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Abstract: The current research examines the impact of Ca2+ substitution on the phase and electrical
properties of (Ba1−xCax)Ti4O9, (x = 0.0, 0.3, 0.6, and 0.9) sintered pellets synthesized by solid-state
reaction method. The as-synthesized samples were analyzed using X-ray diffraction (XRD) and
impedance spectroscopy. The emergence of orthorhombic phase fit into space group Pnmm was
revealed by XRD, and the addition of Ca resulted in a considerable shift in grain size. Dielectric
properties were determined using an impedance spectroscopy in a wide frequency range from
1MHz to 3 GHz. The dielectric properties i.e., dielectric constant (εr) and dielectric loss (tanσ),
were measured at 3 GHz frequency. The frequency-dependent parameters such as conductivity,
dielectric constant, and dielectric loss indicated that the relaxation process is a Maxwell–Wagner
type of interfacial polarization. The improved dielectric properties and low energy loss have made
(Ba1−xCax)Ti4O9 a prominent energy storage material. This study provides the possibility to improve
its dielectric properties and reduce energy loss, making it an excellent energy storage material.

Keywords: (Ba1−xCax)Ti4O9 ceramics; dielectric properties; complex impedance

1. Introduction

Owing to remarkable chemical as well as electrical properties, barium titanate (BT)
has traditionally been regarded as developing dielectric material. Barium tetra titanate
nanoparticles have recently received a lot of interest due to their numerous applications in
modern communication technologies, such as software radio systems, global positioning
systems (GPS), and environmental monitoring satellites. In addition, a high-quality res-
onators component has been used for high-speed communication systems, data storage
devices, rechargeable batteries, and many more microwave dielectric applications. To
improve the microwave dielectric properties, most laboratories and enterprises provide
some micro-level oscillators and microwave frequency filters at low cost [1,2]. Ceramics
compounds i.e., BaTi4O9, BaTi5O11 and Ba2Ti9O20, exhibit better relative permittivity val-
ues and insignificant dielectric loss in the region radio frequency [3]. Moreover, a complex
perovskite AB4O9 type, i.e., Barium tetra titanate (BT4), where A and B sites usually repre-
sent cations and many researchers make additions to these sites, enhances the microwave
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dielectric properties [4–7]. Meanwhile, doping divalent metals (Ca2+, Sr2+, Sn2+) onto
BaTi4O9 improves the dielectric properties (εr) of the sample, such as the quality factor
(Q) and temperature coefficient of resonant frequency (τf), which are important in the
manufacture of electronic devices. When Ca2+ occupies the position of barium in the BT4
sample, the orthorhombic phase of Ba1−xCaxTi4O9 (BCT4) emerges. In addition, the doping
of Ca2+ improves the dielectric and electrical properties of the ceramic compounds for elec-
trical and dielectric resonator applications [8]. Because of their good microwave dielectric
properties, the majority of investigations have been focused on diverse dielectric ceramic
materials, particularly ceramics based on BT and polymer-related substances. BaTi4O9 ce-
ramics have good dielectric properties i.e., high relative permittivity (εr = 36), good quality
factor (Q = 3260 GHz), or low loss (Tanδ = 0.00048) and temperature coefficient of resonant
frequency (τf = +24 ppm/◦C). BT4 or BT-based solid solutions with further B-site or A-site
doping components (i.e., Ca2+, Sr2+, Zr4+, Sn4+) are the most important dielectric ceramics,
which improve the microwave dielectric properties [9–11]. In addition, the microwave
dielectric properties of electro-ceramics are heavily influenced by the production strategies
and dopant content [12].

In the present research work, the phase, electrical, and dielectric properties of the sintered
solid solution ceramics (Ba1−xCax)Ti4O9 (x = 0.0, 0.3, 0.6, and 0.9) has been investigated.

