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Abstract: The number of distinct components of a high-order material/physical tensor might be
remarkably reduced if it has certain symmetry types due to the crystal structure of materials. An
nth-order tensor could be decomposed into a direct sum of deviators where the order is not higher
than n, then the symmetry classification of even-type deviators is the basis of the symmetry problem
for arbitrary even-order physical tensors. Clearly, an nth-order deviator can be expressed as the
traceless symmetric part of tensor product of n unit vectors multiplied by a positive scalar from
Maxwell’s multipole representation. The set of these unit vectors shows the multipole structure of
the deviator. Based on two steps of exclusion, the symmetry classifications of all even-type deviators
are obtained by analyzing the geometric symmetry of the unit vector sets, and the general results
are provided. Moreover, corresponding to each symmetry type of the even-type deviators up to
sixth-order, the specific multipole structure of the unit vector set is given. This could help to identify
the symmetry types of an unknown physical tensor and possible back-calculation of the involved
physical coefficients.

Keywords: material tensor; Maxwell’s multipole representation; symmetry classification; deviator;
multipole structure

1. Introduction
1.1. Nomenclature

Without additional indication, vectors and tensors are always supposed to be three
dimensional and denoted by bold letters. The summation convention for repeated indices
is implicit. The meanings of the main symbols used in this paper are shown in Table 1.

Table 1. The meaning of symbols in this paper.

Symbol The Meaning

C The elasticity tensor
O(3) The max orthogonal group
T(n) nth-order general tensor

δ The Kronecker symbol
g The symmetry group
Q The orthogonal tensor

H(n) nth-order deviator
ε The permutation tensor

H(n)
e nth-order even-type deviator

H(n)
o nth-order odd-type deviator
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1.2. Material Symmetry and Physical Motivation

The physical properties of material exhibit orientation related anisotropy at a random
point inside. However, the physical properties in some special orientations could be the
same due to the symmetry of crystal structure at the micro-perspective. In the continuum
mechanics, high-order tensors are used to describe the physical properties of materials,
which are usually referred to as the physical tensors or constitutive tensors (for example,
the elasticity tensor, the photo-elasticity tensor, the flexoelectric tensor and the sixth-order
elasticity tensor involved in the theory of first strain gradient elasticity [1]). These higher-
order tensors are difficult to handle, and the specific physical meanings of their components
are not clear and simple. It is well known that the space expanded by these physical tensors
can be divided into subspaces with equivalent symmetry classes. Two tensors in a same
subspace are equivalences by sharing the same type of material symmetry, or through
obtaining the symmetry point groups conjugate to each other. For example, the components
of the stress and strain tensors are σij and εij, respectively, in relation to the orthonormal
basis. Hooke’s law takes the form below:

σij = Cijkl εkl , (1)

where Cijkl represents the components of the fourth-order elasticity tensor C. Here and after,
the lower cases of Latin subscripts take the values of 1, 2 and 3. The material symmetry of
an elastic body is exhibited in the collection of all orthogonal tensors, which are symmetry
transformations of the tensor C. The symmetry point group g(C) is defined as

g(C) = {Q ∈ O(3)|Q ∗ C = C}
(Q ∗ C)ijkl = QipQiqQirQisCpqrs.

(2)

Notably, Q represents the orthogonal tensor (Such as Qa·Qb = ab, for all pairs of vectors).
The maximum group of the orthogonal tensors is O(3). For the subgroup of rotations
(Orthogonal tensors with determinant equal to one), it is written as SO(3). The same type
of material symmetry is obtained by two elasticity tensors if there is a conjugated relation
stated as follows:

g(C1) ∼ g(C2) =
{

Q ∈ SO(3)
∣∣∣g(C1) = Qg(C2)QT

}
. (3)

where QT represents the transposition of Q. Forte and Vianello’s paper [2] gave a more
precise definition. There are seven non-isotropic symmetry types for the elasticity tensor
C [2–7] and seven distinct systems for crystals.

The number of distinct components of a high-order physical tensor might be remark-
ably reduced if it has certain symmetry types. The matrix form of the elasticity tensor C
was given in reference [3] for eight symmetry types. The number of distinct components
varies from 2 (Isotropic materials) to 21 (Triclinic materials). Therefore, the symmetry
classification of the tensors is useful and even becomes indispensable for the experimental
identification or theoretical/numerical evaluation of the tensor components. In the tensor
function theory, the determination of the number and types of tensor symmetry is also
the basic problem for the construction of the tensor function and the determination of the
clearest form of a tensor.

1.3. Deviator and Irreducible Decomposition

A tensor is called a deviator, and sometimes it is also called a harmonic tensor because
it is traceless and symmetric about any pair of indices of its Cartesian tensor components.
For example, a nth-order deviator, denoted by H(n) throughout this paper, with components
satisfying

Hi1i2i3···in = Hi2i1i3···in = Hi3i2i1···in = · · · = Hini2i3···i1 , Hssi3···in = 0. (4)



Materials 2021, 14, 5388 3 of 17

Clearly, the scalars and vectors are zero-order and first-order deviators, respectively.
The general high-order tensor is quite complicated. For example, a nth-order general

tensor T(n) contains 3n independent components. Therefore, it is impossible to obtain all
symmetry types straightforwardly. In the theory of group representations, a nth-order
tensor can be decomposed into a direct sum of deviators, the order of which is not higher
than n. This is called irreducible or harmonic decomposition. Referring to the work of Zou
et al. [8], the detailed direct sum is

T(n) =
j0

∑
j=1

αj ⊕
j1

∑
j=1

vj ⊕ · · · ⊕
js

∑
j=1

H(s)
j ⊕ · · · ⊕

jn

∑
j=1

H(n)
j (5)

where j = 1, · · · , js implies that the decomposition involves js number of different sth-
order deviators. In this paper, α and v represent scalar and vector, respectively, without
any additional indication. The symbol ⊕means that this formula is an abbreviated form.
Actually, the items in formula (5) are nth-order irreducible tensors. For the complete form
of the irreducible decomposition and the methods to manage such decomposition, please
refer to reference [8]. As for the elasticity tensor C, its irreducible decomposition takes the
form of

Cijkl = α1δijδkl + α2(δikδjl + δilδjk) +
(

δijH1
kl + δkl H1

ij

)
+
(

δik H2
jl + δjl H2

ik + δil H2
jk + δjk H2

il

)
+ Hijkl

(6)

or in brief,

C =
2

∑
j=1

αj⊕
2

∑
j=1

H(2)
j ⊕H(4), (7)

where δij is the Kronecker symbol, which is isotropic for any orthogonal tensor Q. This
decomposition contains two independent scalars, two second-order and one fourth-order
deviator, which was widely used in the symmetry problem of the elasticity tensor [2,4–7].
Meanwhile, the irreducible decomposition was used for the symmetry classification of the
other physical tensors [9–13], and it was also applied in tensor analysis.

