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Abstract: In this study, a group of heavy metal oxide glasses with a nominal composition of 55B2O3 +
19.5TeO2 + 10K2O + (15−x) PbO + xAl2O3 + 0.5Eu2O3 (where x = 0, 2.5, 5, 7.5, 10, 12.5, and 15 in wt.%)
were investigated in terms of their nuclear radiation shielding properties. These glasses containing
lanthanide-doped heavy metal oxide were envisioned to yield valuable results in respect to radiation
shielding, and thus a detailed investigation was carried out; the obtained results were compared with
traditional and new generation shields. Advanced simulation and theoretical methods have been
utilized in a wide range of energy regions. Our results showed that the AL0.0 sample with the highest
PbO contribution had superior shielding properties in the entire energy range. The effective removal
of cross-sections for fast neutrons (ΣR) was also examined. The results indicated that AL5.0 had the
greatest value. While increasing the concentration of Al2O3 in samples had a negative effect on the
radiation shielding characteristics, it can be concluded that using PbO in the Eu3+ doped heavy metal
oxide glasses could be a useful tool to keep gamma-ray shielding properties at a maximum level.

Keywords: heavy metal oxide glasses; Eu2O3; Phy-X/PSD; radiation shielding; Al2O3

1. Introduction

Even after prolonged exposure to high doses of radiation, many of the glass types
retain good internal transmission and exceptional internal quality in terms of bubbles
and inclusions. Additionally, some special glasses may tolerate very high cumulative
radiation levels without the shield failing [1,2]. However, glass materials have a very wide
area in terms of structural concept. The objective and application area also contribute
significantly to fulfilling the researchers’ needs by defining the characteristics to be sought
in the proposed glass structure. Glasses enriched by trivalent rare-earth (RE) ions are
widely utilized in the fabrication of many photonic devices, including lasers, color displays,
sensors, LEDs, and optical-fibers used in communication systems [3–8]. Glass is an excellent
host medium for rare earth (RE) ions, luminescence species effective for a range of photonic
applications [9,10], due to its inhomogeneous broadening, low production cost, increased
thermal stability, ease of manufacturing, and simplicity of shape. On the other hand, RE

Materials 2021, 14, 5334. https://doi.org/10.3390/ma14185334 https://www.mdpi.com/journal/materials

https://www.mdpi.com/journal/materials
https://www.mdpi.com
https://orcid.org/0000-0002-0997-3488
https://orcid.org/0000-0002-6976-0767
https://orcid.org/0000-0002-6762-6898
https://orcid.org/0000-0002-7645-9964
https://doi.org/10.3390/ma14185334
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/ma14185334
https://www.mdpi.com/journal/materials
http://www.mdpi.com/1996-1944/14/18/5334?type=check_update&version=4


Materials 2021, 14, 5334 2 of 17

ions may be utilized to enhance the luminescence characteristics of heavy metal oxide
(HMO) glasses [11–14].

In contrast to phosphate, borate, and silicate glasses, HMO glasses are better photonic
tools due to their broader transparency interval covering the visible to the mid-infrared
range, enhanced non-linear optical properties, greater solubility of rare-earth ions, and
lower phonon energies. Heavy metal oxide glasses have superb optical and electrical char-
acteristics, including a high refractive index and dielectric constant, which indicate excellent
thermal, mechanical, and chemical resistance. On the other hand, much research on the
applicability of HMO glasses as radiation shielding materials has been conducted [15–18].
Although heavy metal oxide glasses are promising candidates for a number of optoelec-
tronic applications, the material density (g/cm3) of a glass shield is a fundamental need for
possible gamma radiation shielding substances. A material’s atomic number is a property
that directly affects its density (g/cm3) and the number of electrons in its orbit. The number
of electrons in the orbits of elements with large atomic numbers is anticipated to increase
as well. When ionizing X-rays and gamma rays interact with materials of high density and
atomic number, more consecutive interactions and energy losses occur [19]. These mate-
rials allow the ionizing X-ray and gamma ray to lose more energy per unit distance and
therefore facilitate the absorption process. As a result of their high material densities, HMO
glasses are of great interest to researchers for their nuclear radiation shielding capabilities.
In this study, several promising and fairly dense Eu2O3 reinforced HMO glasses [20] were
chosen for this research from the literature. In their research, Pravinraj et al. studied some
enhancement strategies on Eu2O3 reinforced HMO glasses using a regular substitution
between Al2O3 and PbO. Using analytical and modeling techniques, we investigated some
of the major contributions of the Al2O3 additive to the fast neutron and gamma-ray atten-
uation properties of HMO glasses. The findings will be presented in the context of each
glass sample’s Al2O3/PbO substitution. We hypothesized that substituting Al2O3 for PbO
would alter the gamma-ray and the fast neutron characteristics of HMO glasses. As a result,
each observation made throughout the research will be related to a certain scientific theory.
Given the prominence of HMO glasses in the literature and their shielding uses in a variety
of types of radiation facilities, the present study’s results may provide some interesting
and helpful insights into the existing HMO glass and radiation shielding literature.

