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Abstract: In this work, a novel red-emitting oxyfluoride phosphor Na2NbOF5:Mn4+ with an ultra-
intense zero-phonon line (ZPL) was successfully synthesized by hydrothermal method. The phase
composition and luminescent properties of Na2NbOF5:Mn4+ were studied in detail. The photolu-
minescence excitation spectrum contains two intense excitation bands centered at 369 and 470 nm,
which match well with commercial UV and blue light-emitting diode (LED) chips. When excited
by 470 nm blue light, Na2NbOF5:Mn4+ exhibits red light emission dominated by ZPL. Notably, the
color purity of the Na2NbOF5:Mn4+ red phosphor can reach 99.9%. Meanwhile, the Na2NbOF5:Mn4+

phosphor has a shorter fluorescence decay time than commercial K2SiF6:Mn4+, which is conducive to
fast switching of images in display applications. Profiting from the intense ZPL, white light-emitting
diode (WLED) with high color rendering index of Ra = 86.2 and low correlated color temperature
of Tc = 3133 K is realized using yellow YAG:Ce3+ and red Na2NbOF5:Mn4+ phosphor. The WLED
fabricated using CsPbBr3 quantum dots (QDs) and red Na2NbOF5:Mn4+ phosphor shows a wide
color gamut of 127.56% NTSC (National Television Standard Committee). The results show that
red-emitting Na2NbOF5:Mn4+ phosphor has potential application prospects in WLED lighting and
display backlight.

Keywords: Mn4+-doped red phosphors; oxyfluoride; white LEDs; high color purity; wide-gamut
backlight displays

1. Introduction

High luminescence efficiency, environmentally friendly features and long operating
lifetimes are all advantageous performance aspects of white light-emitting diodes (WLEDs),
which have obtained widespread attention. WLEDs have been widely used in solid-state
illumination and liquid crystal display backlight [1–6]. At present, the wide color gamut
WLED backlight is mainly composed of blue InGaN chip, K2SiF6:Mn4+ red phosphor
and green β-SiALON:Eu2+ phosphor [7–9]. However, the long decay time (~8 ms) of
K2SiF6:Mn4+ (KSF:Mn4+) red phosphor easily affects the image-retention performance
of fast-response backlight displays [10–12]. Apparently, phosphor for LED backlight
should not only possess a broad excitation band appropriate to LED chip emission and
narrow band emission with high color purity, but also have appropriate decay time [13].
Therefore, the exploration of novel red-emitting phosphors with high color purity and
short fluorescence lifetime for backlight displays is necessary.
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For solid-state lighting, the commercial WLED is phosphor-converted light-emitting
diode (LED) fabricated by a combination of InGaN chip and YAG:Ce3+ phosphor. However,
due to the lack of red component, this type of WLED exhibits a cold white light emission
with low color-rendering index (CRI, Ra < 80) and high correlated color temperature (CCT,
Tc > 4500 K). It is thus clear that red phosphor is an important part of assembling high-CRI
light sources. Presently, non-rare-earth Mn4+ red phosphors have been used in the packag-
ing of WLEDs due to their high luminous efficacy and low cost [14–16]. Under UV or blue
light excitation, Mn4+-doped oxide phosphors can emit a moderate-intensity deep red light
in the range of 650–720 nm [17–22]. Fluoride phosphors (e.g., A2BF6:Mn4+; A = Na, K, Rb,
Cs; B = Si, Ti, Ge) show strong red emission with high color purity around 630 nm [23–26].
The oxyfluoride compounds are regarded as succedaneous hosts for Mn4+ substitution
because Mn4+ in some oxyfluoride hosts also presents parallel photoluminescent (PL)
properties with Mn4+-activated fluoride phosphors. More interestingly, the oxyfluoride
compounds may induce Mn4+ to exhibit excellent luminescence properties owing to dis-
torted octahedral sites and F- and O2- mixed ligands [27]. Hence, the exploration for new
Mn4+-doped red-emitting phosphors based on oxyfluorides is of great significance.