1.4. The Researches about Even-Order Physics Tensor

For the even-order general tensor T(2n), the irreducible decomposition yields that
its symmetry group can be obtained from the intersection of the symmetry group of the
relevant deviators:

g[T(2n)] =
{

g[α1] ∩ · · · ∩ g[αj0 ]
}
∩
{

g[εv1] ∩ · · · ∩ g[εvj1 ]
}
∩ · · · ∩

{
g[H(2)

1 ] ∩ · · · ∩ g[H(2)
j2

]
}

∩
{

g[εH(3)
1 ] ∩ · · · ∩ g[εH(3)

j3
]
}
∩ · · · ∩

{
g[H(2n−1)

1 ] ∩ · · · ∩ g[H(2n−1)
j2n−1

]
}
∩ g[H(2n)]

(8)

In above, the combination εH could be ε⊗H or ε·H. As noted, only the odd-order
deviators are combined with the permutation tensor ε. Then, εH will be an even-order ten-
sor and its symmetry group contains I (central inversion). Analogously, in the irreducible
decomposition of an odd-order general tensor, the even-order deviators are combined with
the permutation tensor ε. Therefore, the nth-order deviators in the irreducible decomposi-
tions will be divided into two types: the even-type H(n)

e and the odd-type H(n)
o , respectively.

The definition of even-type deviator is listed as below:

H(n)
e

{
H(n) when n is even,
εH(n) when n is odd.

(9)

To solve the problem about symmetry classification of the even-order tensors, obvi-
ously, the two following tasks should be done. The first is to obtain the symmetry types of
even-type deviators; the second is to find a solution to do the intersection of formula (8).
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According to this idea, there are abundant results about the symmetry classification
of high even-order tensors. Forte and Vianello [2] proved that the number of symmetry
types of the elasticity tensor is eight for the first time. Their study greatly promoted a
comprehensive understanding and resulted in a series of studies on the symmetry of
elasticity tensor [3–7]. The relevant methods were also applied to the other fourth-order
physical tensors like the photo-elasticity tensor [9] and the flexoelectric tensor [10].

The deviator is known as a relatively simple tensor of higher-order (the number of
distinct components of a nth-order deviator is 2n + 1). However, the structure of the high
order deviator is still complicated and it is hard to obtain its symmetry types. Since the
I was contained in symmetry group of even-order tensors, the corresponding symmetry
type is reduced to a subgroup of SO(3). A mature approach has been widely used for the
symmetry problems of even-order deviator [2–6,9,10]. It is explained as follows: Firstly, the
isomorphism relation between the spaces of nth-order deviators and the spaces of harmonic
polynomials with degree n is established. Then, the space of harmonic polynomials is
decomposed to terms that are invariant under the specific rotation. The rotation is known
as the Cartan decomposition [14]. However, the lack of achievement of general results is
regarded as an obvious disadvantage for this method.

1.5. The Symmetry Classification of Even-Type Deviators

Olive and Auffray [15] derived a general conclusion on the number of symmetry
types of even-order tensors. They proposed a tool named clips operator, in order to
execute the intersection of symmetry types of an even-type deviator couple. As for the
symmetry types of arbitrary order even-type deviators, they directly referred to the results
of Ihrig and Golubitsky [16]. The modern definition of symmetry classification of tensors
was introduced by Huo and Del Piero [17] in 1991 and further modified by Forte and
Vianello [2] in 1996. The latter one is now accepted and applied extensively. It is obvious
that the results given by Ihrig and Golubitsky [16] in 1984 were earlier than the modern
definition of symmetry classification, and a reexamination is required due to the potential
shortcomings.

Unlike the existing methods described in previous articles, the symmetry of an ar-
bitrary order even-type deviator is classified by an exclusion of two steps in this paper.
The preliminary results are obtained based on the order of tensor, which is well known
in existing papers [18]. Then, by utilizing Maxwell’s multipole representation [19], the
deviator is expressed in terms of a scalar module and a unit vector set, which could be used
to clarify the anisotropic structures and make accurate exclusion about the symmetry types
of the deviator. Obviously, the set of unit vectors indicates the multipole structure of devia-
tors, which is a nice geometric view of the deviator. The multipole structure has already
been applied in the representation theory of the tensor function to find invariants [19]. The
unit vector sets were also used to identify the symmetry type of the physical tensor, the
components of which are related to an arbitrarily oriented coordinate system [7,12]. Thus,
the specific unit vector sets corresponding to every symmetry type of even-type deviator
would be given out, which is one of the contents in this paper.

As noted earlier, the symmetry classification of the even-type deviator is the basis
for the symmetry problem of an arbitrary even-order physical tensor. The method of
this paper can be extended to the odd-type deviators and the arbitrary order physical
tensors easily. The rest of this paper is organized as below. In Section 2, the method
route of symmetry classification is given and the symmetry types of even-type deviators
are preliminarily determined based on the order of tensor. As the key of this paper,
Maxwell’s multipole representation is introduced in this section too. In Section 3, by
utilizing Maxwell’s multipole representation, the possible symmetry types of even-type
deviators are finally determined. In the end, some refined conclusions and a brief discussion
are given in Section 4.
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2. Methods and Related Theory
2.1. The Method Route of Symmetry Classification

In this paper, the method of symmetry classification is according to the idea of exclu-
sion. Two steps are shown in Figure 1. The first step is to get a preliminary determination of
symmetry types based on the order of the tensor. This results are given by the reference [18]
first. In Section 2.2, the preliminary results and corresponding derivation process are
reorganized, such as the classification theorem, which collects all possible symmetry types
of tensor and the methods to make a preliminary exclusion from the order of the tensor. The
second step is to obtain accurate results. The key of this step is the application of Maxwell’s
multipole representation. Hence, Section 2.3 is presented to introduce Maxwell’s multipole
representation, which has been described in the paper [19]. Above all, the detailed process
and the accurate results are introduced in Section 3 based on the contents of this section.
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2.2. Preliminary Results

A fundamental result of symmetry classification is that the collection of involved
groups may cover the whole O(3)-closed subgroups and modulo conjugation [18,20,21],
which is to collect all possible symmetry types of tensor. The collection is known as the
classification theorem. The article of Zheng and Boehler [18] described this theorem in
detail. It states that:

A three-dimensional point group is conjugate to one of the groups given in Table 2.

