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Abstract: This work studied the regulation of hole concentration and mobility in p-InGaN layers
grown by metalorganic chemical vapor deposition (MOCVD) under an N-rich environment. By
adjusting the growth temperature, the hole concentration can be controlled between 6 × 1017/cm3

and 3 × 1019/cm3 with adjustable hole mobility from 3 to 16 cm2/V.s. These p-InGaN layers can
meet different requirements of devices for hole concentration and mobility. First-principles defect cal-
culations indicate that the p-type doping of InGaN at the N-rich limiting condition mainly originated
from Mg substituting In (MgIn). In contrast with the compensation of nitrogen vacancy in p-type
InGaN grown in a Ga-rich environment, the holes in p-type InGaN grown in an N-rich environment
were mainly compensated by interstitial Mg (Mgi), which has very low formation energy.

Keywords: InGaN; hole; interstitial Mg

1. Introduction

InGaN alloys are attractive semiconductor materials due to their tunable bandgap
energy (Eg) range from 0.65 to 3.4 eV. Thin undoped InGaN layers are widely used in
light-emitting diodes (LEDs) and laser diodes (LDs) for lighting, displays and commu-
nication [1–3]. Due to the high absorption coefficient (~105 cm−1) and high radiation
resistance [4], thick intrinsic InGaN layers are also prospective candidates for solar cells [5].
In green LDs, thick InGaN layers are used as a waveguiding layer with the inherent benefit
of a higher confinement factor [6]. Moreover, the valance band maximum (VBM) of InGaN
alloys is higher than that of GaN, which reduces the active energy of Mg and contributes
to a high hole concentration in gallium nitrides. p-InGaN layers with thickness beyond
100 nm were reported in solar cells [7] and heterojunction bipolar transistors (HBTs) [8] as
the hole-injection and p-type conduction layers.

Many scholars focused on improving the crystal quality of p-type InGaN layers
to obtain a large hole concentration and maintain high hole mobility [9–12]. A hole
concentration of 7.7 × 1017/cm3 was achieved on an Mg-doped In0.04Ga0.96N grown by
molecular beam epitaxy (MBE) [13]. By reducing lattice mismatch, a p-type In0.18Ga0.82N
with a hole concentration up to 3 × 1019 cm−3 was grown on a GaN substrate by plasma-
assisted MBE (PA-MBE) [14]. MOCVD was also used to grow a p-type In0.22Ga0.78N layer
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with a hole concentration of 5 × 1018 cm−3 [15]. However, these reported hole mobilities
are limited to less than 10 cm2/V.s. Not all devices need to maintain high mobility at a
higher hole concentration. For example, devices using p-type layers as hole injection layers,
high hole concentration and high mobility are both needed to form large hole current. In
addition to these, there are some devices that only need high hole concentration, such
as p-type E-mode high electron mobility transistors (HEMTs). High hole concentration
is useful to deplete two-dimensional electron gas, resulting in high threshold voltage.
However, it does not need high hole mobility, which can lead to a large gate current. It is
significant to regulate the hole concentration and mobility within a certain range, so as to
meet the needs of different devices.

The main factors affecting hole concentration and mobility in p-type InGaN are as
follows. First, V-pits form easily in InGaN layers due to a large lattice mismatch and large
thermal expansion coefficient between InN and GaN [16]. V-pits can act as traps of holes,
which decreases the hole concentration. In addition, the scattering of V-pits reduces hole
mobility [17]. Second, there is a high concentration of background electrons in InGaN
layers [18]. Positively charged N vacancies (VN) are considered to be the source of the high
background-electron concentration because of the low formation energy in Ga-rich growth
conditions [19]. However, reaction chambers of MOCVD usually present as an N-rich
environment because the V/III ratio is usually in the order of thousands during the growth
of gallium nitrides. The formation energy of VN is high in N-rich environments [20]. Other
defects that can act as donor impurities to compensate holes in Mg-doped InGaN grown
by MOCVD are still uncertain.

In this work, a 100 nm V-pit-free p-InGaN layer on a sapphire substrate was grown by
MOCVD. By adjusting the growth temperature, the hole concentration could be controlled
between 6 × 1017/cm3 and 3 × 1019/cm3 with adjustable hole mobility of 3 to 16 cm2/V.s.
Mesoscopic defects such as spiral mounds and V-pits originated from the screw dislocation
core. First-principles defect calculations were carried out to study defects in an Mg-doped
InGaN layer at N-rich limit conditions. The results indicate that the p-type doping of
InGaN mainly originated from the process of Mg substituting In (MgIn). For p-InGaN
grown in the N-rich environment, native defects compensating holes were interstitial Mg
(Mgi) instead of VN in the p-InGaN grown in the Ga-rich environment.