2. Experimental Method

The solid solution of (Ba1−xCax)Ti4O9 (x = 0.0, 0.3, 0.6,and 0.9) calcined ceramics was
obtained using conventional route. High-grade reactant raw powders were selected and
weighed according to the stoichiometric ratio; these powders were purchased from Aldrich
Chemicals (BaCO3, 99.9% and CaCO3, 99.9%) and sigma (TiO2, 99.9%). These weighed
powders were mixed in a distilled water medium for six (06) hours using horizontal ball
milling. The wet mixture was dried by keeping it in oven at 100 ◦C for one day. The dried
material was re-milled (in dry form) for two (2) hours before being calcined in an alumina
crucible of high purity for 3 h in a furnace at 900 ◦C with 5 ◦C/min heating cooling rate. The
calcined powder was manually crushed for one hour with a mortar and pestle to prevent
agglomeration. The ground fine calcined powder was pressed into cylindrical dye with a
diameter of 10 mm and thickness of 5 mm using of manual pellet press machine (CARVER,
Washington D.C., USA) at 100 MPa pressure. These pellets were indorsed with sintering at
1000 ◦C for 4 h in air with a heating cooling rate of 5 ◦C/min. The Archimedes principle
can be used to measure the apparent bulk densities of the ceramic samples. At microwave
frequency, the samples’ dielectric characteristics and minimal dielectric loss were determined
using an impedance analyzer (Agilent 4287A, Keysight, Santa Rosa, CA, USA).

3. Results and Discussions
3.1. Phase Analysis

The phase analysis profile of (Ba1−xCax)Ti4O9 with various Ca2+ contents is shown in
Figure 1 [13]. The crystal structure (i.e., orthorhombic structure) along with space group
Pnmm elementary assembly of BaTi4O9 (compared with reference card number 34–70) is
responsible for all diffraction peaks, with lattice parameters of a = 6.294(5) Å, b = 14.532(11)
Å, and c = 3.797(3) Å. Many peaks have been identified previously along with secondary
phase (i.e., Ba2Ti8O16) with reference card number (PDF No.80–916) [13]. The influence
of Ca2+ concentrations on the structural properties of (Ba1−xCax)Ti4O9 ceramics has been
recorded [14]. It is worth noting that certain peaks vanish while others shift to lower 2θ
values as the Ca2+ content in (Ba1−xCax)Ti4O9 rises. This could be attributed to micro strain,
solid-state inhomogeneity, or the substitution of Ba2+(RBa = 1.44) for the comparatively
enormous radius of Ca2+ (RCa = 1.57Å) for Ba2+ (RBa = 1.44Å) [15].
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Figure 1. XRD pattern of (Ba1−xCax)Ti4O9 (x = 0.0, 0.3, 0.6 and 0.9) ceramics powders calcined at
900 ◦C in air [13].

The crystalline nature of orthorhombic structure barium tetra titanate is attributed
to the highly intense peaks and strong diffraction pattern as shown in Figure 1 (BaTi4O9),
which increase with the increase of Ca2+ contents in (Ba1−xCax)Ti4O9 concentration, indi-
cating that the particles gradually participate with the increase of Ca content.

The density (ρx) of X-ray can be observed using the following formula:

ρx =
ZM
NA

(1)

The number, of atoms per unit cell is eight, where ‘ρx’ is the calculated density, ‘M’ is
the molecular weight of compound while ‘NA’ is the Avogadro number

ρx =
nM

NAV
(2)

where ‘n’ is the no. of moles and ‘V’ is the volume.
Theoretical densities of the samples can be calculated using Equation (1) while experi-

mental densities can be determined using the Archimedes principle (density meter MD-35).
Then we find the relative densities as shown in Table 1.

Table 1. Sintered (Ba1−xCax)Ti4O9 ceramic compositions and their microwave dielectric properties.