According to the definition of the symmetry type of a tensor, there is a straightforward
corollary that states that the symmetry types of each tensor are described by one of the
point groups in Table 2. Additionally, a very important conclusion (which was reduced to
Theorem 2 in the article of Bona et al. [5]) is proposed and proven. It is stated as below:

If an nth-order tensor is an invariant under a (n + 1)-fold rotation (k ≥ 1) about a given axis, then
it will be an invariant under any rotation about this axis.

Although the possible symmetry types are numerous in Table 2, the range of scope
could be reduced easily according to the tensor’s order. For even-type tensors, the following
corollary was firstly reported by Zheng and Boehler [18], and it was rechecked by this
research:

Corollary 1. For even-type deviator H(n)
e (n ≥ 2), the symmetry group is conjugate to one of the

following:
Ci, C3i, C5i, · · · , C(2k−1)i, for 1 ≤ 2k− 1 ≤ n;

D3d, D5d, D7d, · · · , D(2k−1)d, for 3 ≤ 2k− 1 ≤ n;

C2h, C4h, C6h, · · · , C(2k)h, for 2 ≤ 2k ≤ n;

D2h, D4h, D6h, · · · , D(2k)h, for 2 ≤ 2k ≤ n;

C∞h, D∞h, Th(n ≥ 3), Oh(n ≥ 4), Ih(n ≥ 5).

(10)
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Of course, Corollary 1 also works for the even-order general tensor T(2n).
Thus, the first step of a preliminary determination on symmetry types of even-type

deviators is achieved. Although the symmetry types given by formula (10) should be
further refined, there are only a few symmetry types that should be ruled out.

Table 2. The total collection of O(3)-closed subgroups [18].

Physical Classes
(L = Integer ≥ 1) No. International

Symbol
Schoenflies

Symbol Order of Group

Triclinic
1 I C1 1
2 I Ci 2

Monoclnic
3 2 C2 2
4 m C1h 2
5 2/m C2h 4

Orthorhombic
6 222 D2 4
7 mm2 C2v 4
8 mmm D2h 8

4L-gonal (n = 4L)

9 n Cn n
10 n C(n/2)i n
11 n/m Cnh 2n
12 n22 Dn 2n
13 nmm Cnv 2n
14 nm D(n/2)d 2n
15 n/mmm Dnh 4n

(2L + 1)-gonal
(n = 2L + 1)

16 n Cn n
17 n Cni 2n
18 n2 Dn 2n
19 nm Cnv 2n
20 n m Dnd 4n

(4L + 2)-gonal
(n = 4L + 2)

21 n Cn n
22 n C(n/2)h n
23 n/m Cnh 2n
24 n22 Dn 2n
25 nmm Cnv 2n
26 n2m D(n/2)h 2n
27 n/mmm Dnh 4n

Cubic

28 23 T 12
29 m3 Th 24
30 432 O 24
31 432 Td 24
32 m3m Oh 48

Icosahedral
33 235 I 60
34 m35 Ih 120

Cylindrical

35 ∞ C∞, or SO(2) ∞
36 ∞ C∞h ∞
37 ∞2 D∞, or O(2) ∞
38 ∞2 C∞v ∞
39 ∞m D∞h ∞

Spherical 40 2∞ K, or SO(3) ∞
41 2m∞ Kh, or O(3) ∞

2.3. Maxwell’s Multipole Representation

There is a one-to-one correspondence between the pth-order completely symmetric
tensors and the homogeneous polynomials of degree p in the three-dimensional [3,9].
According to Sylvester’s theorem [22], the pth-order deviator has the Maxwell’s multipole
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representation. The representation declares that the pth-order deviator is expressed by the
tensor product of p unit vectors nr (r = 1, ···, p) multiplied by a positive scalar A,

H(P) = An1 ⊗ n2 ⊗ · · · ⊗ np (11)

where T denotes the traceless symmetric part of the tensor T. The unit vectors n1, n2, · · · , np

are uniquely determined by H(p) within sign changes in pairs. Thus ±n1,±n2, · · · ,±np
are corresponded to 2p poles of a unit sphere, which are called multipole structures
of deviators. This simple geometric picture was originally suggested by Maxwell [22]
and further executed by Backus [23] and Baerheim [24,25]. It is worth noting that Zou
and Zheng [19] provided a direct and constructive establishment of Maxwell’s multipole
representation. Maxwell’s multipole representation displays a geometric image on the
anisotropic structure of the deviator with its unit vector set {n1, n2, · · · , np}, so it is very
useful in the tensor theory.

The symmetry groups of H(P) and εH(P) in the Equation (8) are

g[H(p)] =
{

Q ∈ O(3)
∣∣∣Q ∗H(p) = H(p)

}
⇔

g[H(p)] = {Q ∈ O(3)|bQ ∗ n1 ⊗Q ∗ n2 ⊗ · · · ⊗Q ∗ nPc = bn1 ⊗ n2 ⊗ · · · ⊗ nPc},
(12)

g[εH(p)] =
{

Q ∈ O(3)
∣∣∣Q ∗ εH(p) = εH(p)

}
⇔

g[εH(p)] = {Q ∈ O(3)|bQ ∗ n1 ⊗Q ∗ n2 ⊗ · · · ⊗Q ∗ nPc = bn1 ⊗ n2 ⊗ · · · ⊗ nPc, det(Q) = 1}
∪{Q ∈ O(3)|bQ ∗ n1 ⊗Q ∗ n2 ⊗ · · · ⊗Q ∗ nPc = −bn1 ⊗ n2 ⊗ · · · ⊗ nPc, det(Q) = −1}

(13)

respectively. Simply put, the orthogonal transformation Q is a symmetry transformation
of H(P) if the unit vector set {n1, n2, · · · , np} is invariant or change sign in pairs. Since the
permutation tensor ε is hemitropic, i.e., Q ∗ ε = −ε when det(Q) = −1, so the value of
n1 ⊗ n2 ⊗ · · · ⊗ np should change sign in Equation (13).

Based on the spatial geometric relations of the unit vectors, this paper provides an
intuitive and convenient approach to reveal the symmetry axis and mirror plane of the de-
viator. The Cartan decomposition, by contrast, is an algebraic way used in papers [2–6,9,10]
for the determination of symmetry types of even-type deviators. Instead of using a sub-
group of SO(3) on most of the papers, the symmetry types of even-order tensor are exactly
represented by a subgroup of O(3) in this paper.

