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Abstract: Reduced graphene oxide loaded with an iron-copper nanocomposite was prepared in this
study, using graphene oxide as a carrier and ferrous sulfate, copper chloride and sodium borohydride
as raw materials. The obtained material was prepared for eliminating hazardous dye carmine and
the binary dye mixture of carmine and Congo red. The process of carmine dye removal by the
nanocomposite was modeled and optimized through response surface methodology and artificial
intelligence (artificial neural network–particle swarm optimization and artificial neural network–
genetic algorithm) based on single-factor experiments. The results demonstrated that the surface
area of the nanocomposite was 41.255 m2/g, the pore size distribution was centered at 2.125 nm, and
the saturation magnetization was up to 108.33 emu/g. A comparison of the material before and after
the reaction showed that the material could theoretically be reused three times. The absolute error
between the predicted and experimental values derived by using artificial neural network–particle
swarm optimization was the smallest, indicating that this model was suitable to remove carmine from
simulated wastewater. The dose factor was the key factor in the adsorption process. This process
could be described with the pseudo-second-order kinetic model, and the maximum adsorption
capacity was 1848.96 mg/g. The removal rate of the mixed dyes reached 96.85% under the optimal
conditions (the dosage of rGO/Fe/Cu was 20 mg, the pH was equal to 4, the initial concentration of
the mixed dyes was 500 mg/L, and the reaction time was 14 min), reflecting the excellent adsorption
capability of the material.

Keywords: adsorption; nanocomposite; binary dyes; artificial intelligence; kinetics

1. Introduction

In recent years, environmental problems arising from dye wastewater pollution have
become increasingly prominent [1]. Most dyestuffs with complex aromatic ring structures
have toxicity and bioaccumulation, which are difficult to degrade under natural conditions.
Among the various dyes, direct dyes are widely used because they can be applied directly
without mordant. Congo red, a typical benzidine direct azo dye, easily enters the water
due to the high loss rate in the process of production and their application, which has a
greatly harmful effect on the environment [2]. Traditional biochemical treatment methods
(such as activated sludge) can be used for wastewater treatment, but the effect is not
very satisfactory. Carmine is currently the most widely available and largest amount
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of a single-azo synthetic dye. Recently, it has been reported that carmine and the EU
standard banned Sudan red I with azo pigments, since azo compounds in the body can be
metabolized to generate mutagenic precursors, namely aromatic amines [3]. Due to the high
chromaticity, low biodegradability and high toxicity of dye wastewater, dye wastewater
pollution is considered to be one of the challenges facing mankind [4]. The common
treatment technologies of dye wastewater include adsorption, ion exchange, coagulation,
advanced oxidation, electrochemical and membrane separation technologies. Among these
techniques, adsorption is an effective method for treating wastewater containing dyes, with
the advantages of simplicity, a relatively low cost and easy operation [5]. It is particularly
important to prepare environmentally friendly and efficient adsorbents.

Carbonaceous material adsorbents have broad application prospects in the treatment
of dye-containing wastewater [6]. Geim et al. [7] found that new materials have been
extensively studied in terms of their properties and applications, especially the unique
two-dimensional structure of graphene. Since graphene is a two-dimensional honeycomb
planar nanomaterial composed of six-membered rings with only one atomic thickness
(0.334 nm), it has a large specific surface area with a theoretical value of up to 2630 m2/g.
Meanwhile, it has a wide range of applications in the removal of organic and inorganic
pollutants from wastewater by adsorption [8,9]. However, graphene generally undergoes
stacking and agglomeration, resulting in a large loss of effective surface area and poorer
than expected adsorption of the composites, which limits their practical application to
some extent. The metal oxides uniformly distributed on the graphene sheets in the binary
metal graphene oxide (GO) composites can prevent the stacking and agglomeration of
graphene. Meanwhile, graphene can ameliorate the electrical conductivity and increase the
dispersion of the binary transition metal oxides. Kang et al. [10] loaded iron ions (II, III)
on GO to enhance the activation of peroxynitrite (PS) for the degradation of phenol. The
results indicated that PS/GO-Fe (III) was more efficient than PS/GO-Fe (II) based on the
comparison of phenol degradation. Hou et al. [11] investigated the decolorization of toxic
bright green dye in the aqueous phase by reduced graphene oxide loaded with mesoporous
Pd-Fe bimetallic magnetic nanoparticles, and their results indicated that the material was
an effective mesoporous material for the purification of wastewater containing a high
concentration of dyes. Farooq et al. [12] selected tricarboxylic acids as model chlorinated
organic compounds to examine the catalytic activity of mono- and bimetallic (Fe and Fe-Cu)
heterogeneous nanocomposites supported by reduced graphene oxide. The influence of the
synthesis methodology on the properties and activity of the heterogeneous composites was
also investigated, and its excessive effect in improving Fenton-based AOPs was determined.
The above-mentioned reports proved that the GO combined with the other metals could
overcome its limitations. Therefore, in this research, the reduced graphene oxide loaded
with the Fe-Cu bimetallic nanocomposites was prepared for the adsorption of single dyes
(carmine) as well as bimetallic dyes (carmine and Congo red) from simulated industrial
wastewater.