2. Materials and Methods

Under the same pressure of 150 torr, four 100 nm thick samples were grown by
MOCVD on 2 inch c-plane sapphire substrates at 790 ◦C (Sample A), 800 ◦C (Sample
B), 810 ◦C (Sample C) and 820 ◦C (Sample D). Triethylgallium (TEGa), trimethylindium
(TMIn), bis-cyclopentadienyl-magnesium (Cp2Mg) and ammonia (NH3) were used as
the precursors for Ga, In, Mg and N. Before the InGaN layers, 2 µm thick undoped GaN
templates were grown on sapphire. The growth rate of the p-InGaN was about 1 nm
per min, and the flux of Cp2Mg was 30 sccm for all the samples. Four p-InGaN layers
were grown at 820 ◦C with different growth times of 5, 10, 20 and 50 min. The indium
compositions of the InGaN layers were estimated by high-resolution X-ray diffraction (HR-
XRD). Surface morphologies of all samples were revealed by atomic force microscopy (AFM,
Veeco D3100, New York, NY, USA) with a scan area of 5 × 5 µm2. These samples were
processed into Vander Pauw geometries for Hall effect measurements at room temperature
(RT) in order to test hole concentration and mobility.

3. Results and Discussion
3.1. p-Type InGaN Growth

Figure 1 shows the ω-2θ scan rocking curves of p-InGaN layers under different
growth temperature levels. Indium composition was calculated to be ~7%, 5.8%, 5.3% and
4.8% when the growth temperature was 790, 800, 810 and 820 ◦C, respectively, according
to location of the InGaN peak. When the growth temperature increased, the indium
composition was reduced due to the decreased incorporation rate of indium atoms. When
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the temperature exceeded 800 ◦C, the indium composition decreased to less than 6%. This
is consistent with reported results based on the miscibility rate of InN in GaN, which
revealed that the indium content was limited to less than 6% when the growth temperature
was higher than 800 ◦C [21].
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Figure 1. XRD curves of p-InGaN samples (color online).

Figure 2 displays the AFM images (a–d) and line scans (e–h) of the images of the
samples with a scan area of 5 × 5 µm2. Surface roughness was improved when the growth
temperature increased. According to the line scans of the AFM images, the surface fluctua-
tion of Samples A–D shrank. There were many V-pits with a density of ~1.08 × 108/cm2 in
the morphology of Sample A. In Samples B–D, the V-pits disappeared. In addition, for all
the samples, some spiral mounds were observed on the surface.
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In order to study the formation mechanism of the mesoscopic V-pits and spiral mound,
four p-InGaN layers were grown at 820 ◦C with different growth times of 5, 10, 20 and
50 min. According to the calibrated growth rate of 1 nm/min by using the scanning electron
microscope (SEM, S-4800, made in Japan) of the cross-section of Sample D, we determine
that the thickness of the four InGaN layers was 5, 10, 20 and 50 nm, respectively. The
morphologies of these layers are shown in Figure 3a–d. The line scans of these AFM images
for different InGaN layers are shown in Figure 3e–h. As growth time increased, the surface
fluctuation became larger. Several small spiral mounds could be observed on the surface
of the p-InGaN under the growth time of 5 min. With increased growth time, the size of
the spiral mounds increased, while the number of spiral mounds remained the same. Two
spiral mounds are enlarged in Figure 3c. A dislocation core was observed in the spiral
mound and the step bend around the dislocation core. During step-flow growth, one end
of the step was pinned by screw dislocation. Then, the step curve around the dislocation
core evolved into spiral mounds forming [22,23]. V-pits were only observed on the thickest
p-InGaN layer, grown for 50 min, which indicated that these V-pits may have originated
from threading dislocations (TDs) [24] or stacking faults in the InGaN layer. The TDs or
stacking faults were generated by strain relaxation [25] due to the lattice mismatch between
InGaN and GaN.
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Figure 4 shows the hole concentration and mobility of all samples tested by Hall at RT.
The hole concentration reduced from 2.4 × 1019/cm3 to 1.5 × 1018/cm3, and further to 6.3
× 1017/cm3 when the growth temperature increased from 790 to 800 and 810 ◦C. However,
when the growth temperature continued to increase to 820 ◦C, the hole concentration
increased to 2.4 × 1018/cm3 instead of decreasing. When the growth temperature increased
from 790 to 820 ◦C, the indium content of InGaN alloys reduced, which led to a larger Eg.
According to calculation:

Eg(InxGa1−xN) = xEg(In) + (1 − x)Eg(GaN) − bx(1 − x)
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where Eg(InN) = 0.7 eV, Eg(GaN) = 3.42 eV, b = 1.3 eV, the band differences (∆Eg) among the
four samples are given. Compared with Eg of Sample A, the Eg of Sample B increased by
46 meV. The ∆Eg between Samples B and C was 19.3 meV, and the ∆Eg between Samples C
and D was 19.4 meV. The larger Eg caused the VBM to shift to a lower level, which increased
the active energy of Mg in InGaN. Correspondingly, the hole concentration reduced. Due
to the large ∆Eg (46 meV) between Samples A and B, the hole concentration dynamically
decreased. However, for Sample D, with the highest growth temperature and lowest In
content, the hole concentration did not decrease, but increased. Defect density was reduced
due to the high temperature and low In content, which resulted the hole concentration
being enhanced.
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(color online).

Figure 4 shows that the hole mobility monotonously increased with an increase in
temperature. The high hole concentration of Sample A led to low hole mobility, less than
3 cm2/V.s, due to serious carrier scattering and defect scattering. The result is consistent
with reported data [26]. For Samples B and C, with a relatively low hole concentration and
In content, hole mobility was increased thanks to the reduced carrier scattering and defect
scattering. The hole mobility of Sample D reached 16 cm2/V.s, which is one of the highest
values among those previously reported for p-InGaN layers with a hole concentration over
1 × 1018/cm3.

The four samples have different advantages. Samples A and B with high hole concen-
tration and low mobility are suitable for p-type HEMTs to obtain high Vth with low gate
current. Samples C and D with relatively high hole concentration and high mobility are
undoubtedly attractive for some devices that need a high hole injection, such as LEDs and
NPN-type HBTs.

3.2. First-Principles Defect Calculations of p-Type InGaN

In order to investigate the microscopic defect properties of Mg in InGaN, we carried
out first-principles defect calculations of Mg in the supercell of In4Ga44N48, which was
approximate to the In composition of the above samples. A random In4Ga44N48 alloy was
modeled by the SQS approach to determine cation site occupancies [27,28]. The produced
atomic structure for the supercell of In4Ga44N48 is shown in Figure 5. First-principles
calculations were carried out using projector augmented wave (PAW) pseudopotentials as
implemented in the Vienna ab initio Simulation Package [29,30]. The 3D states of Ga and
In atoms are included as valence electrons in the pseudopotentials. The plane-wave cut-off
energies were set as 400 eV. Structural optimization was performed with the Perdew–Burke–
Ernzerhof (PBE) exchange correlation functional. The atomic structures were optimized
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until changes in total energy were less than 1 × 10−5 eV per cell. During the electronic
calculations, the screened hybrid density functional of Heyd, Scuseria and Ernzerhof
(HSE06) was employed [31]. The fraction of the screened Fock exchange was set as 0.32,
which resulted in bandgap energy for In4Ga44N48 of 3.18 eV. The Monkhorst–Pack scheme
with a Γ-centered 2 × 2 × 2 special k-points mesh was adopted to sample the reciprocal
space of the supercell [32].
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In this work, defect configurations of interstitial Mg (Mgi), Mg substituting Ga (MgGa)
and Mg substituting In (MgIn) were considered. Dominant intrinsic defects such as VN, VIn
and VGa were considered. Formation energies of Mg and intrinsic defects were calculated
by the mixed k-point scheme. The formation energy of defect α at the charge state q
[∆H f (α, q)] is calculated by [33,34]:

∆H f (α, q) = ∆E (α, q) + ∑ niµi + qEF (1)

where ∆E (α, q) = E(α, q)− E(InGaN) + niEi + qEVBM, E(InGaN) and E(α, q) are the
total energies of the InGaN alloy and InGaN containing defect α with charge state q,
respectively. ni is the number of atom i transferred from the supercell to the reservoir
during the formation the defect, µi is the chemical potential of the constituent i referenced
to its elemental solid/gas with energy Ei, EF is the Fermi energy referenced to the VBM of
In4Ga44N48.