Recently, Mn4+-doped oxyfluoride red phosphors have been reported successively,
such as ANaWO2F4:Mn4+ (A = Li, Na, K) [28], Na2WO2F4:Mn4+ [29], Cs2NbOF5:Mn4+

and Rb2NbOF5:Mn4+ [30,31]. However, to the best of our knowledge, the study on the
luminescence properties of Na2NbOF5:Mn4+ has not been reported. Herein, we synthe-
sized a novel red-emitting oxyfluoride phosphor Na2NbOF5:Mn4+ for the first time and
systematically investigated its crystal structure, composition and PL properties. Finally,
white LED for indoor lighting and backlight displays was packaged by employing the
as-prepared Na2NbOF5:Mn4+ phosphor as a red supplement.

2. Experimental Section
2.1. Sample Preparation

The starting materials Nb2O5 (99.99%), NaF (A.R.), HF solution (40 wt%, A.R.), ethanol
(AR, 95%) and methyl alcohol (AR, 99.5%) were used without any purification. K2MnF6
was obtained through an optimized route reported by Verstraete [32].

The experimental process of synthesizing Na2NbOF5:xMn4+ (abbreviated as NNOF:xMn4+)
red-emitting phosphors is shown in Figure 1. NaF (0.2688 g, 0.0064 mol), Nb2O5 (0.8058 g,
0.0032 mol) and 40% aqueous HF (2.88 mL) were added into a teflon pouch. Two pouches
were placed in a 150 mL Teflon-lined stainless-steel autoclave filled with 50 mL deionized
H2O as backfill and heated at 150 ◦C for 24 h, which were then slowly cooled to room
temperature at 10 ◦C/h. Different amounts of K2MnF6 were dissolved in the solution with
ultrasonic vibration until a light gold solution was formed in the pouch. To research the
effect of the concentration of Mn4+ on the obtained phosphors, a series of NNOF:xMn4+

samples with different concentrations of Mn4+ were prepared using the same method
according to parameters listed in Table 1. After that, 5 mL of methanol was slowly injected
into the pouch to obtain precipitation. The precipitate was further washed with ethanol,
centrifuged three times to remove impurities and then dried in an oven at 60 ◦C for 3 h.

Table 1. Synthesis parameters of NNOF:xMn4+ phosphors with different doping amounts of Mn4+.

Samples The Molar Quantities of K2MnF6
(mol)

Actual Doping Amount of Mn4+

(x mol)

1 3.2 × 10−6 0.001
2 6.4 × 10−6 0.002
3 9.6 × 10−6 0.003
4 1.6 × 10−5 0.005
5 3.2 × 10−5 0.01
6 6.4 × 10−5 0.02
7 9.6 × 10−5 0.03
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Figure 1. Schematic diagram of the experimental process for synthesizing NNOF:Mn4+ red-emitting phosphors, and digital
photographs of the phosphor under (a) visible light, (b) 365 nm UV light.

2.2. Characterization

The phase purity of the as-prepared samples was initially identified by taking X-ray
diffraction (XRD) measurements from a X-ray powder diffractometer (Ultima IV-185, Tokyo,
Japan) with Cu Kα radiation (λ = 1.5406 Å). The diffraction patterns were scanned at a
scanning speed of 8◦/min in the 2θ range from 10◦ to 80◦. The infrared (IR) data was moni-
tored by Fourier Transform Infrared Spectrometer (Bruker Tensor 27, Karlsruhe, Germany).
The photoluminescence excitation (PLE) and emission (PL) spectra were obtained via a
spectrophotometer (F-7000, HITACHI, Tokyo, Japan). Diffuse reflection spectrum was ob-
tained using the spectrometer (Cary-5000, Varian, Palo Alto, CA, USA). The luminescence
decay curve was recorded by a spectrometer (FS5, Edinburgh, UK). The morphology and
elemental composition of the product were obtained by a scanning electron microscopy
(SEM, JEOL JSM-6510, Tokyo, Japan) with an energy-dispersive spectrometer (EDS).