3. Results

In this section, the possible symmetry types from formula (10) will be checked specif-
ically through the unit vector set from Maxwell’s multipole representation of even-type
deviators. Obviously, the scalar α only has the symmetry of Kh and the vector εv only has
the symmetry of C∞h.

3.1. Symmetry Types of H(2)

A second-order deviator includes a set of two unit vectors n1 and n2. The orthogonal
transformation Q is a symmetry transformation if the two unit vectors are invariant or
change sign in pairs. As shown in Figure 2, it is found that n1 and n2 have two distinct
symmetries, namely D∞h symmetry when n1//n2, and D2h symmetry otherwise.
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4 𝐶  𝐿 𝑃𝐶 𝒆, 𝒏 , 𝜑 , 𝒏 , 𝜑  

or {𝒆, 𝒏(𝜃, 𝜑), 𝒏(𝜃, 𝜑 + 𝜋)} 
5 (𝐷 ), 𝑇  3𝐿 4𝐿 3𝑃𝐶 𝒆, 𝒏( , 𝜑 + ), 𝑘 = 0,1  
6 𝐶  𝐿 𝑃𝐶 {𝒆, 𝒆, 𝒆} 
 (𝐷 )  Null 

  

Figure 2. The two unit vectors and the corresponding symmetry elements: (a) D∞h symmetry, its
elements are made up of L∞∞L2(∞ + 1)PC; (b) D2h symmetry, its elements are made up of 3L23PC.

3.2. Symmetry Types of εH(3)

The analytical process can be summarized as Table 3: The second column indicates
eight possible symmetry types of εH(3) from the preliminary result (10), and the third
column gives the elements of the point group. By analyzing the symmetry of the three unit
vectors, the possible symmetry types in the second column are checked one by one and
then the accurate symmetry types of εH(3) is obtained. For example, the symmetry D2h
share the same unit vector set with Th, and D2h ⊂ Th, then D2h degenerates into Th. There
is no unit vector set with D∞h symmetry, so it is inexistence. For the other six types of
symmetry, the unit vector sets in the fourth column show the multipole structure of εH(3),
the positional relation of which is also described below though the elements of point group,
such as mirror plane (MP) and n-fold rotation axis (Ln):

(1) Ci symmetry, three arbitrary unit vectors;
(2) C3i symmetry, the three unit vectors are obtained by rotating a unit vector through 2π

3
on the L3 axis;

(3) D3d symmetry, the three unit vectors are located on a plane perpendicular to the L3

axis and share the same separation angle ( 2π
3 ) with each other;

(4) C2h symmetry, one unit vector is located on the L2 axis, the other two unit vectors are
located on the MP or take the MP as their mid-separate surface;

(5) Th symmetry, the three unit vectors are located on three orthogonal L2 axes;
(6) C∞h symmetry, the three unit vectors are located on the L∞ axis.

Table 3. Symmetry types and the unit vector sets of εH(3). Note (similarly hereinafter): the symmetry
groups marked in red and inside parentheses degenerate or simply do not exist, Null means that
there are no invariant unit vector sets under this point group. For simplicity, the principal axis of the
point group is set to the e-axis).

No. Symmetry Type Elements Set of Unit Vector

1 Ci C {n1, n2, n3}
2 C3i L3C

{
n
(

θ, ϕ + 2kπ
3

)
, k = 0, 1, 2

}
3 D3d L33L23PC

{
n
(

π
2 , ϕ + 2kπ

3

)
, k = 0, 1, 2

}
4 C2h L2PC

{
e, n
(

π
2 , ϕ1

)
, n
(

π
2 , ϕ2

)}
or {e, n(θ, ϕ), n(θ, ϕ + π)}

5 (D2h), Th 3L24L33PC
{

e, n
(

π
2 , ϕ + kπ

2

)
, k = 0, 1

}
6 C∞h L∞PC {e, e, e}

(D∞h) Null
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3.3. Symmetry Types of H(4)

By a similar argument, the deviator H(4) was found with seven symmetry types. Be-
cause symmetries of C3i, C4h, C∞h and Th degenerate into symmetries of D3d, D4h, D∞h and
Oh, respectively. The unit vector sets {n1, n2, n3, n4} corresponding to the seven symmetry
types are listed in Table 4, specified as follows:

(1) Ci symmetry, four arbitrary unit vectors;
(2) D3d symmetry, one unit vector is located on the L3 axis, the other three unit vectors

are obtained by rotating a unit vector through 2π
3 on the L3 axis;

(3) C2h symmetry, the four unit vectors are located on the MP in pair(s) or take the MP as
their mid-separate surface in pair(s);

(4) D2h symmetry, there are two situations: (i) the four unit vectors are, respectively,
located on the lateral edges of a rectangular based pyramid; (ii) the four unit vectors
are located on the MP in pair(s) and take another MP as their mid-separate surface;

(5) D4h symmetry, there are also two situations: (i) the four unit vectors are obtained by
rotating a unit vector through π

2 on the L4 axis; (ii) all four unit vectors are located on
the MP, which is perpendicular to the L4 axis, and n1⊥n2, n3⊥n4;

(6) D∞h symmetry, the four unit vectors are located on the L∞ axis;
(7) Oh symmetry, the four unit vectors are respectively located on the space diagonals of

a cube.

Table 4. Symmetry types and the unit vector sets of H(4).

No. Symmetry Type Elements Set of Unit Vector

1 Ci C {n1, n2, n3, n4}
2 (C3i), D3d L33L23PC

{
e, n
(

θ, ϕ + 2kπ
3

)
, k = 0, 1, 2

}
3 C2h L2PC

{S1, S2}
Si =

{
n
(

π
2 , ϕi1

)
, n
(

π
2 , ϕi1

)}
or {n(θi, ϕi), n(θi, ϕi + π)}

4 D2h 3L23PC

{n(θ, ϕ), n(θ, π − ϕ), n(θ, π + ϕ), n(θ, 2π − ϕ)}
or {S1, S2}

Si =
{

n
(

π
2 , ϕi

)
, n
(

π
2 , π − ϕi

)}
or{n(θi, 0), n(θi, π)} or

{
n
(
θi, π

2
)
, n
(

θi, 3π
2

)}
5 (C4h), D4h L44L25PC

{
n
(

θ, ϕ + kπ
2

)
, k = 0, 1, 2, 3

}
or
{

n
(

π
2 , ϕ1

)
, n
(

π
2 , ϕ1 +

π
2
)
, n
(

π
2 , ϕ2

)
, n
(

π
2 , ϕ2 +

π
2
)}

6 (C∞h), D∞h L∞∞L2(∞ + 1)PC {e, e, e, e}

7 (Th), Oh 3L44L36L29PC

{
e+m1+m2√

3
, e−m1+m2√

3
, e+m1−m2√

3
, e−m1−m2√

3

}
m1 = n

(
π
2 , 0
)
, m2 = n

(
π
2 , π

2
)