2. Materials and Methods

A series of heavy metal oxide glasses with a nominal-composition of 55B2O3 +
19.5TeO2 + 10K2O + (15 − x) PbO + xAl2O3 + 0.5Eu2O3 (where x = 0, 2.5, 5, 7.5, 10,
12.5, and 15 in wt.%) were chosen from the literature [20] where the authors conducted
a characterization assessment on those glasses’ luminescence capabilities. Their results
prompted us to expand the scope of the characterization by including some important
glass properties, notably nuclear radiation shielding capabilities. The following table
summarizes the compositions of the glass samples examined.

• 55B2O3 + 19.5TeO2 + 10K2O + 15PbO + 0Al2O3 + 0.5Eu2O3
• 55B2O3 + 19.5TeO2 + 10K2O + 12.5PbO + 2.5Al2O3 + 0.5Eu2O3
• 55B2O3 + 19.5TeO2 + 10K2O + 10PbO + 5Al2O3 + 0.5Eu2O3
• 55B2O3 + 19.5TeO2 + 10K2O + 7.5PbO + 7.5Al2O3 + 0.5Eu2O3
• 55B2O3 + 19.5TeO2 + 10K2O + 5PbO + 10Al2O3 + 0.5Eu2O3
• 55B2O3 + 19.5TeO2 + 10K2O + 2.5PbO + 12.5Al2O3 + 0.5Eu2O3
• 55B2O3 + 19.5TeO2 + 10K2O + 0PbO + 15Al2O3 + 0.5Eu2O3

As a result, we utilized two distinct methods to ascertain the essential gamma-ray
shielding characteristics as well as certain mathematical applications to find the effec-
tive removal cross-section (R) values for fast neutrons. The glasses’ linear attenuation
coefficients were calculated using the general-purpose Monte Carlo program MCNPX
(v.2.7.0, Radiation Shielding Information Center, Oak Ridge National Laboratory, Oak
Ridge, Tennessee (United States); Advanced Accelerator Applications Los Alamos National
Laboratory, Los Alamos, New Mexico (United States)) [21] and the online computing
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platform Phy-X/PSD(MCNPX 2.4.0) [22]. The aim of this double-tool methodology was to
check the appropriateness of the Monte Carlo simulation results.