3. Results and Discussion
3.1. X-ray Diffraction and Structure Analysis

Figure 2A shows the XRD patterns of Na2NbOF5:Mn4+ (NNOF:Mn4+) red phosphors
doped with different doping amounts of Mn4+ and the enlarged XRD patterns in 2θ region
of 27.5–28.5◦. All the diffraction peaks of the samples matched with the Na2NbOF5 standard
card (ICSD-48165, space group Pcnb (60), a = 5.089(1) Å, b = 5.512(1) Å, c = 18.207(4) Å, cell
volume V = 510.72(18) Å3) and no impurity phase was found. The main diffraction peak
moved to a higher angle with the increase in Mn content. According to Bragg’s diffraction
law, the diffraction peak will move to a higher angle when small ions replace large ions
into the lattice. The result indicated that the smaller Mn4+ (r = 0.53 Å, CN = 6) replaced the
larger Nb5+ (r = 0.64 Å, CN = 6) into the lattice. However, when tetravalent Mn replaces
pentavalent Nb into the lattice, charge mismatch occurs. A positive charge is required in
the structure to maintain electrical neutrality. Positively charged oxygen vacancies are most
likely to appear in the structure. This possible charge compensation can be represented by
the following equation according to the Kröger–Vink notation [30]:

K2MnF6
Na2NbOF5−−−−−−→ 2K×Na+Mn′Nb+V••O +5F×F + F′i (1)

where Mn′Nb is the negative charge defect produced by the substitution of Nb5+ with Mn4+,
V••O is the oxygen vacancy and F′i is the fluorine interstitial ion. The charge-balance is
achieved by fluorine interstitial ion and oxygen vacancy.

Figure 2B depicts the simulated structure of the NNOF unit cell, where six twisted
[NbOF5]2− octahedra are regularly distributed in the cell. Figure 2C clearly depicts the
coordination environment surrounding Nb. It is noticeable that Nb5+ coordinates six
O2−/F− to form a distorted [NbOF5]2− octahedron, and the bond lengths of Nb-O1/F1,
Nb-O2/F2, Nb-F3, Nb-F4, Nb-F5, Nb-F6 bonds are 1.765, 1.931, 1.974, 2.095, 1.953, 1.925 Å,
respectively. At the same time, each bond angle of the [NbOF5]2− octahedron is significantly
different from the ideal bond angle (90◦) of the regular octahedron.



Materials 2021, 14, 5317 4 of 11

Materials 2021, 14, x FOR PEER REVIEW 4 of 11 
 

 

Nb-F3, Nb-F4, Nb-F5, Nb-F6 bonds are 1.765, 1.931, 1.974, 2.095, 1.953, 1.925 Å, respectively. 
At the same time, each bond angle of the [NbOF5]2− octahedron is significantly different 
from the ideal bond angle (90°) of the regular octahedron. 

 
Figure 2. (A) XRD patterns of NNOF:xMn4+ and enlarged XRD patterns in 2θ region of 27.5–28.5°; (B) Crystal structure 
scheme of NNOF:Mn4+; (C) Demonstration of the distorted [NbOF5]2− octahedron. 

Figure 3 shows the IR spectrum of NNOF:Mn4+ at room temperature. The wide band 
at 3433 cm−1 is due to the vibration of the O–H bonds, and the small peak at 1626 cm−1 is 
attributable to the bending vibration of the O–H bonds in the water adhering to the surface 
of the NNOF:Mn4+ minute particles. The IR spectrum shows two strong sharp peaks at 925 
and 528 cm−1, which are consistent with the Nb–O and Nb–F bonds in the structure, re-
spectively [33]. 

 
Figure 3. Infrared spectrum of NNOF:Mn4+. 