X Calcination
Temperature

Sintering
Temperature ρexp (g/cm3) ρx (g/cm3) ρre (%) εr

Q×f
(at 3 GHz) Tan(δ)

0 900 ◦C/3 h 1000 ◦C/4 h 4.402 4.71 74.4 36.62 5669.75 0.00017
0.3 900 ◦C/3 h 1000 ◦C/4 h 4.593 5.95 76.28 37.88 6595.05 0.00015
0.6 900 ◦C/3 h 1000 ◦C/4 h 4.433 3.95 76.65 38.13 6732.67 0.00014
0.9 900 ◦C/3 h 1000 ◦C/4 h 4.691 4.23 77.85 77.85 58.6139 0.00017

X = contents, ρexp = experimental density, ρx = calculated density, ρre = relative density, εr = dielectric constant, Q × f = quality factor,
Tan(δ) = loss tangent or dielectric loss.
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3.2. Dielectric Characteristics
3.2.1. Complex Dielectric Constant

The mobility of the electric dipole generated by the applied electric field is usually
the source of dielectric relaxation. The impact of applied electric field on the dielectric
materials has been described using the Debye–Scherer relaxation model [16]. The complex
dielectric constant is calculated as follows:

e∗ = e′ − jε′′ (3)

where ‘ε*’ is complex permittivity, ‘ε′’ is real permittivity and ‘ε”’ is imaginary permittivity.
A capacitor’s storage capacity may be increased using dielectric materials. Therefore,

the material’s capacitance is proportional towards its dielectric constant.

ε′ =
Cd
εoA

(4)

where ‘C’ is capacitance, ‘d’ is thickness, ‘A’ is area and ‘εo’ is the permittivity of free
space. Figure 2 shows the variation of dielectric constant with frequency for (Ba1−xCax)
Ti4O9 (x = 0.0, 0.3, 0.6, and 0.9) sintered ceramics, at 1000 ◦C for 4 h. At low frequen-
cies, the dielectric constant is very large, but it drops dramatically as frequency increases,
eventually becoming constant at high frequencies. Ionic, electronic, interface, and orien-
tation polarization are the four types of polarization that can be used to understand this
behavior. Because each of these polarization mechanisms has its unique relaxation time,
changes in applied frequency have an impact on charge carrier hopping. [17,18]. At low
applied frequencies, all polarization mechanisms contribute, but as the frequency rises,
some polarization mechanisms (such as dipole polarization and interface polarization) are
unable to rotate in the external electric field. As a result, the overall contribution of all
mechanisms tends to reduce, and the values of dielectric constant drop with increasing
frequency, becoming independent at higher frequency, as shown in Figure 2 i.e., the dielec-
tric constant (ε′) increases with increasing Ca2+ concentration until x = 0.9, where it starts
to decline. Because the atomic polarizability of Ca2+ is higher than that of Lanthanum
(La), the dielectric constant increases until x = 0.9. Though, at contents (x = 0.9) the sample
porosity increases and, the grains size decreases, leading to an increase in resistivity, and
polarization becomes incredibly difficult, potentially lowering the dielectric constant. The
largest value of actual dielectric constant is attained for compositions with larger grain
size [19]. According to this study, charge carrier mobility promotes dipolar orientation.

When the parallel plate capacitor is connected to an external power supply source,
the current leads the voltage by phase angle 90◦ which causes the power dissipation due to
the leakage of current. As a result, the tangent loss may be determined using the following
formula:

tan δ =
1

2πfCPRP
(5)

where ‘2πf’ is the angular frequency, ‘Cp’ is parallel capacitance, ‘Rp’ parallel resistance
while ‘tan δ’ is loss tangent or dielectric loss.

The ideal capacitor has zero loss angle, and consumes zero power. Power dissipations
are commonly referred to as dielectric loss in commercial capacitors and will be evaluated.
This is depicted in Figure 3, where the variation in dielectric loss (tan δ) is a function of
frequency (f) for ceramic pellets manufactured from (Ba1−xCax) Ti4O9 (x = 0.0, 0.3, 0.6, 0.9)
sintered at 1000 ◦C for 4 h. It is noted that both have the same tan loss trend relative to
the Ca2+ content. These trends follow the Maxwell–Wagner interface polarization model,
which aligns with Koop’s Phenomenological Theory (KPT). The dielectric materials are
modeled as multilayer capacitors with grain edges and grains [19,20]. The grain boundary
with deficient conductivity is more efficient in the low-frequency range because of internal
morphological defects, whereas the smooth grain is more active at high frequency. The
relaxation peaks for distinct components arise at different frequencies, as shown in Figure 3.
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According to polarization resonance, each polarization mechanism has its own relaxation
frequency, which causes resonance when the relaxation frequency matches the applied
frequency. As a result, the presence of various component peaks is due to the relaxation
phenomenon of these samples. With a rise in Ca content, the relaxation peak shifts towards
low frequency, implying that the relaxation time may increase. The decrease in peak
intensity with increasing substitution content could be attributable to a reduction in defects
and contaminants.
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3.2.2. Conductivity Analysis