2.1. Simulation Phase of Shielding Parameters

The review of the literature showed that researchers are very interested in the use
of mathematical simulation techniques in material sciences and radiation studies [23–25].
Among the well-known Monte Carlo codes, MCNPX is a general-purpose Monte Carlo
software that enables the modeling of many radiation transport categories in nuclear,
medical, and particle physics research. This software allows the user to provide the
required simulation parameters, such as geometrical features and material properties,
and the energy and type of radiation source, such as narrow beam, point isotropic, and
so forth. In this study, we aimed to generate a useful gamma-ray transmission setup
to assess the transmission parameters of AL glasses. Most importantly, we aimed to
evaluate each glass sample with a different composition to see the variation in gamma-ray
attenuation properties depending on the composition of the glass and the substitution
percentage. Accordingly, we developed a generic gamma-ray transmission configuration
in our research that may give beneficial information such as the intensity of the attenuated
gamma ray when calculating the linear attenuation coefficients. Our study constructed
a basic gamma-ray transmission setup that can provide essential information about the
attenuated gamma-intensity rays when computing the linear attenuation coefficients. As
a result, an INPUT file including cell card, surface card, and source information was
generated. We identified the cells that were used and their densities and boundaries on the
cell card. The x, y, and z-axis locations were used to specify the geometric characteristics of
the boundaries in the surface card. The modeled simulation setup is shown in Figure 1,
together with its three-dimensional and two-dimensional perspectives derived using the
MCNPX visual editor. As shown in Figure 1, we located the equipment based on its
function in a gamma-ray transmission simulation. For example, a gamma-ray attenuator
was positioned between the source of isotropic point radiation and the detecting field (F4
Tally Mesh). Additionally, two major lead (Pb) blocks were constructed to absorb scattering
gamma rays, perhaps improving detection consistency. We want to highlight that those
simulations on each glass sample were conducted using photon energies ranging from
0.015 MeV to 15 MeV. Finally, each glass sample was exposed to a total of 108 particle tracks
(Number of History) with varying photon intensities. After completing all simulations,
the MCNPX output had a less than 1% relative error rate. MCNPX simulations were run
on a LenovoTM ThinkStation620 equipped with a RyzenTM ThreadripperTM Pro 3995WX
CPU (2.7 GHz, 64 Cores, 256 MB Cache). Following that, the attenuation parameters were
determined using the Phy-X/PSD platform. The main differentiation between the MCNPX
and the Phy-X/PSD formats is their architecture.

On the one hand, MCNPX is a Monte Carlo technique that requires user-defined
parameters for every component of the system, including material design, mathematical
model, physics list utilized, and variance reduction methods. Phy-X/PSD, on the other
hand, is a platform that instantaneously returns results as a result of mathematical calcula-
tions conducted against a preset database. Additional support is presented in the original
paper, which is also available online [22].
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Figure 1. MCNPX simulation setup used for gamma-ray transmission simulations (A direct screen-
shot from the MCNPX Visual Editor VE X_22S).

2.2. Investigated Nuclear Shielding Parameters

Following the determination of the linear attenuation coefficients (µ), many additional
gamma radiation attenuation parameters were determined. To begin, we calculated the
mass attenuation coefficients (µ) of the AL glasses using Equation (1) [26],

µm = µ/ρ (1)

where µ is the linear attenuation coefficient and ρ is the glass density. Following that,
the half-value layer (T1/2) values for the SM glasses were computed. T1/2 is a critical
element in evaluating the need to use very severe radiation protection measures [27]. This
value indicates the thickness of a shielding material at which the intensity of a gamma-ray
incident on it is effectively halved. Additionally, critical gamma-ray shielding properties
such as mean free path (λ) [28] and effective atomic numbers (Zeff) [29] were evaluated
in relation to gamma-ray attenuation, exposure, and energy absorption build-up factors
(EBF and EABF) [30–33]. On the other hand, we sought to assess the attenuation char-
acteristics of SM glasses against fast neutrons, which may be advantageous for specific
applications in neutron-based (i.e., photodisintegration) radiation facilities. As a conse-
quence, we computed the effective cross-sections for the removal of fast neutrons in AL
glasses. The literature and other sources provide detailed information on the factors under
study [34–36].

3. Results and Discussion

Five distinct Eu3+ reinforced heavy metal oxide glasses with a nominal composition
of 55B2O3 + 19.5TeO2 + 10K2O + (15x) PbO + xAl2O3 + 0.5Eu2O3 were studied in terms
of their gamma-ray and neutron shielding performances. To begin, we derived the linear
attenuation coefficients using the MCNPX algorithm. Then, following the procedure
outlined above, linear attenuation coefficients for each glass sample were obtained at



Materials 2021, 14, 5334 5 of 17

various energies ranging from 0.015 MeV to 15 MeV. The identical glass mixtures (see
Table 1) were then designed in the Phy-X/PSD platform together with corresponding
densities. In general, the acquired findings verified one another.

Table 1. Elemental compositions (%mole) of the studied glass samples.

