C for 30 min to obtain dried composite thick films. In order to evaporate
the DMF, the composite films were further heated at 110 ◦C in a vacuum furnace for one
hour. A portion of the PVC/BT composites films were then peeled off from the aluminum
substrate for further characterization.

3. Characterization

The phase analysis was carried out via x-ray diffractometer (XRD) (JDX-3532, JEOL,
Tokyo, Japan) with Cu (Kα) radiation with wavelength (λ = 1.5418 Å). The Fourier trans-
formed infrared radiation (FTIR) spectra were obtained using an FTIR spectrometer. The
microstructural study of the PVC/BT composite thick films were carried out via the sec-
ondary electron field effect, scanning electron microscope (SEM) (JEOL 6400 SEM, Tokyo,
Japan). The dielectric properties were measured by LCR meter (HP 4192A) using a coated
silver layer on top surfaces of composite films as electrodes.

The dielectric constant (ε′) and dielectric loss (tan δ) was calculated by using the
formula [26]:

ε′ =
d

Aεo
C

tan δ =
ε′′

ε′

where ε′′ , d, A, C and εo are the imaginary part of the dielectric constant, the sample
thickness, area of sample, the capacitance of sample and the permittivity of free space
(8.85 × 10−12 F/m), respectively.

4. Results and Discussion
4.1. Phase and Microstructural Analyses

The room temperature XRD patterns of BaTiO3, PVC and PVC/BT composites with
various BaTiO3 contents as filler are shown in Figure 2. The XRD pattern of BT revealed the
formation of a tetragonal (14/m) perovskite structure with no impurity phase [27]. The XRD
pattern for pure PVC indicated the amorphous nature consistent with previous studies [18,20].
The XRD patterns of PVC/BT composite films indicated the stability of BT in the PVC matrix.
These results suggest that the single-phase crystalline powders of BT are embedded in PVC
matrix. The diffraction peaks of BT become stronger gradually with the increase in BT content
in the PVC/BT composites. XRD results suggest that BaTiO3 ceramic powder maintains its
crystalline nature in the composite thick films and are completely coated by PVC matrix.
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The secondary electron scanning electron microscope (SEM) images of PVC/BT com-
posite thick films are shown in Figure 3. SEM images indicated that the pure PVC acted as
a host matrix material and BaTiO3 particles are almost evenly distributed with minimum
agglomeration. Figure 3a for pure PVC revealed smooth surface morphology consistent
with previous studies [18–21]. The distribution of fillers in 30% of BT content is more
obvious than that of 10% and 20% of BT content in the host PVC matrix. The fabricated
PVC/BaTiO3 composite films are translucent and homogeneous, which proves the forma-
tion process for obtaining flexible composite thick films. Figure 3e indicates the thickness
of the films to be around 25 µm on average.
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4.2. FTIR Analysis

The FTIR absorption spectra of BT, PVC and PVC/BT composite thick films with
various BT content as fillers are shown in Figure 4a. For pure PVC, the characteristic
absorption peaks of CH2 deformation mode were observed at 1332 cm−1, CH rocking
mode at 1253 cm−1, trans CH-wagging mode at 958 cm−1, C-Cl stretching mode at 833 cm−1

and C is CH-wagging mode at 610 cm−1, consistent with previous reports [18,21]. For pure
BT, a broad peak is observed at 544 cm−1 due to the O-Ti-O vibration [28].

Figure 4b shows that the relative intensities of peaks are decreased with the decrease
in PVC content in the composite films. The peaks at 1332 cm−1, 1253 cm−1, 959 cm−1

and 833 cm−1 did not shift in composite films, which indicates that there is no chemical
reaction taking place between the two phases [21]. The peak at 610 cm−1 has changed
from a sharp peak at a lower wave number to a broader peak at 544 cm−1 with increasing
BaTiO3 content. This change in peak might be due to the overlapping with the strong peak
at 544 cm−1 originating from BaTiO3 or due to the overlapping of two peaks at closer wave
numbers.
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4.3. Dielectric Properties

The plots of dielectric constant (εr) and dielectric loss (tan δ) versus temperature of
PVC/BT composites at various frequencies are shown in Figure 5. In the εr and tan δ
versus temperature curves, anomalies were observed at about 80 ◦C for PVC and at about
100 ◦C for PVC/BT composites. These anomalies may be attributed to two factors. One
factor is the glass transition temperature of PVC, which is 80 ◦C, and the second factor is
the curie point of BaTiO3, which is 120 ◦C [16]. At the glass transition temperature, the
polymer transforms from a hard semi-crystalline structure to a soft rubbery form. At the
Curie point (Tc), BaTiO3 transforms from the non-centro-symmetric ferroelectric phase to
the centro-symmetric paraelectric phase [29]. Around the Curie point, every ferroelectric
exhibits higher dielectric constant [30,31]. The εr was observed to decrease with increasing
frequency and increased with increasing temperature. At higher temperatures, the dipoles
of molecules orient themselves more easily along the applied electric field and cause an
increase in the dielectric constant [32]. The dielectric constant increases with the increase in
BT content in the fabricated PVC/BT composites, which may be attributed to the higher
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εr values of BT ceramics [33,34]. The dielectric constant (εr) at 40 ◦C for 1 MHz of the
composites increases from 7.6 to 16.1 with increasing BT content. The increase in electronic
conduction with increasing temperature leads to an increase in dielectric losses (tan δ) of
PVC/BT composites [35].
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The frequency dispersion in εr and tan δ versus temperature curves indicates relaxor
behavior of fabricated samples, shown in Figure 5. These curves demonstrated typical
relaxor behavior with the magnitude of the dielectric constant decreasing with increas-
ing frequency and the peaks of these curves were shifted to higher temperatures [36,37].
Smolenski [38] proposed that underlying the relaxor behavior was a chemical inhomogene-
ity on a cation site, giving rise to a diffuse phase transformation (DPT). Randall [39] has
found evidence for short-range chemical order on the nano-scale level using transmission
electron microscopy (TEM). It is proposed that chemical inhomogeneity at the nano-scale
causes the relaxor behavior [40]. The variation of εr and tan δwith frequency (f) for various
BT contents are shown in Figure 6. The orientation polarization decreases with increasing
frequency and results in a decrease in εr, which may be attributed to time lagging between
flipping dipoles and applied electric field [41].
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5. Conclusions

PVC/BT composites were synthesized via the solution casting method. The synthe-
sized samples’ structural, vibrational, morphological and dielectric properties of PVC/BT
composite thick films were investigated. The phase analysis of PVC/BT composites in-
dicated that the single-phase crystalline powders of BaTiO3 are embedded in the PVC
polymer matrix, resulting in a two-phase composite material. The microstructural analysis
revealed that BT particles are dispersed in the PVC matrix, with no chemical reaction
taking place between the fillers and matrix. The spectra of BT, PVC and PVC/BT composite
thick films represent a common peak at 544 cm−1, 610 cm−1 and 542 cm−1, which can be
estimated as a stretching mode of the C-Cl/CH-wagging group, presumably adsorbed
at surface. The temperature-dependent dielectric properties of PVC/BT composite films
indicated frequency dispersion and improvement with an increase in BT ceramic filler in
PVC matrix.
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