Artificial intelligence is the research of how to make computers mimic thinking
activities such as understanding, learning, reflecting and programming [13]. There are
many algorithms for artificial intelligence, such as genetic algorithms (GAs), random
forests (RFs), ant colony algorithms (ACAs), augmented regression trees (BRTs), simulated
annealing (SA), Monte Carlo simulation (MCS), particle swarm optimization (PSO) and
artificial neural networks (ANNs) [14]. Functional approximation theory considers that an
approximate function can be used to approximate an unknown actual function. If the series
of errors generated in the prediction is also taken as the value of the approximation function,
then it is reasonable to assume that the prediction error can be further reduced by re-
approximation to improve the validity of the prediction. Hence, a combined neural network
model is proposed in an attempt to further reduce the errors arising from the prediction. In
the last decade, the research work on artificial neural networks has made great progress,
which has successfully addressed many practical problems and demonstrated excellent,
intelligent properties. Moradi et al. [15] modeled and optimized the NH4

+ adsorption
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process by varying four independent parameters (pumice dose, initial ammonium ion
concentration, mixing rate and contact time) to get the most optimum conditions by
performing a central composite design (CCD) under the response surface methodology
(RSM). Kakhki et al. [16] fabricated a sulfur–nitrogen co-doped Fe2O3 nanostructure to
degrade dimethyl blue and evaluated and optimized the experimental conditions for the
dose of nanoparticles, concentration of the dye, pH and dose of light. An ANN model was
used to predict the removal efficiency of the dyes, where R2 was about 92%, so the proposed
ANN-GA model achieved acceptable performance. This indicated that artificial neural
networks were utilized in many fields, which proved that it was a reliable technique. Our
research will combine artificial neural networks with adsorption experiments to predict
the optimal conditions as well as the optimal values of the experimental process.

The above research indicates that the removal of pollutants from the water envi-
ronment can be greatly improved with the assistance of artificial intelligence technology.
Therefore, this experiment aimed to (1) remove single (carmine) and dual (carmine and
Congo red) dyes with the mesoporous nanomaterial rGO/Fe/Cu; (2) show these nanohy-
brids were prepared by the co-precipitation method and characterized by X-ray diffraction
(XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM),
Fourier Transform Infrared (FT-IR) energy dispersive spectroscopy (EDS), Raman spec-
troscopy, N2 adsorption and X-ray photoelectron spectroscopy (XPS); (3) demonstrate that
the RSM was determined by single-factor experiments (reaction time, pH, temperature
and initial concentration) to derive experimental conditions, which were then optimized,
followed by the AI models (ANN-PSO, ANN-GO, etc.) being used to explore the model-
ing and optimization of the dye removal process with nanomaterials, verify the removal
rate under optimal conditions and rank the importance of the factors; and (4) evaluate
the kinetic properties of the dye removal process. The material adsorbed the industrial
wastewater simulated by the dye-containing wastewater, improved the drainage quality of
wastewater treatment systems and reduced environmental pollution.

2. Experiment
2.1. Materials

In the preparation process, the sulfuric acid (H2SO4) and hydrochloric acid (HCl) were
of superior purity, while the other reagents were of analytical purity. The H2SO4, HCl
and graphite powder (particle size < 30 µm, purity > 99.85%) were all purchased from
Sinopharm Holdings Chemical Reagent Co. (Beijing, China). The potassium permanganate
(KMnO4) was manufactured by Chongqing Jiangchuan Chemical Co.(Chongqing, China)
and the sodium nitrate (NaNO3) was produced by Beijing Chemical Factory (Beijing,
China). Ferrous sulfate heptahydrate (FeSO4·7H2O) was purchased from the Chengdu
Jinshan Chemical Reagent Co. (Chengdu, China), and copper chloride (CuCl2·2H2O) was
supplied by the Tianjin Ruijinte Chemicals Co. (Tianjin, China) Carmine, Congo red and
sodium borohydride (NaBH4) were generated by the Tianjin Comio Chemical Reagent Co.,
(Tianjin, China).