Code B2O3 TeO2 K2O PbO Al2O3 Eu2O3 ρ (g/cm3)

AL0.0 0.550 0.195 0.100 0.150 0.000 0.005 3.33
AL2.5 0.550 0.195 0.100 0.125 0.025 0.005 3.202
AL5.0 0.550 0.195 0.100 0.100 0.050 0.005 3.537
AL7.5 0.550 0.195 0.100 0.075 0.075 0.005 3.08
AL10.0 0.550 0.195 0.100 0.050 0.100 0.005 2.822
AL12.5 0.550 0.195 0.100 0.025 0.125 0.005 2.601
AL15.0 0.550 0.195 0.100 0.000 0.150 0.005 2.722

Figure 2 includes the comparison-provided linear attenuation coefficients from MC-
NPX and Phy-X/PSD for AL0.0 sample in the low energy area. As shown in Figure 2, a
significant connection exists between the two findings. We found, however, a few small
discrepancies between the obtained results. Given the diametrical opposition between the
MCNPX and Phy-X/PSD formats, it is quite fair to expect some differences in the findings.

Figure 2. Comparison of linear attenuation coefficient (µ) values for AL0.0 sample obtained from
MCNPX and Phy-X/PSD at low gamma-ray energy region.

Figure 3 depicts the glass densities of the studied samples, encoded AL0.0, AL2.5,
AL5.0, AL7.5, AL10, AL12.5, and AL15.0, respectively. It is observed that reducing the
quantity of PbO in the glass structure also resulted in a noticeable decrease in density.
Due to the fact that the density term has a direct connection with the linear attenuation
coefficients (µ) of shields, we sought to understand the variations in µ values as a function
of density variation. Accordingly, we demonstrated the variation of µ values as a function
of photon energy in the 0.015 MeV to 15 MeV range. A rapid decrement was observed
in the low-energy region, where the photoelectric effect is the main interaction process
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between the ionizing gamma rays and the material. We would like to highlight that the
glass samples’ findings were sharply different due to the high molar differences in the
PbO/Al2O3 substitution. Nonetheless, adding the Al2O3 additive decreased the linear
attenuation coefficients of AL glasses in a synergistic manner. Our results demonstrated that
the AL0.0 sample had the highest values at all energies due to the highest PbO contribution
in the structure. One can say that a decreasing PbO amount in Eu3+ based HMO glasses
might decrease the linear attenuation properties even though it would increase the direct
or indirect band gap [20] and the luminescence properties of the HMO glasses, as seen
in Figure 4. In this instance, linear attenuation coefficients were reported as 89.326 cm−1,
77.997 cm−1, 77.436 cm−1, 59.836 cm−1, 47.865 cm−1, 37.703 cm−1, and 32.745 cm−1 for
AL.00, AL2.5, AL5.0, AL7.5, AL10, AL12.5, and AL15.0 at 0.015 MeV, respectively.

The term mass attenuation coefficient (µm), on the other hand, refers to the density-
independent attenuation coefficient, which includes important information about the
material’s shielding effectiveness as a function of its elemental composition. The fluctuation
of µm values in the low-energy area is shown in Figure 5. As was the case with the finding
of µ values, the AL0.0 sample was reported with maximum µm values. This is because the
substituted PbO and Al2O3 have distinct elemental structures and atomic numbers, which
directly impact their gamma-ray attenuation characteristics. A linear change line was
found in the low-energy area. As shown in Figure 6, the AL0.0 sample was presented with
the highest µm values. Additionally, we showed the change of µm values from 0.015 MeV
to 15 MeV as a function of photon energy. In addition to dominated energy regions, such as
low, mid, and high energy, a visible difference was also reported in terms of µm differences
of the AL glasses. Our findings clearly indicated that AL0.0 has the maximum µm values at
all energy regions.

The term half-value thickness (T1/2) refers to the thickness of a shielding material
that is capable of quantitatively halving the intensity of interacted gamma rays on it. As a
result, knowledge of T1/2 and the energy values examined in the radiation field enables
the most accurate radiation protection and safety measures to be provided. To provide
the gamma-ray attenuation properties of AL glasses from that point, we determined the
T1/2 in a wide range of gamma ray energy. However, it is worth noting that T1/2 value has
an inverse relationship with µ value. Thus, materials with higher µ values would have
lower T1/2 values, suggesting better gamma-ray attenuation. Figure 7 demonstrates the
variation of T1/2 values against photon energy for all AL glasses. Therefore, we would like
to define some quantitative T1/2 values in terms of the physical usage of this kind of glass,
as well as a better understanding of the alterations caused by the PbO/AL2O3 replacement.
For example, T1/2 values were reported as 0.17653 cm, 0.20536 cm, 0.21091 cm, 0.27985 cm,
0.36164 cm, 0.48084 cm, and 0.59325 cm for AL0.0, AL2.5, AL5.0, AL7.5, AL10, AL12.5,
and AL15.0 at 0.1 MeV, respectively. To serve as a practical example, one can say that a
15% mole PbO/AL2O3 substitution can increase the T1/2 values to 0.41672 cm (almost half
a centimeter) at 0.1 MeV.