3.2. Morphology and Composition Identification 
Figure 4A exhibits the SEM image of NNOF:Mn4+ phosphor. The obtained powder is 

composed of the irregular particle with clear edges and corners, indicating good crystal-
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Figure 3 shows the IR spectrum of NNOF:Mn4+ at room temperature. The wide band
at 3433 cm−1 is due to the vibration of the O–H bonds, and the small peak at 1626 cm−1 is
attributable to the bending vibration of the O–H bonds in the water adhering to the surface
of the NNOF:Mn4+ minute particles. The IR spectrum shows two strong sharp peaks at
925 and 528 cm−1, which are consistent with the Nb–O and Nb–F bonds in the structure,
respectively [33].
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3.2. Morphology and Composition Identification

Figure 4A exhibits the SEM image of NNOF:Mn4+ phosphor. The obtained powder
is composed of the irregular particle with clear edges and corners, indicating good crys-
tallization of the sample. As shown in the EDS spectrum (Figure 4B), NNOF:Mn4+ red
phosphor is composed of Na, Nb, O, F and Mn elements. The small amount of Mn in the
test results indicates that Mn4+ has been successfully doped into the NNOF matrix. The
atom percentages of Na, Nb, O and F are 21.72%, 12.67%, 10.86% and 54.11%, respectively,
which are close to the stoichiometric ratio of 2:1:1:5 in the matrix. These data further
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confirmed the successful preparation of NNOF:Mn4+ phosphor. In Figure 4C–H, the EDS
element mapping chart further proved the existence and uniform distribution of Na, Nb,
O, F and Mn elements, and further confirmed the composition of NNOF:Mn4+.
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Na, Nb, O, F and Mn in a selected area of NNOF:Mn4+ sample.

3.3. Photoluminescence Properties

The emission spectra of NNOF:Mn4+ phosphors with different Mn4+ concentrations
are shown in Figure 5A. When the concentration is 0.003, the luminous intensity is at the
highest value. Due to the effect of concentration quenching, the luminous intensity of
phosphor decreases with the increasing of Mn4+ concentration [34].
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The red phosphor excited by blue chip used in the WLED requires a wide absorption in
the blue region and an effective emission near the ideal red light within 650 nm. Figure 5B
shows the PLE and PL spectra of NNOF:Mn4+ at room temperature. Obviously, two
intense excitation bands centered at 369 (27,100 cm−1) and 470 nm (21,277 cm−1) can be
observed in the excitation spectrum, which are caused by the spin allowed 4A2 → 4T1
and 4A2 → 4T2 transitions of the Mn4+ ions, respectively [35,36]. Under 470 nm excitation,
NNOF:Mn4+ exhibits a narrow peak emission distributed between 575 and 675 nm. The
results of excitation and emission spectra attested that the prepared NNOF:Mn4+ samples
can be excited by blue light effectively and produce effective red emission. Meanwhile, the
NNOF:0.003Mn4+ exhibits photoluminescence quantum yields (PLQYs) of 68.3% under
470 nm blue light excitation. The PLQY was obtained according to the method found
in the reported work [37]. Notably, the intensity of zero-phonon line (ZPL) emission is
higher than that of phonon sideband, which is different from most of previously reported
emission spectra of Mn4+. The sharp ZPL emission peaking at 620 nm and Stokes/anti-
Stokes phonon sidebands are derived from the coupling of antisymmetric v3, v4, and v6
to the ZPL. The emission spectrum of Mn4+ doped phosphor is usually dominated by
the anti-Stokes/Stokes phonon sideband, and the vibronic transition v6 is always at the
highest peak in the PL spectrum. Meanwhile, the ZPL of Mn4+:2E→ 4A2 is generally very
weak. Interestingly, the intensity of ZPL in the emission spectrum of NNOF:Mn4+ is higher
than that of the v6 sideband. Herein, the low symmetry of the Mn4+ center is considered
to be the main reason for the intense ZPL in NNOF:Mn4+ [29,38,39]. The ultra-high ZPL
emission is conducive to improving the color purity of red phosphors [40].