3.4. Symmetry Types of εH(5)

Similarly, only 10 types of symmetry exist between the preliminary 14 types of sym-
metry. Symmetry types of Th, Oh, Ih and D∞h are unable to obtain by the set of five unit
vectors. The unit vector sets {n1, n2, n3, n4, n5} corresponding to the 10 types of symmetry
are listed in Table 5. The symmetry types are described as follows:

(1) Ci symmetry, five arbitrary unit vectors;
(2) C3i symmetry, two unit vectors are located on the L3 axis, three other unit vectors are

obtained by rotating a unit vector through 2π
3 on the L3 axis;

(3) C5i symmetry, the five unit vectors are obtained by rotating a unit vector through 2π
5

on the L5 axis;
(4) D3d symmetry, two unit vectors are located on the L3 axis, the other three unit vectors

lie on a plane perpendicular to the L3 axis, and they have the same separation angle
( 2π

3 ) to each other;
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(5) D5d symmetry, the five unit vectors lie on a plane perpendicular to the L5 axis, and
they have the same separation angle ( 2π

5 ) to each other;
(6) C2h symmetry, one unit vector is located on the L2 axis, the other four unit vectors lie

on the MP in pair(s) or take the MP as their mid-separate surface in pair(s);
(7) C4h symmetry, one unit vector is located on the L4 axis, there are two possibilities for

the other four unit vectors: (i) the four unit vectors are obtained by rotating a unit
vector through π

2 on the L2 axis; (ii) all of the four unit vectors lie on the MP which is
perpendicular to the L4 axis, and n2⊥n3, n4⊥n5;

(8) D2h symmetry, three unit vectors are located on the L2 axis, the other two unit vectors
lie on an MP and regard another MP as their mid-separate surface;

(9) D4h symmetry, one unit vector is located on the L4 axis, the other four unit vectors lie
on the MP which is perpendicular to the L4 axis and the angle between the adjacent
vectors is π

4 ;
(10) C∞h symmetry, the five unit vectors are all located on the L∞ axis.

Table 5. Symmetry types and the unit vector sets of εH(5).

No. Symmetry Type Elements Set of Unit Vector

1 Ci C {n1, n2, n3, n4, n5}
2 C3i L3C

{
e, e, n

(
θ, ϕ + 2kπ

3

)
, k = 0, 1, 2

}
3 C5i L5C

{
n
(

θ, ϕ + 2kπ
5

)
, k = 0, 1, 2, 3, 4

}
4 D3d L33L23PC

{
e, e, n

(
π
2 , ϕ + 2kπ

3

)
, k = 0, 1, 2

}
5 D5d L55L25PC

{
n
(

π
2 , ϕ + 2kπ

5

)
, k = 0, 1, 2, 3, 4

}
6 C2h L2PC {e, S1, S2}

Si =
{

n
(

π
2 , ϕi1

)
, n
(

π
2 , ϕi2

)}
or {n(θi, ϕi), n(θi, ϕi + π)}

7 C4h L4PC

{
e, n
(

θ, ϕ + kπ
2

)
, k = 0, 1, 2, 3

}
or
{

e, n
(

π
2 , ϕ1

)
, n
(

π
2 , ϕ1 +

π
2
)
, n
(

π
2 , ϕ2

)
, n
(

π
2 , ϕ2 +

π
2
)}

8 D2h 3L23PC

{
S, e, n

(
θ, ϕ + kπ

2

)
, k = 0, 1

}
S =

{
n
(

π
2 , ϕ1

)
, n
(

π
2 , π − ϕ1

)}
or {n(θ1, 0), n(θ1, π)} or

{
n
(
θ1, π

2
)
, n
(

θ1, 3π
2

)}
9 D4h L44L25PC

{
e, n
(

π
2 , ϕ + kπ

4

)
, k = 0, 1, 2, 3

}
10 C∞h L∞PC {e, e, e, e, e}

(Th, Oh, Ih, D∞h) Null

3.5. Symmetry Types of H(6)

For H(6), only 12 types of symmetry exist between the preliminary 16 types of sym-
metry. Because symmetry of C5i, C4h, C6h and C∞h degenerate into the symmetry of
D5d, D4h, D6h and D∞h, respectively. The unit vector sets {n1, n2, n3, n4, n5, n6} corre-
sponding to the 12 types of symmetry are listed in Table 6, which are described as follows:

(1) Ci symmetry, six arbitrary unit vectors;
(2) C3i symmetry, the six unit vectors are obtained by rotating two different unit vectors

through 2π
3 on the L3 axis;

(3) D3d symmetry, there are two situations: (i) three unit vectors are located on the L3

axis, the other three unit vectors are obtained by rotating a unit vector through 2π
3 on

the L3 axis; (ii) the six unit vectors are obtained by rotating two different unit vectors
through 2π

3 on the L3 axis, and the two unit vectors are on the same MP;
(4) D5d symmetry, one unit vector is located on the L5 axis, the other five unit vectors are

obtained by rotating a unit vector through 2π
5 on the L5 axis;

(5) C2h symmetry, the six unit vectors lie on the MP in pair(s) or take the MP as their
mid-separate surface in pair(s);
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(6) D2h symmetry, there are two situations: (i) two unit vectors lie on an MP and take
another MP as their mid-separate surface, the other four unit vectors are located on
the lateral edges of a rectangular pyramid, respectively; (ii) the six unit vectors lie on
an MP in pair(s) and take another MP as their mid-separate surface;

(7) D4h symmetry, two unit vectors are located on the L4 axis. Two possibilities are
retained in the other four unit vectors: (i) the four unit vectors are obtained by
rotating a unit vector through π

2 on the L4 axis; (ii) all four unit vectors lie on an MP
which is perpendicular to the L4 axis, and n3⊥n4, n5⊥n6;

(8) D6h symmetry, the six unit vectors are obtained by rotating a unit vector through π
3

on the L6 axis;
(9) D∞h symmetry, the six unit vectors are located on the L∞ axis;
(10) Th symmetry, the six unit vectors are located on the face diagonals of a cube, respectively;
(11) Oh symmetry, the six unit vectors are located on three orthogonal L4 axes in pair,

respectively;
(12) Ih symmetry, the six unit vectors are located on six L5 axes, respectively.

Table 6. Symmetry types and the unit vector sets of H(6).