Particles collide when they travel through a substance, altering their direction of
motion. Thus, the average distance between these encounters provides information on
the likelihood of a specific interaction. This distance is often referred to as the mean free
path (λ). This fundamental parameter was also determined for AL glasses at 0.015–15 MeV
photon energy. The behavioral view of λ values as a function of incident photon energy
can be observed in Figure 8. Due to the material’s high density, the AL0.0 sample has the
smallest average distance (λ) between the two collisions, which is another indication of
excellent shielding capabilities. On the other hand, Zeff is shown in Figure 9 as a function
of incoming photon energy at all energies. According to the findings, the sample with
the greatest Zeff value is AL0.0, which has the greatest PbO contribution in its structure.
However, some significant differences were seen owing to the samples’ major structural
differences. This can be explained by the total elemental structure of the substituted
PbO and Al2O3. The buildup factor is a reference method used throughout shielding
computations to accommodate for scattered radiation and any secondary particles present
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in the environment. To compensate for secondary radiation accumulation, a buildup factor
must be included. Thus, the accumulation factor is a multiplicative factor that includes the
contribution of scattered photons to the un-collided photons’ response.

Figure 3. Variation of glass densities as a function of glass type (i.e., Al2O3 %mole).

Figure 4. Variation of linear attenuation coefficient (µ) against photon energy for all glasses.
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Figure 5. Variation of mass attenuation coefficients (µm) at low-energy region.

Figure 6. Variation of mass attenuation coefficient (µm) against photon energy for all glasses.

Consequently, one may compute the accumulation factor as the ratio of the total
exposure to the un-collided dose-response [37]. Additionally, there are two main types
of buildup factors that can be listed as the exposure buildup factor (EBF) and the en-
ergy absorption buildup factor (EABF) [38,39]. In the framework of the earlier expla-
nation, the smaller buildup factor values may be interpreted as a pattern of dominance
against gamma rays since the quantity of un-collided photons in successful shields is small.
Figures 10 and 11 illustrate the progression of the EBF and EABF values as a function of
energy along different mean free routes (i.e., from 0.5 to 40).
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Figure 7. Variation of half-value layer (T1/2) against photon energy for all glasses.

Figure 8. Variation of mean free path (λ) against photon energy for all glasses.

Figure 9. Variation of effective atomic number (Zeff) against photon energy for all glasses.
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Figure 10. Cont.
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Figure 10. Variation of exposure buildup factor (EBF) against photon energy for all glasses. (a) AL0.0; (b)AL2.5; (c)AL5.0;
(d) AL7.5; (e) AL10.0; (f) AL12.5; (g) AL15.0.

The greatest ratios were seen in both EBF and EABF at intermediate energies when
Compton scattering was the primary interaction between the gamma ray and the material.
In other words, this region has a large number of photons that have not collided. As
a consequence, significantly larger accumulation factor values are needed to adjust the
transmission computations. Our findings show that AL0.0 has the lowest EBF and EABF
accumulation factors (see Supplementary Tables S1–S7). As a result, incoming gamma rays
may interact more often with the AL0.0 sample than with other samples.

The effective removal cross-section, (ΣR, cm2/g), represents the probability that a
fast or fission energy neutron might encounter a first collision, thus removing it from the
category of penetrating, un-collided neutrons. It is expected to remain nearly constant
for neutron energy between 2 and 12 MeV. Additionally, substances with the highest ΣR
values may be regarded better in terms of resistance to dangerous neutron particles. The
ΣR values of AL glasses were evaluated in this investigation, and the outcomes are shown
in Figure 12. Following the gamma-ray attenuation characteristics, it was discovered that
adding Al2O3 has a distinct synergistic effect. Therefore, one might argue that Al2O3 is an
unpractical tool for enhancing the gamma-ray and fast neutron shielding characteristics of
HMO glasses, as shown in Figure 12.