2.2. Synthesis of Nanoparticles
2.2.1. Preparation of the GO

Graphene oxide was synthesized by the modified Hummers method [17]. The first
stage was the low-temperature period, in which ice packs were added into the water bath
to lower its temperature, reaching about 15 ◦C. Then, 46 mL H2SO4, 2.0 g of graphite
powder, 1.0 g NaNO3, and 6.0 g KMnO4 were added into a 500-mL beaker at 15 ◦C in an
ice bath under vigorous stirring for 2 h. The second phase was the medium-temperature
stage, in which the reaction solution was warmed to 35 ◦C and stirred for 30 min. The third
stage was the high-temperature stage, taking place after the reaction solution temperature
rose to 98 ◦C. Here, 90 mL of deionized water was slowly added under stirring to carry
out the reaction for 15 min. Then, 200 mL of deionized water was added to dilute the
suspension. Finally, an appropriate amount of H2O2 (30 wt%) was added into the solution
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until the suspension turned bright yellow (at 98 ◦C). The suspension was washed three
times with 5% HCl and deionized water (at room temperature) and then centrifuged (4000
rpm, 8 min). It was then dried in a vacuum oven (60 ◦C, 48 h), ground and set aside [18,19].

2.2.2. Synthesis of rGO/Fe/Cu Nanocomposites

The rGO/Fe/Cu nanohybrids were prepared by the co-precipitation method [20],
in which 100 mL of the aqueous solution containing FeSO4·7H2O (5 g/50 mL) and
CuCl2·2H2O (0.134 g/50 mL) was added into the GO (0.5 g/150 mL) solution and sonicated
for 2 h. The mixture was then stirred for 12 h. Next, the NaBH4 (2.7 g/25 mL) was added
and agitated for 30 min under a nitrogen atmosphere at room temperature. Then, the black
precipitate was obtained by vacuum pumping and washed three times with ethanol and
deionized water. Finally, the precipitates were dried in a vacuum oven at 60 ◦C for 24 h,
and rGO/Fe/Cu with a molar ratio of 5:1 was successfully manufactured. The Fe/Cu
bimetallic compound was fabricated in the same way without the incorporation of GO
(Figure 1).
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Figure 1. Schematic of rGO/Fe/Cu nanocomposite synthesis.

2.2.3. Preparation of Dye Samples

The carmine solution and the mixture of carmine and Congo red were prepared with
deionized water. The solutions required for the experiment were diluted by deionized
water to the needed initial concentration, and 0.5 g of carmine was added into 500 mL of
deionized water to prepare a single dye solution (1000 mg/L). After that, 0.5 g of carmine
and 0.5 g of Congo red were added to 500 mL of deionized water to prepare a binary dye
solution (2000 mg/L). The structure and properties of the carmine (molecular formula:
C20H11O10N2S3Na3, molecular weight: 604, λmax = 489 nm) and Congo red (molecular
formula: C32H22N6Na2O6S2, molecular weight: 696.68, λmax = 454 nm) are shown in
Figure 2 and Table 1. The maximum absorption wavelength of the mixture of carmine and
Congo red was measured at 503 nm under a UV spectrophotometer.
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Table 1. Chemical properties of carmine and Congo red.

Chemical Name Carmine Congo Red

Molecular formula C20H11O10N2S3Na3 C32H22N6Na2O6S2
Molecular weight 604 696.68

Maximum wavelength λ 509 nm 497 nm
Solubility in water at 22 ◦C ≥10 g/100 mg ≥0.995 g/mL

2.3. Batch Decontamination Experiments

The effects of the initial dye concentration, pH, reaction time and dose on the de-
contamination efficiency of single-dye and dual-dye simulated wastewater were investi-
gated by single-factor experiments. Then, the single-dye training experiments, prediction
experiments and validation experiments were based on RSM as well as ANN-GA and
ANN-PSO. The batch decontamination experiments were carried out in 150-mL conical
flasks with the reaction solution volume kept at 50 mL. The stock solutions were diluted
to 100–1000 mg/L using deionized water and a reaction time ranging from 2 to 30 min.
rGO/Fe/Cu nanocomposites (10–30 mg) were added into 50 mL of the dye solutions (100–
1000 mg/L) with an initial pH (3–10). The initial solution pH adjustments were performed
with HCl (0.1 mol L−1) and NaOH (0.1 mol L−1) solutions. The conical flasks were placed
into an ultrasonic cleaner (power: 180 W) to sonicate for a certain period. Finally, the
rGO/Fe/Cu nanocomposites were separated from the reaction solutions by magnets. The
final concentrations of the single-dye and binary-dye solutions were measured using a
UV-visible spectrophotometer at a λmax of 509 nm and 503 nm, respectively. The percentage
of dye decontamination and the decontamination quantity at equilibrium were calculated
by the following equations:

R(%) =
C0 − Ct

C0
∗ 100% (1)

qe =
(C0 − Ct) ∗ v

m
(2)

where R is the decontamination percentage of the dye; C0 (mg/L) and Ct (mg/L) repre-
sent the initial dye concentration and the final dye concentration after decontamination,
respectively; v is the volume of the solution (mL) and m is the dosage of rGO/Fe/Cu
nanocomposites (mg).