Figure 6 shows the diffuse reflectivity spectra of pristine NNOF and NNOF:0.003Mn4+

phosphor, from which it can be observed that the NNOF:0.003Mn4+ phosphor has an
absorption band at 470 nm corresponding to the 4A2→ 4T2 electron transition of Mn4+. Due
to the strong intrinsic absorption of pristine NNOF, the absorption band near 369 nm, which
responds to the 4A2→ 4T1 electron transition of Mn4+, was completely covered. Compared
with Mn4+ and Mn2+, Mn3+ is rarely encountered in the literature about luminescence. The
Mn3+ ion has the corresponding characteristic absorption band due to the 3d4 configuration.
In Figure 6, the 5E′→ 5T2 and 5E′→ 5E” absorption bands of Mn3+ can be clearly observed
in the 500–1100 nm range. The presence of Mn3+ impurity ions will lead to the reduction of
quantum efficiency of phosphor [32].
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3.4. Decay Curves, Chromaticity Coordinates (CIE) and Color Purity

The decay time of phosphor is non-negligible in the application of display back-
light. Long decay time phosphors may cause a certain degree of lag in image conversion.
Figure 7A shows the photoluminescence decay curve of NNOF:0.003Mn4+ phosphor. The
data of the luminescence decay curve conforms to the mono-exponential decay mode, as
shown in the following formula:

I(t) = I0 + A exp(− t
τ
) (2)

where I0 and I(t) are the initial luminous intensity and the luminous intensity at time t,
respectively, and τ represents the fluorescent lifetime. τ is then calculated to be 3.32 ms.
The millisecond scale of the lifetime indicates that Mn4+ ions present forbid transitions in
the intra-d-shell [8]. The NNOF:0.003Mn4+ phosphor with short fluorescence decay time
(<5 ms) will be a hopeful red component for fast-response backlight displays. Herein, the
decay time of NNOF:0.003Mn4+ is shorter than that of K2SiF6:Mn4+. To specify the reason
for the shorter life of NNOF:0.003Mn4+, the distortion of the coordination polyhedron
(DI) is calculated. The distortion degree of polyhedron is characterized by bond angle
variance (σ2) and mean quadratic elongation (λ), which can be determined by following
formula [29]:

σ2=
1
6 ∑6

i=1(li/l0)
2 (3)

λ =
1

11 ∑12
i=1(θi/θ0)

2 (4)

where l0 is the distance from the center to the vertex of the regular octahedron with the
same volume as the octahedron structure, li is the bond length of the studied octahedron,
θ0 is the ideal bond angle (90◦) of the regular octahedron and θi is the bond angle of
the twisted octahedron. The corresponding values are shown in Table 2. The results
indicate that the coordination environment of Mn4+ in NNOF:xMn4+ is extremely distorted
compared to K2SiF6:Mn4+. In fact, it is understandable that NNOF has a higher degree
of distortion since the anion coordinated with the cation is mixed-anion with unequal
radius. It has been reported that Mn4+ exhibits good luminescence properties in a highly
symmetric structure [28]. Nevertheless, mixed anion coordination offers more possibilities
for luminescent behavior. We believe that the rapid decay may be due to the low symmetry
of Mn4+.
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Table 2. Polyhedral distortion index and corresponding zero-phonon line (ZPL) intensities in
Na2NbOF5 and K2SiF6 matrices.

Compounds σ2 λ ZPL Intensity

Na2NbOF5 43.6362 1.0184 Very strong
K2SiF6 0.0000 1.0000 Very weak

The CIE chromaticity coordinate of NNOF:0.003Mn4+ sample is shown in Figure 7B.
It is observed that the prepared NNOF:0.003Mn4+ red phosphor emits a strong red light
under the excitation of 365 nm ultraviolet lamp. The CIE chromaticity coordinates are
(0.6819, 0.3179). To further understand the chromatic behaviors of the phosphor, its color
purity was found by using the following formula [41]:

Color purity =

√
(x − xi)