Conductivity is defined as the movement of charge carrier under the action of applied
field. The conductivity increases gradually at lower frequencies, but at higher frequen-
cies the conductivity abruptly increased. At lower frequencies, the resistive nature of
grain boundaries becomes more complicated, resulting in a low conductivity value being
observed [21]. The high conductive structure of grains becomes highly active at higher
frequencies, resulting in increased charge carrier hopping between the ions and increased
conductivity [22]. The net conductivity of ceramics can be found using Jonsher’s Power
Law (JPL).

σtotal = σdc −Aωs (6)

where ‘σdc’ is the conductivity of DC, ‘A’ is the pre-exponential factor and ‘s’ is the expo-
nent. The phrase ‘ac conductivity’ encompasses the entire concept of Aωs. The following
formula [23] can be used to calculate ac conductivity:

σac = ε′εoω tan δ (7)

where (ω = 2πf) is Angular frequency.
Figure 4 displays a variation of conductivity (σac) versus frequency (f) for (Ba1−xCax)

Ti4O9 (x = 0.0, 0.3, 0.6, and 0.9) sintered ceramic pellets at 1000 ◦C for 4 h. The change in
conductivity is minimal at first, but as the frequency increases, the conductivity increases
dramatically. The hopping process and carrier mobility may be stimulated by increasing
frequency; however, the free carrier may also consider the bound charge to conduct at high
frequency. The cationic disorder caused by Ca2+ substitutions of smaller cations at the
A-site may boost the conductivity by creating oxygen vacancies in the lattice skeleton at
the 48f site [24].
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3.2.3. Quality Factor

Ca2+ concentration has a significant impact on microwave dielectric parameters such
as dielectric constant (εr), quality factor (Q × f) and temperature coefficient of resonant
frequency (τf). At a frequency of 3 GHz, the dielectric characteristics of sintered ceramics
samples were investigated.
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Figure 5 shows the variation of Q factor with frequency (f) for (Ba1−xCax) Ti4O9
(x = 0.0, 0.3, 0.6, and 0.9) sintered ceramic at 1000 ◦C for 4 h. At 1.5 GHz, there is a
good quality factor and low loss dielectrics, making it excellent for microwave dielectric
resonator applications. The temperature coefficient of resonance frequency (τf) is virtually
zero for good tunable and silent circuits. However, we observed that due to the formation
of the secondary phase, the values of temperature coefficient of resonance frequency (τf)
increases with increasing the Ca2+ concentrations. As the sintering temperature rises,
porosity decreases and grains become more tightly connected, increasing density. Similarly,
sintering temperature has an impact on relative permittivity.
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3.2.4. Complex Impedance Analysis

Impedance spectroscopy is a useful tool for investigating the role of grains and grain
boundaries, as well as the polarization mechanism. Some properties of solids depend on
the capacitance and resistance values of individual microstructures, which are crucial in
determining the dielectric response of materials. This technique enables us to estimate the
resistance and capacitance provided by the bulk and grain boundaries and helps us find
the relaxation time and frequency. The frequency dependence of impedance in complex
form can be written as:

Z∗ = Z′+ jZ′′ (8)

Dielectric loss

tan δ =
ε′′

ε′ =
Z′
Z′′

(9)