2.4. Characterization

The diffractograms of the prepared Fe/Cu nanoparticles and rGO/Fe/Cu nanocom-
posites were obtained by an X-ray diffractometer (Lelyweg 1, Almelo, The Netherlands)
which was operated with a Cu-Kα source, a tube voltage of 40 kV, a tube current of 40 mA,
a scanning speed of 10◦/min and a scanning angle 2θ range of 5–80◦. The surface and
internal morphological characteristics of the materials were investigated in this research
based on the Quanta F250 field emission scanning electron microscope and Tecnai G220
transmission electron microscope manufactured by FEI, Florida, FL, USA. The rGO/Fe/Cu
nanocomposites and Fe/Cu nanoparticles were characterized with a Vector 33 infrared
spectrometer, Bruker, Germany. The samples were prepared by the KBr press method
with a resolution of 4 cm−1 and a scan range of 4000–400 cm−l. The positions and inten-
sities of the absorption bands in the infrared spectra can reflect the characteristics of the
molecular structures. The N2 adsorption and desorption isotherms at 77 K (Quantum
Star Instruments, Poynton Beach, FL, USA) were used to confirm the surface areas and
the narrow pore size distributions of these materials. Magnetization measurements were
performed with a squid magnetometer (MPMSXL-7, Quantum Design, Inc., San Diego, CA,
USA) at room temperature under an applied magnetic field. The Fe/Cu nanoparticles and
rGO/Fe/Cu nanocompounds were observed by X-ray photoelectron spectroscopy with an
ESCALAB 250Xi spectrometer (Thermo Electron Corporation, Waltham, MA, USA).
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2.5. Response Surface Methodology

In this study, the experimental conditions for decolorization of mesoporous rGO/Fe/Cu
magnetic nanocomposites in an aqueous solution were optimized utilizing the Box–Behnken
design (BBD) technique under RSM. RSM is a scientific and quantitative analysis method
to investigate the relationship between response variables and input variables [21,22].
Through a suitable experimental design scheme, the actual response values of a certain
number of points near a point were obtained, and a complex simulation model (i.e., re-
sponse surface model) was established with a simple functional relationship approximating
the actual replacement. The accuracy and efficiency of fitting this approximate model in-
stead of the actual function in a region sufficiently close to this point to perform complex
calculations would directly affect the subsequent optimization results. The functional ex-
pressions for the first-order and second-order polynomial response surface approximation
models are shown in the following forms [23]:

y = β0 +
n

∑
i=1

βixi + ε (3)

y = β0 +
n

∑
i=1

βixi+
n

∑
i=1

βiixi
2 +

n

∑
i=1

n

∑
j>i

βijxixj + ε (4)

where y stands for the value for the predicted response; β0 stands for the constant term; βi
denotes the primary term coefficient; βii refers to the quadratic term coefficient; βij serves
as the interaction term coefficient; xi and xj represent the design variables and ε indicates
the error term.

The design factors and their level coding for the three-level experimental design of the
four design variables (initial concentration, initial pH, reaction time and dose) performed
in Design-Expert software and employing the BBD are shown in Table 2, and 29 sets of
experimental conditions were obtained, according to Table 2.

Table 2. Independent variables and levels in the experimental design.

Independent Variables Unit Code
Coded Variable Levels

−1 0 1

Contact time min A 8 10 12
pH - B 5 6 7

Dosage mg C 10 15 20
Concentration mg/L D 400 600 800

2.6. Modeling and Optimization of the AI

An ANN is a mathematical model that simulates the processing mechanism of the
human brain’s nervous system for complex information based on the basic principle of a
biological central neural network and the theoretical basis of network topology knowledge,
and the data are fitted by training values, experimental values and predicted values [24,25].
It is a complex network with a large number of simple nodes, both interconnected and
transmitted, capable of performing complex logical operations, and it has the four basic
characteristics of being highly nonlinear, non-constrained, non-qualitative and nonconvex.
In this work, a backpropagation (BP) algorithm was implemented to construct a predictive
mathematical model with four factors (i.e., dye concentration, pH, reaction time and
dose) [11]. The network had three layers—an input layer, a hidden layer and an output
layer—with a tangential S-shaped transfer function for the hidden input layer and a linear
transfer function for the hidden output layer (Figure 3).
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PSO is a randomized search algorithm that explores the optimal region in space
through the accumulation of the individual particles’ own experience and the learning of
the group’s excellent information [26,27]. The PSO algorithm regards the control variables
as properties of themselves, and it can be efficiently transformed for equation constraints,
while inequality constraints can be attached to the objective function in the form of penalty
functions. In this article, the experimental data were optimized and predicted utilizing
ANN-PSO, and then the predicted conditions were verified. A radial basis network (RBF)
belongs to the multilayer forward neural network, which is a three-layer forward net-
work [28,29]. In this task, we evaluated the four main parameters as input data, including
reaction time, pH, dosage as well as dye concentration, and then the percentage of carmine
removal with an RBF as output data. The RBF was expressed by the Gaussian function [19]:

ϕij = exp

(
‖xj − ci‖2

σ2
j

)
(5)

where xj represents the input vector, ‖ ‖ is a measure of Euclidean distance and ci and σj
are the centers and the spread of the jth RBF, respectively.