2 − (y − yi

)2

√
(x d − xi)

2 − (y d − yi

)2
× 100% (5)

Hereon, (x, y) represents the CIE coordinates of NNOF:0.003Mn4+ red phosphor, (xi, yi)
represents the chromaticity coordinate of the equal-energy white light source with the
value of (0.3333, 0.3333), and (xd, yd) stands for the CIE coordinates of the corresponding
dominant wavelength of the illuminant. The calculated color purity of NNOF:0.003Mn4+

phosphor is about 99.9%, which is higher than the reported color purity of Mn4+-doped red
phosphors, such as Cs2NbOF5:Mn4+ (99%) [30], K2LiAlF6:Mn4+ (89%) and K2NaAlF6:Mn4+

(97%) [42,43]. Obviously, the stronger ZPL emission can bring about a higher color purity.
NNOF:Mn4+ red phosphor is very suitable for the application in LED backlight due to its
ultra-high color purity.

3.5. Electroluminescence (EL) Performance of the Packaged WLEDs

Figure 8A shows the EL spectra and photographs of the packaged WLEDs. Curve (i)
is the spectrum of WLED produced by YAG:Ce3+ phosphor coupled with InGaN blue chip
(3 V, 20 mA), and curve (ii) is the EL spectrum of WLED with the addition of NNOF:Mn4+

red phosphor as a contrast. Compared with the scheme of blue chip + YAG:Ce3+ (Ra = 72,
CCT = 6297 K), the LED device with added NNOF:Mn4+ red component emits high-
brightness warm white light (Ra = 86.2, CCT = 3133 K), indicating that the addition of
NNOF:Mn4+ can improve the color rendering index (CRI) and correlated color temperature
(CCT). Even more to the point, the luminous efficiency of WLED using NNOF:Mn4+ as red
component can reach as high as 106.05 lm/W.

As shown in Figure 8B, the white triangle region is the color gamut composed of
standard red (0.67, 0.33), blue (0.21, 0.71) and green (0.14, 0.08) coordinates, which is
defined by the National Television Standards Committee (NTSC). When the chromaticity
coordinates (0.6819, 0.3179) of the prepared NNOF:0.003Mn4+ phosphor are matched with
the standard blue and green coordinates, we can obtain a larger gamut with a calculated
value of 102.63% NTSC as depicted in the red dotted triangle in Figure 8B. To prove the
application potential of the synthesized NNOF:Mn4+ red phosphor in the field of LED
backlight displays, the EL spectrum of the WLED constructed with green-emitting CsPbBr3
quantum dots (abbreviated as CPB QDs) and NNOF:Mn4+ red phosphor is shown in curve
(iii) in Figure 8A. The color gamut of the produced WLED device is shown in the black
frame in Figure 8B, which is calculated as 127.56% of the NTSC color gamut and overlaps
with NTSC by 99.46%. These results show the prospect of the as-prepared NNOF:Mn4+ red
phosphor for its application in the field of backlight displays.
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4. Conclusions

A novel Mn4+ doped oxyfluoride phosphor was successfully synthesized by hy-
drothermal method. The prepared NNOF:Mn4+ red phosphor can be matched well with
commercial UV and InGaN blue chips because of its wide excitation band in the near
ultraviolet and blue regions. When excited by blue light, the sample exhibited ultra-intense
ZPL emission at 620 nm. Remarkably, the color purity of NNOF:Mn4+ can reach as high as
99.9%. Moreover, the WLED fabricated by using NNOF:Mn4+ red phosphor and commer-
cial YAG:Ce3+ produced warm white light emission with low CCT value of 3133 K, high
Ra value of 86.2 and luminous efficiency of 106.05 lm/W. Finally, a white LED with a wide
color gamut of 127.56% NTSC was packaged on a InGaN blue chip using NNOF:Mn4+

red phosphor and green-emitting CPB QDs. These results show that NNOF:Mn4+ red
phosphor has potential application prospects in lighting or display backlights.
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