Figure 11. Cont.
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Figure 11. Variation of energy absorption buildup factor (EABF) against photon energy for all glasses. (a) AL0.0; (b)AL2.5;
(c)AL5.0; (d) AL7.5; (e) AL10.0; (f) AL12.5; (g) AL15.0.
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Figure 12. Effective removal cross-sections for fast neutrons (ΣR) for all glasses.

Finally, we evaluated the shielding characteristics of Al0.0 with those of other shielding
materials, including TZNG-A [40], TZNG0.5 [27], Gd10 [41], Gd15 [42], PNCKM5 [43],
C25 [44], SCNZ7 [45], Ordinary Concrete (OC), HSC, ILC, BMC, IC, and SSC [46–48].
The objective of this research was to get a better understanding of the AL0.0 sample’s
comprehensive results in terms of the T1/2 values required to suppress incoming gamma-
ray photons from 0.015 to 15 MeV. Consequently, it turns out that the T1/2 values of
the AL0.0 sample are less than Gd15, PNCKM5, C25, and SCNZ7, and that it therefore
has shielding properties higher than TZNG-A, TZNG0.5, and Gd10 samples with higher
shielding properties. Following this, the T1/2 values of the AL0.0 sample were determined
to be those of various types of standard/special concrete. Figure 13 illustrates the variance
in T1/2 values for Al0.0 and various glass shields as a function of incoming photon energy.
AL0.0 has the lowest T1/2 values when compared to TZNG-A, TZNG0.5, Gd10, Gd15,
PNCKM5, C25, and SCNZ7 glasses at low energy range, which have all been investigated
before as potential glass shields. Finally, we discussed our results regarding the T1/2 values
for AL0.0 and other kinds of concrete. Figure 14 illustrates the results as a function of
incoming photon energy. The AL0.0 sample was found to have the lowest T1/2 values in
general. Thus, an AL0.0 glass sample may be an appropriate option in certain radiation
facilities where conventional and new-generation concretes are utilized for operational
shielding applications.
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Figure 13. Half-value layer comparison between some glasses and AL0.0 sample.

Figure 14. Half-value layer comparison between some concretes and AL0.0 sample.

4. Conclusions

The shielding characteristics of heavy metal oxide telluborate glasses containing
Eu2O3 were examined in this research. According to a study of the literature, borate-
and tellurium-based glasses are the most researched. However, heavy metal oxide doped
glasses have a broad range of uses due to their high transmittance in the visible and mid-
infrared regions, high refractive indices, and excellent thermal, electrical, and chemical
endurance. Additionally, the high densities of heavy metal oxide glasses contribute to
their radiation shielding properties. Indeed, doping these glasses with denser lanthanide
oxides results in substantial increases in the densities of the produced glasses. According
to the research on which our analysis is based, the densities of the samples varied between
2.601 g/cm3 and 3.537 g/cm3. The sample containing 5% Al2O3 by weight exhibited the
greatest density value. Therefore, the highest value of this sample’s effective removal cross-
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sections may be interpreted as a change in the density value. However, when we examine
that the AL0.0 sample with the greatest PbO concentration had the highest effective values
for all gamma-ray shielding parameters, it can be concluded that these values are not only
density-dependent but also directly linked to the nature of these compounds. It can be also
concluded that using PbO in the Eu3+ doped heavy metal oxide glasses could be a useful
tool to keep gamma-ray shielding properties at a maximum level.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/ma14185334/s1, Table S1. (EBF and EABF) G–P fitting coefficients (b, c, a, Xk and d) of Al0.0
glass sample, Table S2. (EBF and EABF) G–P fitting coefficients (b, c, a, Xk and d) of AL2.5 glass
sample, Table S3. (EBF and EABF) G–P fitting coefficients (b, c, a, Xk and d) of AL5.0 glass sample,
Table S4. (EBF and EABF) G–P fitting coefficients (b, c, a, Xk and d) of AL7.5 glass sample, Table S5.
(EBF and EABF) G–P fitting coefficients (b, c, a, Xk and d) of AL10.0 glass sample, Table S6. (EBF and
EABF) G–P fitting coefficients (b, c, a, Xk and d) of AL12.5 glass sample, Table S7 (EBF and EABF)
G–P fitting coefficients (b, c, a, Xk and d) of AL15.0 glass sample.
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