3. Results and Discussion
3.1. Characterization of the rGO/Fe/Cu Nanocompounds

X-ray diffraction (XRD) is an important technique extensively used for characteriz-
ing the crystal structure, chemical composition and physical properties of materials [30].
According to Qi et al. [17], the diffraction peak of the GO was around 10◦, but this peak
disappeared in the compound, indicating that the GO was reduced to reduced graphene
oxide (Figure 4a). XRD revealed that the main component was Fe0, with a diffraction peak
observed at 2θ of 44.6◦, and also contained α-Fe3O4 components, with diffraction peaks
at 65.0◦ and 35.5◦ and a characteristic peak at 2θ of 23.8◦ CuO [31,32]. Figure 4 shows
that there was no excess impurity peak on the surface of the prepared rGO/Fe/Cu, which
indicated that the purity of the rGO/Fe/Cu prepared by this method was high. Although
the nZVI part of the material surface was oxidized, nZVI and CuO were still dominant.
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As demonstrated in Figure 5b, the Fe/Cu nanoparticles were loaded onto a reduced
graphene oxide (rGO) sheet. Compared with the Fe/Cu nanoparticles, the dispersion of
rGO/Fe/Cu nanohybrids was more uniform and predominant, but the agglomeration still
existed. As shown in Figure 5c, the rGO/Fe/Cu nanohybrids could be recovered after the
test, and the Fe/Cu nanoparticles were compactly stacked together with only a few areas
for the intercalation of dye heterocysts, which indicated that the material was unchanged
before and after the reaction and provided the possibility to repeat the experiment. Figure 6
presents the TEM image of rGO/Fe/Cu, which reveals that the prepared rGO/Fe/Cu on
the nano-iron was nearly spherical, with a particle size of 20–100 nm, and had an Fe-Fe3O4
core shell structure similar to that of the nano-iron. However, the prepared rGO/Fe/Cu
had significantly better dispersion, a higher specific surface area, more reaction sites and
higher reactivity than Fe/Cu. The experiments were conducted by energy-dispersive X-ray
spectroscopy (EDS) to further characterize the elemental composition of the rGO/Fe/Cu
composites. Elements such as Fe and Cu detected by EDS on the iron surface are displayed
in Figure 7, and the weight ratio of the Cu/Fe loaded on the GO was 8.08/40.72, which
was consistent with the experimental design value. Nevertheless, the Fe/Cu weight ratio
of the unloaded GO differed significantly from the experimental value, and the data of the
loaded GO demonstrated that the new rGO/Fe/Cu bimetallic nanocomposites had been
successfully fabricated.

In order to investigate the molecular interaction of the dyes with the rGO/Fe/Cu
nanohybrids, the FTIR spectra of the rGO/Fe/Cu nanohybrids before and after the dye
removal experiment is shown in Figure 8. Several characteristic peaks were observed
in the rGO/Fe/Cu spectrum, such as 3436.99 cm−1, 1058.08 cm−1 and 1633.31 cm−1,
corresponding to the hydroxyl peaks (-OH), epoxy groups (C-O-C) and bending vibrational
peaks of C-O in the C-OH functional groups, respectively, which showed that the rGO
surface contained a large number of oxygen-containing functional groups. The absorption
peak at 1633.31 cm−1 was the C-C stretching vibration peak, and the characteristic peak at
581.03 cm−1 was the Fe-O stretching vibration peak, indicating that the bonding of rGO
with Fe0 nanoparticles was mainly accomplished by Fe-O bonding. The comparison results
of the characteristic peaks of the rGO/Fe/Cu nanocompounds before and after the dye
removal experiment indicated that the peaks corresponding to the individual functional
groups did not disappear but only partially weakened in intensity, which further illustrated
that the substance was theoretically reusable with a possible partial reduction in adsorption
efficiency.
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The N2 adsorption-desorption isotherms of the Fe/Cu nanoparticles and rGO/Fe/Cu
nanocompounds are shown in Figure 9, in which the curves of the Fe/Cu nanoparticles
and rGO/Fe/Cu nanohybrids belonged to the IV isotherm, which was typical for the meso-
porous materials. The adsorption-desorption isotherm of the rGO/Fe/Cu nanocompounds
displayed a loop at a relative pressure between 0.2 and 1.0 because of the condensation of
nitrogen inside the mesopores. The BJH pore size distribution of the Fe/Cu nanoparticles
and rGO/Fe/Cu nanohybrids was centered at 3.930 nm and 3.933 nm, respectively, which
revealed that both materials were mesoporous (Figure 10). Both the Fe/Cu nanoparti-
cles and rGO/Fe/Cu nanohybrids had large surface areas of 64.811 and 41.255 m2/g,
respectively.
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Raman spectroscopy was used to prove the physical properties and molecular struc-
ture of the rGO/Fe/Cu nanohybrids (Figure 11). The former peak and latter peak were
called the D band and G band, respectively. The intensity ratio of the D band to the G band
(ID/IG) is commonly referred to as a measure of the level of defects in graphene-based
materials, and if ID/IG > 1, there are more structural defects [33]. In this work, the ID/IG
intensity (1.18) of the rGO/Fe/Cu nanohybrids was greater than 1, indicating a large
number of structural defects in the rGO/Fe/Cu nanohybrids. Figure 11 indicates that
the numerous structural defects could provide more adsorption sites for dye adsorption
to improve the adsorption efficiency. Figure 12 presented the magnetization properties
of the Fe/Co nanoparticles and rGO/Fe/Co nanohybrids. The saturation magnetization
intensity of the Fe/Cu nanoparticles and rGO/Fe/Cu nanohybrids were 125.43 emu/g
and 108.33 emu/g, respectively. The rGO/Fe/Cu nanohybrids could be quickly recovered
from the dye solutions due to their high saturation magnetization.
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Figure 12. Magnetization hysteresis loop of the (a) Fe/Cu nanoparticles and (b) rGO/Fe/Cu nanocompounds at room
temperature.