Complex impedance

Z∗ =
ε′′

Coω
(
ε′2 + ε′′2

) + j
−ε′

Coω
(
ε′2 + ε′′2

) (10)

where ‘Z*’ is complex impedance, ‘Z′’ is real impedance while ‘Z”’ is imaginary impedance.
Figure 6 demonstrates the frequency dependence of real impedance, which shows a

diminishing trend as frequency increases. It can be observed that the impedance is very
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high in the low-frequency range, demonstrating the benefit of the grain boundary. Due
to the effect of conductive grains, it decreases with the increase of frequency. In complex
impedance analysis, the plot between the real part of impedance Z′ and the imaginary part
of impedance Z” is known as the Nyquist plot. The analysis shows that the magnitude of
Z′ decreases with increasing frequency and temperature, indicating the ac conductivity
(σac) of the sample increases. The increase of conductivity can be explained as the reason
for oxygen deficiency distribution at high temperature. At low frequency, Z′ decreases
significantly with the increase of Ca2+ substitution. At high frequency, the value of Z′

seems to be frequency independent, which indicates that the increase of Ca2+ concentration
increases the temperature and leads to the increase of conductivity. The merging of the Z′

curves in the higher frequency region is probably the space charge released by the decrease
of the barrier performance of the samples. It is also observed that the frequency at which
the Z′ curves coincide increases with the increase of Ca2+ content. On the other hand,
Figure 7 shows that Z” shifts towards higher value with the increase of frequency.
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3.2.5. Complex Modulus Analysis

To analyze the electrical and relaxation properties of materials, complex impedance
spectroscopy is an important technique. It provides important information about the
stability of electrical behavior by studying the hopping of charge carriers and material
homogeneous or heterogeneous properties. The electrical properties of bulk samples can
be obtained by this technique because the study is more sensitive to the bulk properties
of samples. The complex modulus M* is the inverse of complex dielectric constant ε*, i.e.,
M∗ = (ε∗)−1 = (ε′ − jε”)−1 = M′+ jM′′. Where M′ and M” are the real and imaginary
parts of the complex modulus, respectively, as determined by the following relations [25]:

Complex electrical Modulus

M∗ = M′+ jM′′ (11)

M∗ =
ε′

ε′2 + ε′′2
+ j

ε′′

ε′2 + ε′′2
(12)

where ‘M*’ complex modulus, ‘M′’ real modulus while ‘M”’ is imaginary modulus.
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Figure 8 shows the frequency dependence of complex modulus M*. M* increases as the
frequency increases from low to high. This trend can be characterized by the asymmetric
nature, and relates to the short-range mobility of ions and electrons. Two types of behavior
can be seen here: first, a decreasing trend at lower frequencies, and then an increasing
trend at higher frequencies. Second, the peak value first moves to high frequencies until x
= 0.9 and then again moves to low frequencies. The low-frequency region shows the long-
distance charge mobility, while the high frequency region shows the short distance mobility
due to the limitation of the potential well. The peak shift describes the increase and then
decrease in the relaxation process, which is almost consistent with the dielectric properties.
Therefore, it can be concluded that the contribution of grains and grain boundaries exists in
the samples. These results show that the increase of Ca2+ substitution enhances the grain
boundaries, which shift the plots towards the high value of M′, leading to an increase in
capacitance of the samples.
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4. Conclusions

The solid-state solution of (Ba1−xCax)Ti4O9 (x = 0.0, 0.3, 0.6, and 0.9) ceramics has
been investigated. The phase analysis shows that the impurity-free orthorhombic phase
structure along with space group (Pnmm) is formed at (x = 0.0), the lattice parameters
decrease with the substitution of Ca2+, and the unit cell volume also decreases. Impedance
analysis revealed that the value of dielectric constant increases while increasing the Ca2+

contents due to their high atomic polarizability and decreases further due to increasing
the sample porosities. Frequency-dependent ac conductivity was found to increase with
increasing Ca2+ content due to the growth of grain boundaries and ionic polarizabilities.
Complex modulus analysis investigated the various types of charge carrier mobility. The
obtained results from this research are suitable for charge storage devices as well as for
microwave wireless communication system applications.
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