No. Symmetry Type Elements Set of Unit Vector

1 Ci C {n1, n2, n3, n4, n5, n6}
2 C3i L3C

{
n
(

θ1, ϕ1 +
2kπ

3

)
, n
(

θ2, ϕ2 +
2kπ

3

)
, k = 0, 1, 2

}
3 D3d L33L23PC

{
e, e, e, n

(
θ, ϕ + 2kπ

3

)
, k = 0, 1, 2

}
or{

n
(

θ1, ϕ + 2kπ
3

)
, n
(

θ2, ϕ + 2kπ
3

)
, k = 0, 1, 2

}
4 (C5i), D5d L55L25PC

{
e, n
(

θ, ϕ + 2kπ
5

)
, k = 0, 1, 2, 3, 4

}
5 C2h L2PC {S1, S2, S3}

Si =
{

n
(

π
2 , ϕi1

)
, n
(

π
2 , ϕi2

)}
or {n(θi, ϕi), n(θi, ϕi + π)}

6 D2h 3L23PC
{S1, n(θ, ϕ), n(θ, π − ϕ), n(θ, π + ϕ), n(θ, 2π − ϕ)}or{S1, S2, S3}

Si =
{

n
(

π
2 , ϕi

)
, n
(

π
2 , π − ϕi

)}
or {n(θi, 0), n(i, π)} or{

n
(
θi, π

2
)
, n
(

θi, 3π
2

)}
7 (C4h), D4h L44L25PC

{
e, e, n

(
θ, ϕ + kπ

2

)
, k = 0, 1, 2, 3

}
or{

e, e, n
(

π
2 , ϕ1

)
, n
(

π
2 , ϕ1 +

π
2
)
, n
(

π
2 , ϕ2

)
, n
(

π
2 , ϕ2 +

π
2
)}

8 (C6h), D6h L66L27PC
{

n
(

θ, ϕ + kπ
2

)
, k = 0, 1, 2, 3, 4, 5

}
9 (C∞h), D∞h L∞∞L2(∞ + 1)PC {e, e, e, e, e, e}

10 Th 3L24L33PC

{ e+m1√
2

, e−m1√
2

, e+m2√
2

, e−m2√
2

, m1+m2√
2

, m1−m2√
2

}
m1 = n

(
π
2 , 0
)
, m2 = n

(
π
2 , π

2
)

11 Oh 3L44L36L29PC
{

e, e, n
(

π
2 + 0

)
, n
(

π
2 + 0

)
, n
(

π
2 + π

2
)
, n
(

π
2 + π

2
)}

12 Ih 15L210L36L515PC
{

e, n
(

θ, ϕ + 2kπ
5

)
, k = 0, 1, 2, 3, 4, θ = arctan(2)

}
3.6. Characteristic Web Trees

The examinations of the integrity of the unit vector sets in the Tables 3–6 presented
above are necessary. This is accomplished by introducing the characteristic web tree of
tensors [12]. It is known that the symmetry group may contain some other symmetry
groups, so it has a relatively higher symmetry. For two symmetry groups A and B, if A ⊂ B,
then A is called the subgroup of B, while B is the mother group of A. If the other mother
groups contained by B are not obtained by A, then A→B is defined. In so doing, all possible
consequences finally generate a characteristic web tree of deviators shown in Figure 3.
With the insertion of an additional orthogonal transformation, the number of independent
variables in the deviator may be remarkably reduced. The corresponding unit vector sets
are also specialized. Take the εH(3) as an example, when it contains C3i symmetry, the unit
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vector set is
{

n
(

θ, ϕ + 2kπ
3

)
, k = 0, 1, 2

}
. From its characteristic web tree in Figure 3a, the

following conclusions are given.

(1) C3i ⊂ Th. For sin(θ) =
√

6
3 and through a proper rotation, the set { n

(
θ, ϕ + 2kπ

3

)
,

k = 0,1,2} is the same with the set
{

e, n
(

π
2 , ϕ + kπ

2

)
, k = 0, 1

}
corresponding to Th;

(2) C3i ⊂ D3d. For θ = π
2 , the set

{
n
(

θ, ϕ + 2kπ
3

)
, k = 0, 1, 2

}
becomes {n

(
π
2 , ϕ + 2kπ

3

)
,

k = 0,1,2 } corresponding to D3d;
(3) C3i ⊂ C∞h. For θ = 0, the set

{
n
(

θ, ϕ + 2kπ
3

)
, k = 0, 1, 2

}
becomes {e, e, e}, which is

corresponding to C∞h.

Additionally, this relation could be checked for each pair of symmetry groups in
Figure 3. Namely, if A ⊂ B, by introducing some constraint conditions and commencing
a proper rotation, the unit vector set corresponding to A will become the unit vector set
corresponding to B. According to such an examination, the correctness and integrity of the
unit vector sets in Tables 3–6 are verified.
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3.7. The General Results

For higher order deviator H(n)
e (n ≥ 7), its symmetry types are determined by the unit

vector set of similar methods. The preliminary symmetry types of (10) will be checked
one by one through the set unit vectors. For symmetry type A, there are three possible
situations: (1) the unit vector sets with symmetry A are found out and the other relatively
higher symmetries are not possessed by them, then the symmetry A is proved to exist;
(2) these unit vector sets possess a relatively higher symmetry B, namely A ⊂ B, which
means that symmetry A degenerates into symmetry B and symmetry A is nonexistent;
(3) the unit vector set cannot be found out, then symmetry A is nonexistent. The preliminary
symmetry types of H(n)

e (n ≥ 7) in (10) are analyzed as below:

(1) It is obvious that Ci, C2h and D2h symmetries exist.
(2) For C3i, C5i, · · · , Cki, there are three situations when k is odd and k ≤ n: (i) The

symmetry Cki exists when n is odd (namely εH(n)). One of the unit vector sets is:
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the (n − k) unit vectors are located on the Lk axis and the other k unit vectors are
obtained by rotating a unit vector through 2π

k on the Lk axis; (ii) the symmetry Cki

exists when n is even (namely H(n)) and k ≤ n
2 . One of the unit vector sets is: the (n −

2k) unit vectors are located on the Lk axis, the other 2k unit vectors are obtained by
rotating two different unit vectors through 2π

k on the Lk axis; (iii) the symmetry Cki is
nonexistent when n is even and k > n

2 . The unit vector set with Cki symmetry is: the
(n − k) unit vectors are located on the Lk axis, the other k unit vectors are obtained
by rotating a unit vector through 2π

k on the Lk axis. Meanwhile, this unit vector set
owns the L2 symmetric axis, which is perpendicular to the Lk axis. So, symmetry Cki
degenerates into symmetry Dkd.