X-ray photoelectron spectroscopy (XPS) was employed to investigate the elemental
composition and chemical valence states of the ball-ground samples [34]. The binding
energies of all spectral peaks were calibrated regarding C1S at a binding energy of 284.6 eV.
Figure 13 shows that the binding energy of the Cu 2p peak was 933.4 eV, which corre-
sponded to Cu0, and the binding energy of the Fe 2p peak was 706.97 eV and 711.72 eV,
which corresponded to Fe0 and Fe3+, respectively [35]. In summary, we concluded that
the compound existed in the form of Cu0, Fe0 and Fe3+. XPS narrow-spectrum scans of
C(1s), O(1s), Fe(2p) and Cu(2p) before and after elimination were conducted as shown
in Figure 14. The amount of change in the substances before and after the reaction was
inferred from the peak area size. It was found that the iron and copper content decreased
and the carbon and oxygen content increased, leading to the conclusion that elemental iron
and copper play an important role in the adsorption of carmine dyes.
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3.2. Experimental Results

In this investigation, the BBD of the RSM was adopted to evaluate the process variables
for the removal of carmine using rGO/Fe/Cu nanocompounds and the single-factor
investigation of this material for the removal of binary dyes mixed with carmine and
Congo red. The experimental and predicted data for the removal of carmine from simulated
wastewater are presented in Table 3. Figure 15 presents the line graph of the experimental
and predicted values of the RSM. To describe the relationship between the decontamination
efficiency and independent parameters, a multivariate analysis was carried out, and the
quadratic model was as follows:

Y = 84.73 − 1.78A − 3.88B +5.01C − 0.53D + 0.90AB + 7.07AC + 0.095AD + 4.67BC − 1.42BD
+ 5.38 CD + 3.92A2 + 1.49B2 − 6.67C2 + 1.91D2 (6)

where Y is the decontamination efficiency of carmine; A is the contact time; B represents
the initial pH; C stands for the dosage and D represents the concentration.

Table 3. Comparison of the decontamination efficiency predicted by the BBD model with the experimental values.

Run A (min) B C (mg) D (mg/L) Actual Value
(%)

Predicted
Value (%)

Absolute
Error (%)

1 10 5 10 600 90.76 91.34 0.58
2 10 7 15 800 87.50 87.14 0.36
3 10 7 20 600 86.84 85.38 1.46
4 10 5 20 600 82.57 80.87 1.70
5 10 6 20 400 80.58 80.13 0.45
6 10 6 15 600 68.38 69.04 0.66
7 12 6 10 600 87.93 89.83 1.90
8 12 6 20 600 91.99 92.96 0.97
9 10 6 15 600 89.11 89.21 0.10
10 12 6 15 800 91.61 91.71 0.10
11 10 6 10 400 89.11 88.34 0.77
12 10 7 15 400 83.98 83.08 0.90
13 10 6 10 800 63.77 65.99 2.22
14 10 6 20 800 85.79 83.77 2.02
15 10 6 15 600 84.24 85.35 1.11
16 8 6 15 400 86.94 85.81 1.13
17 8 6 20 600 67.28 68.11 0.83
18 10 6 15 600 82.94 81.70 1.24
19 8 7 15 600 91.56 92.28 0.72
20 10 7 10 600 90.03 91.12 1.09
21 8 6 10 600 86.22 86.21 0.01
22 12 7 15 600 93.30 92.90 0.40
23 10 5 15 400 83.80 82.30 1.50
24 8 6 15 800 84.50 84.73 0.23
25 10 6 15 600 83.13 84.73 1.60
26 10 5 15 800 84.27 84.73 0.46
27 12 5 15 600 85.67 84.73 0.94
28 8 5 15 600 86.08 84.73 1.35
29 12 6 15 400 90.76 91.34 0.58