During the Mg doping in InGaN alloys, the accessible values of the chemical potentials
µi are limited by a series of requirements [35]. Firstly, the values of µi are limited to those
values that maintain a stable In4Ga44N48 alloy:

4µIn + 44µGa + 48µN = ∆H f (In4Ga44N48) (2)

where ∆H f (In4Ga44N48) is the formation energy of In4Ga44N48 alloy. Secondly, to avoid
the precipitation of elemental host phases and the elemental dopant, the values of µi are
limited by:

µIn ≤ 0, µGa ≤ 0, µN ≤ 0, µMg ≤ 0 (3)

Lastly, to avoid the formation of secondary phases, the values of µi are limited by:

µGa + µN ≤ ∆H f (GaN),µIn + µN ≤ ∆H f (InN),3µMg + 2µN ≤ ∆H f (Mg2N3) (4)

where ∆H f (GaN), ∆H f (InN) and ∆H f (Mg2N3) are formation energies of InN, GaN and
Mg3N2, respectively. The doping of Mg in InGaN alloys was carried out under the N-rich
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limit, which corresponds to µN = 0. Solving Equations (2)–(4), we obtained the values of µ
for In, Ga, N and Mg of −1.3, 0, −0.18 and −1.50 eV, respectively.

The formation energies of Mg and dominant intrinsic defects in InGaN at the N-rich
limit are shown in Figure 6. Firstly, the formation energies of VIn and MgIn were smaller
than those of VGa and MgGa, respectively. The chemical potential of In was much smaller
than that of Ga at the N-rich limit. It costs less energy for the removal and Mg substitution
of In, compared to the case of Ga. Therefore, the p-type doping of InGaN at the N-rich limit
mainly originated from MgIn. The (0/−) transition level of MgGa occurred at 0.14 eV above
the VBM, which was lower than that of MgGa in GaN [36]. The defect level of MgGa is
created from the host valence band. Since the VBM of InN was higher than that of GaN [37],
alloying of In increased the VBM of GaN and lowered the defect level of MgGa in InGaN.
The (0/−) transition level of MgIn was 0.16 eV above the VBM, which was slightly deeper
than that of MgGa. This is because the 5p orbital energy of In is slightly higher than the 4p
orbital energy of Ga. Mgi is a deep donor in InGaN, with the (2+/+) and (+/0) transition
levels located at 0.40 and 0.17 eV below the conduction band minimum (CBM), respectively.
As the Fermi energy of InGaN spreads throughout the bandgap, the charge state of VN
changed from 1+ to 0. In GaN, the stable charge states of VN were 3+ and 1+ as the Fermi
energy increased. VN created an empty defect level below the CBM and a half-occupied
defect level above the VBM of GaN. Because the CBM of InN was lower than that of GaN,
alloying of In into GaN lowered the energy of CBM. The empty defect level of VN moved
to an energy level higher than the CBM of InGaN. Therefore, the defect level of VN in
InGaN was only the half-occupied defect level above the VBM. Due to the N-rich limiting
condition, the formation energy of VN was extremely high. The compensation of p-type
doping for InGaN at the N-rich limiting condition was the formation of Mgi rather than
VN. This result indicates that the p-type doping of InGaN grown by MOCVD cannot be
enhanced by simply increasing the concentration of the Mg dopant. Once the concentration
of Mg was larger than the sum concentration of MgIn and MgGa at the growth temperature,
the formation of Mgi was not beneficial to the p-type doping of InGaN.
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Figure 6. Calculated formation energies of Mg and dominant intrinsic defects as functions of Fermi
energy in In4Ga44N48 at the N-rich limit. Stable charge states of each defect are included.

4. Conclusions

We grew 100 nm V-pit-free p-InGaN layers on a sapphire substrate by MOCVD. By
adjusting the growth temperature, the hole concentration could be controlled between 6 ×
1017/cm3 and 3 × 1019/cm3 with adjustable hole mobility of 3 to 16 cm2/V.s. A p-InGaN
layer with a relatively high hole concentration of 2.4 × 1019/cm3 and low hole mobility
of 3 cm2/V.s was obtained at 790 ◦C. It increased the threshold voltage and decreased the
gate current for p-type E-HEMTs. A hole concentration of 2.4 × 1018/cm3 and high hole
mobility of 16 cm2/V.s were achieved at 820 ◦C, which are attractive for devices requiring
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hole injection layers. Mesoscopic defects such as spiral mounds and V-pits originated from
the screw dislocation core. First-principles defect calculations indicated that the p-type
doping of InGaN in an N-rich limiting condition was mainly caused by MgIn. For p-type
InGaN grown in an N-rich environment, hole compensation was the formation of Mgi
rather than VN in the p-type doping of GaN grown at the Ga-rich environment. Results
indicate that, during the p-type doping of InGaN by MOCVD, reducing Mgi is beneficial
to increasing the hole concentration.
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