(3) For D3d, D5d, D7d, · · · , Dkd, there are two situations when k is odd and k ≤ n: (i) the
symmetry Dkd exists when n is odd. One of the unit vector sets is: the (n − k) unit
vectors are located on the Lk axis, the other k unit vectors are located on a plane
perpendicular to the Lk axis and share the same separation angle 2π

k with each other;
(ii) the symmetry Dkd exists when n is even. One of the unit vector sets is: the (n − k)
unit vectors are located on the Lk axis, the other k unit vectors are obtained by rotating
a unit vector through 2π

k on the Lk axis.
(4) For C4h, C6h, · · · , Ckh, there are three situations when k is even and k ≤ n: (i) the

symmetry Ckh exists when n is odd. One of the unit vector sets is: the (n − k) unit
vectors are located on the Lk axis, the other k unit vectors are obtained by rotating
a unit vector through 2π

k on the Lk axis; (ii) the symmetry Ckh exists when n is even
and k ≤ n

2 . One of the unit vector sets is: the (n − 2k) unit vectors are located on the
Lk axis, the other 2k unit vectors are obtained by rotating two different unit vectors
through 2π

k on the Lk axis; (iii) the symmetry Ckh is inexistence when n is even and
k > n

2 . The unit vector set with Ckh symmetry is: the (n − k) unit vectors are located
on the Lk axis, the other k unit vectors are obtained by rotating a unit vector through
2π
k on the Lk axis. Meanwhile, this unit vector set owns the L2 symmetric axis, which

is perpendicular to the Lk axis, so symmetry Ckh degenerates into symmetry Dkh.
(5) For D4h, D6h, · · · , Dkh, there are two situations when k is even and k ≤ n: (i) the

symmetry Dkh exists when n is odd. One of the unit vector sets is: the (n − k) unit
vectors are located on the Lk axis, the other k unit vectors are located on the MP,
which is perpendicular to the Lk axis and the angle between adjacent vectors is π

k ;
(ii) symmetry Dkh exists when n is even. One of the unit vector sets is: the (n − k) unit
vectors are located on the Lk axis, the other k unit vectors are obtained by rotating a
unit vector through 2π

k on the Lk axis.
(6) Symmetry C∞h exists and D∞h is nonexistent when n is odd; instead, the symmetry

D∞h exists and C∞h is nonexistent when n is even. The n unit vectors are all located
on the L∞ axis in both cases.

(7) For Th and Oh, clearly that the two point groups, respectively, described the geometric
symmetry of a regular tetrahedron and a cube, and Th ⊂ Oh is just like the regular
tetrahedron embedded inside the cube. According to the previous results, the εH(3)

has symmetry Th when its three unit vectors are on three concurrent edges of a cube.
Additionally, the H(6) also has symmetry Th when the six unit vectors are on face
diagonals (in adjacent three faces) of a cube. Notice that εH(3) and H(6) are unable to
obtain symmetry Oh because their value will change sign for these two corresponding
unit vector sets. The symmetry Oh is obtained by H(4) when the four unit vectors are
on space diagonals of a cube. Based on the similar principle of doing intersection of
point groups and two negatives make an affirmative, the situations of symmetry Th
and Oh are as below:

(i) When n = 3m1 + 6m2 + 4m3 (m1, m2 and m3 are non-negative integers) and

m1 + 6m2 = odd, namely n = 7 or n ≥ 9, the symmetry Th exists for H(n)
e . The

n unit vectors are all located in a cube: 3m1 unit vectors are evenly located
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on three concurrent edges, 6m2 unit vectors are evenly located on six face
diagonals and 4m3 unit vectors are evenly located on four space diagonals;

(ii) When n = 3m1 + 6m2 + 4m3 and m1 + 6m2 = even, namely n = 8, 9, 10

or n ≥ 12, the symmetry Oh exists for H(n)
e and all of the n unit vectors

are also located in a cube in the situation mentioned above. The reason of
m1 + 6m2 = even is that the value of H(n)

e will be invariant under even times
of change in the sign.

(8) For symmetry Ih, this point group describes the geometric symmetry of a regular
dodecahedron. The six L5 axes are the lines that come through the body-centered
point and two face-centered points (12 regular pentagonal faces). The ten L3 axes are
the lines that come through the body-centered point and two vertices (20 vertices).
The fifteen L2 axes are all parallel to the edges (30 edges). The deviators of H(6), H(10)

and εH(15) all contain symmetry Ih, and their sets of unit vectors are on the rotation-
axes of a regular dodecahedron: the six unit vectors of H(6) are on six L5 axes; the
ten unit vectors of H(10) are on ten L3 axes; the fifteen unit vectors of εH(15) are on
fifteen L2 axes. So, H(n)

e has symmetry Ih when n = 6m1 + 10m2 + 15m3, namely
n = 6, 10, 12, 15, 16, 18 or n ≥ 20, and n 6= 23, 29.

Above all, the general results about symmetry types of all order even-type deviators
are provided and they can be stated as below:

Theorem 1. For an even-type deviator H(n)
e , the symmetry types are given as follow:

1. Ci for n ≥ 3;

2. C3i, C5i, · · · , C(2k−1)i for
{

2k− 1 ≤ n, when n is odd,
2k− 1 ≤ n

2 , when n is even;
3. D3d, D5d, D7d, · · · , D(2k−1)d for 3 ≤ 2k− 1 ≤ n

4. C2h, C4h, · · · , C(2k)h for
{

2k ≤ n, when n is odd,
2k ≤ n

2 , when n is even;
5. D2h for n ≥ 2 and n 6= 3;
6. D4h, D6h, · · · , D(2k)h for 4 ≤ 2k ≤ n;
7. C∞h for n is odd;
8. D∞h for n is even, and n 6= 0;
9. Th for n = 3, 6, 7, or n ≥ 9;
10. Oh for n = 4, 6, 8, 9, 10, or n ≥ 12;
11. Ih for n = 6, 10, 12, 15, 16, 18, or n ≥ 20, and n 6= 23, 29;
12. Kh for n = 0, namely scalar.

4. Conclusions

In this paper, the symmetry types of all even-type deviators have been derived by the
idea of exclusion of two steps: Firstly, the preliminary symmetry types are obtained by
doing an exclusion towards all possible symmetry types, which is according to the order of
tensor and the existing results of the literature review. Secondly, the symmetry types of
p-order deviator H(p)

e are determined by analyzing its unit vector set
{

n1, n2, · · · , np
}

under
the orthogonal transformation, which is Maxwell’s multipole representation of deviator.
Based on the spatial geometric relations of the unit vectors, an intuitive and convenient
approach is provided to reveal the potential symmetric axes and the mirror planes of the
deviator. By comparing the results of Ihrig and Golubitsky [16] (Theorem 6.6), Olive and
Auffray [15] (Theorem 5.1), some modifications are made: (1) D2h is not a symmetry type
for εH(3); (2) Th is a symmetry type for εH(3); (3) Oh is not a symmetry type for εH(3); (4) Ih
is not a symmetry type for H(16).