Mean absolute error (%) 0.87

Analysis of variance (ANOVA) is designed to test the significance of the difference
between the means of two or more samples [36]. Based on Table 4, the F-value of the
model was derived as 38.19779, and the p-value was less than 0.05, which indicated that
the model was significant. The F-values represented the effect of the operating parameters
on the adsorption of carmine by the rGO/Fe/Cu nanocomposites. The order of importance
of the operational parameters was C > B > A > D. Therefore, the model was of excellent
applicability because of its high F-value and low p-value yielding more reliable conclusions.
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Table 4. Analysis of variance (ANOVA) for the response surface quadratic model.

Source Sum of
Squares

Degree of
Freedom Mean Square F-Value p-Value Significant or

Not Significant

Model 1462.943 14 104.4959 38.19779 <0.0001 Significant
A (Time) 38.00306 1 38.00306 13.89177 0.0023
B (pH) 180.3591 1 180.3591 65.9291 <0.0001

C (Dosage) 301.4176 1 301.4176 110.1812 <0.0001
D (Concentration) 3.381933 1 3.381933 1.236243 0.2849

AB 3.228349 1 3.228349 1.180102 0.2957
AC 199.9882 1 199.9882 73.10439 <0.0001
AD 0.036267 1 0.036267 0.013257 0.9100
BC 87.15988 1 87.15988 31.86073 <0.0001
BD 8.11368 1 8.11368 2.965903 0.1070
CD 115.9419 1 115.9419 42.38182 <0.0001
A2 99.51958 1 99.51958 36.37873 <0.0001
B2 14.43986 1 14.43986 5.278395 0.0375
C2 288.5931 1 288.5931 105.4933 <0.0001
D2 23.70787 1 23.70787 8.666257 0.0107

Residual 38.29914 14 2.735653
Lack of Fit 32.74903 10 3.274903 2.360244 0.2116 Not Significant
Pure Error 5.550108 4 1.387527
Cor Total 1501.242 28

Figure 16 presented the relationship between the probability of normal distribution.
The points of the residuals on the plot followed a straight line, which indicated that
the model prediction was accurate. Figure 17 showed the comparison of the experimen-
tal carmine decontamination percentage with the predicted values obtained from the
model, and the value of the determination coefficient (Adj-R2 = 0.9409) is also presented in
Figure 17. Excellent agreement was displayed between the experimental and predicted val-
ues of the carmine decontamination percentage. As shown in Figure 18, three-dimensional
(3D) and contour (2D) response surface plots present the interaction between the two
tested variables and the dye decontamination, while the other variables were kept at a
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fixed level. The experimental results indicated that the decontamination rate of carmine
increased as the dosage of the material increased. This was because at high concentrations
of the material, the ratio of the surface active sites to the dye molecules was high, and all
molecules stuck to the surfaces of the materials. The increase in the number of effective
collisions accelerated the reaction rate.
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3.3. BP-ANN Model

The experimental data of the BP-ANN model was collected from the BBD in the
response surface, and among the 29 sets of data, the first 24 sets were used for training,
and the last 5 sets were experimental values (Table 5). The R2 value of the BP-ANN model
was 0.9975, indicating that the predicted value of the BP neural network prediction model
had a small difference from the expected value error and the correlation between the two
was strong (Figure 19). The trained network performed accurately. As shown in Figure 20,
the fourth neuron had the smallest MSE, from which it was inferred that the hidden layer
contained four neurons (Figure 21). The data in Table 6 were obtained by GA optimization
and were utilized as weights for the calculation of the Garson formula. The influence for
each input variable on the output variable was calculated by the Garson equation using
the weights. Table 7 indicates that the contribution of the dosage to dye decontamination
was the highest (58.35%), followed by pH (18.96%), contact time (14.44%) and 8.23% for the
concentration. Figure 22 illustrates the significance ranking of the factors fitted by R-studio,
and Figure 23 shows the significance ranking of the factors obtained by R-gui. It can be
seen that four factors’ weight analyses yielded consistent results, increasing the credibility
of this conclusion. The R2 value of BP derived from the radial basis function was 0.98562
(Figure 24), which was slightly smaller than the value of ANN-GA, and the R2 value of the
RBF was 0.90069, which indicated that the confidence level of the results obtained by this
function and the reliability of the results were high.