Maxwell’s multipole representation displays a geometric image on the anisotropic
structure of the deviator with its unit vector set, so it is very useful in the tensor theory.
For each symmetry type of the even-type deviator up to sixth-order, this paper gives the
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corresponding unit vector set with the representation of a specific multipole structure.
Another important application on symmetry problem is that the multipole structure can be
used in symmetry identification of an unknown physical tensor and for necessary back-
calculation of the involved physical coefficients. The integrity of all involved unit vector
sets has been checked through the characteristic web tree.

The symmetry classification of even-type deviators is the basis for the symmetry
problems of an arbitrary even-order physical tensor. Application examples are given in
the Appendix A according to the method and results of this paper for all kinds of fourth-
order tensors, such as elasticity tensor, flexoelectric tensor and photo-elastic tensor. The
symmetry classification of these tensors has already been studied in different literatures,
and all these related literatures were discussed through a similar computational method,
which has the drawback of not providing general results. Furthermore, the complexity
of the symmetry problem increases as the order of the tensor. This paper provides the
general results about symmetry types of all order even-type deviators. As the follow-up
studies, a complete answer to the symmetry types of even-order tensors also can be realized
with the similar exclusion of two steps: Firstly, the preliminary symmetry types could be
applied to all general tensors; secondly, the accurate exclusion will be achieved by doing
the intersection of point group instead. Details of this process are exhibited by giving
examples in Appendix A. The method and investigation of this paper can also be extended
to the situation of odd-order tensor without any increase of complexity.

Author Contributions: Conceptualization, C.T.; methodology, C.T. and W.Z.; validation, C.T., W.W.
and L.Z.; formal analysis, C.T.; investigation, W.W. and L.Z.; resources, C.T.; data curation, C.T.;
writing—original draft preparation, C.T.; writing—review and editing, W.W.; visualization, W.W.;
supervision, W.Z.; project administration, W.Z. and C.T.; funding acquisition, C.T. All authors have
read and agreed to the published version of the manuscript.

Funding: This research was funded by National Science Foundation for Distinguished Young
Scholars of China, grant number 11802112.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Data available on request due to restrictions like data capacity. The
data presented in this study are available on request from the corresponding author.

Acknowledgments: Especially thanks to the co-author (Zou, Institute for Advanced Study, Nanchang
University) for his support in this paper.

Conflicts of Interest: The authors declare no conflict of interest.

Appendix A

By using the analytical methods and results of this paper, the number and types of
symmetry for all kinds of fourth-order tensors is restudied, namely the physical tensors of
elasticity tensor C, flexoelectric tensor F and photoelastic tensor M. For the general tensor
T(4), the possible symmetry types given by (10) are

Ci, C3i, D3d, C2h, C4h, C∞h, D2h, D4h, D∞h, Th, Oh, Kh (A1)

Similarly, the 12 symmetry types could be further refined. Considering index symme-
try of the three different fourth-order physical tensors, their irreducible decomposition is

C =
2

∑
j=1

αj⊕
2

∑
j=1

H(2)
j ⊕H(4), (A2)

F =
2

∑
j=1

αj⊕
3

∑
j=1

vj⊕
4

∑
j=1

H(2)
j ⊕

2

∑
j=1

H(3)
j ⊕H(4), (A3)



Materials 2021, 14, 5388 16 of 17

F =
2

∑
j=1

αj⊕v⊕
4

∑
j=1

H(2)
j ⊕H(3) ⊕H(4). (A4)

Then, their symmetry types are obtained through the intersection of the symmetry of
the relevant deviators. From the results of this paper, the symmetry types of the relevant
even-type deviators are

α : Kh;
εv: C∞h;
H(2): D2h, D∞H ;
εH(3): Ci, C3i, D3d, C2h, C∞h, Th;
H(4): Ci, D3d, C2h, D2h, D4h, D∞h, Oh.

(A5)

Thus, the results in Table A1 are obtained quickly with the complete analysis process
stated as follows:

(1) The 12 possible symmetry types are listed in the second column. Corresponding to
each symmetry type, the symmetry types of deviators are discovered and listed in the
third to the sixth columns. Null means it is nonexistent.

(2) Considering the irreducible decomposition (A2)–(A4), this step is to check whether
each symmetry type in the second column can be determined through the intersection
of the symmetry of the relevant deviators. If the symmetry types exist, the number
of distinct components will be given in the next step. Null is given for the other
situations.

(3) Corresponding to each symmetry type of deviators, the number of distinct com-
ponents is calculated due to its multipole structure (namely the unit vector sets).
Thus, the number of distinct components ϕ for the three different physical tensors is
calculated as:

ϕ = j0 + j1 × ϕ(εv) + j2 × ϕ
(

H(2)
)
+ j3 × ϕ

(
εH(3)

)
+ ϕ

(
H(4)

)
. (A6)

where js is the number of sth-order deviators in the irreducible decomposition. The
correctness of these results in Table A1 is verified, the elasticity tensor C is referred to
the article [2] and the flexoelectric tensor F is referred to the article [10]. It’s worth
noting that this method could also be applied for higher even-order tensors.

Table A1. Symmetry types and distinct components of fourth-order tensors.

No. Symmetry
Types g[α] g[εv] g

[
H(2)

]
g
[
εH(3)

]
g
[
H(4)

]
C F M

1 Ci Kh C∞h D2h Ci Ci 21 54 36
2 C3i Kh C∞h D∞h C3i D3d Null 18 12
3 D3d Kh Null D∞h D3d D3d 6 10 8
4 C2h Kh C∞h D2h C2h C2h 13 28 20
5 C4h Kh C∞h D∞h C∞h D4h Null 14 10
6 C∞h Kh C∞h D∞h C∞h D∞h Null 12 8
7 D2h Kh Null D2h Th D2h 9 15 12
8 D4h Kh Null D∞h Null D4h 6 8 7
9 D∞h Kh Null D∞h Null D∞h 5 7 6

10 Th Kh Null Null Th Oh Null 5 4
11 Oh Kh Null Null Null Oh 3 3 3
12 Kh Kh Null Null Null Null 2 2 2
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