Table 5. The experimental design matrix of the backpropagation (BP) artificial neural network
(ANN) model.

Runs X1 (min) X2 X3 (mg) X4 (mg/L) Experimental
Value (%)

Predicted Value
(%)

1 10 5 10 600 83.9843 81.9819
2 10 7 15 800 83.7990 85.0323
3 10 7 20 600 84.2445 83.4627
4 10 5 20 600 85.7910 88.5915
5 10 6 20 400 80.5823 86.7515
6 10 6 15 600 84.2665 85.1908
7 12 6 10 600 67.2769 83.0775
8 12 6 20 600 91.5635 84.6104
9 10 6 15 600 83.1270 85.3418

10 12 6 15 800 89.1085 85.7064
11 10 6 10 400 82.5666 80.6683
12 10 7 15 400 86.2249 85.1616
13 10 6 10 800 68.3817 82.6676
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Table 5. Cont.

Runs X1 (min) X2 X3 (mg) X4 (mg/L) Experimental
Value (%)

Predicted Value
(%)

14 10 6 20 800 87.9326 85.2220
15 10 6 15 600 85.6656 85.0334
16 8 6 15 400 91.9886 87.1420
17 8 6 20 600 82.9441 88.2917
18 10 6 15 600 84.4953 84.4836
19 8 7 15 600 87.5047 85.6040
20 10 7 10 600 63.7659 80.8439
21 8 6 10 600 86.9410 80.3149
22 12 7 15 600 86.8359 84.3499
23 10 5 15 400 90.0294 88.1946
24 8 6 15 800 91.6078 86.8738
25 10 6 15 600 86.0846 85.5328

* 26 10 5 15 800 93.3004 87.2787
* 27 12 5 15 600 90.7649 87.8442
* 28 8 5 15 600 95.0272 88.0859
* 29 12 6 15 400 89.1085 86.5487

* stands for test set.
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Table 6. Weights and biases of the BP-ANN in the input hidden layers (wi and bi) and the hidden output layers (wj and bj).

Number of
Neurons

wi
Input Bias

Layer
Weights Layer BiasInput Weights

Contact Time Initial pH Dosage Concentration

1 1.4272 −1.4802 0.9073 2.4895 2.4895 0.7555

−0.1334

2 −1.7844 −1.6223 0.1750 −1.9363 −1.9363 0.7555
3 1.4870 1.4928 0.5855 −1.3831 −1.3831 0.7555
4 −1.1910 0.5800 1.5085 0.8298 0.8298 0.7555
5 0.6114 −0.9833 −1.6289 −0.2766 −0.2766 0.7555
6 0.4390 −0.4901 −0.9972 0.2766 0.2766 0.7555
7 0.6983 −1.5074 −1.8098 0.8298 0.8298 0.7555
8 −0.5684 −0.9470 −1.2455 −1.3831 −1.3831 0.7555
9 0.7825 −1.5754 1.4324 −1.9363 −1.9363 0.7555
10 1.6152 −0.8738 1.1511 −2.4895 −2.4895 0.7555
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Table 7. The relative influence of the input variables.

Input Variables Relative Significance (%) Order

Contact Time 14.44% 3
Initial pH 18.96% 2

Dosage 58.35% 1
Concentration 8.23% 4
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3.4. Predicting the Carmine Decontamination Efficiency with BBD, ANN-PSO and ANN-GA

The maximum percentage of decontamination predicted by using the response surface
BBD model was 95.8%, and the corresponding experimental value was 93.28% (Table 8)
under the following conditions: an initial carmine concentration of 437.4 mg/L, pH of 5.09,
dosage of 14.3 mg and contact time of 8.43 min. The performance of the ANN-PSO model
indicated that the predicted decontamination efficiency was 96.13%, (Figure 25)and the
corresponding experimental value was 95.79% under the following conditions: an initial
carmine concentration of 764.3 mg/L, pH of 5.31, contact time of 12 min and dosage of
16.62 mg. The optimum values of the independent parameters for the ANN-GA were
581.3 mg/L for the initial carmine concentration, 5.85 for the initial pH, 14.49 mg for the
dosage and 8.01 min for the contact time. The maximum decontamination efficiency pre-
dicted under this condition was 95.84%, (Figure 26)while the corresponding experimental
value was 92.17%. For the above three, the direct absolute errors of the predicted and
experimental values were 2.52, 0.34, and 3.67, respectively. It can be concluded that the
ANN-PSO model was suitable for predicting the carmine decontamination by rGO/Fe/Cu
nanohybrids. Therefore, the material had an excellent decontamination efficiency for
carmine.

Table 8. Comparison of the predicted percentage of decontamination of carmine by the BBD, ANN-
PSO and ANN-GA models with the experimental results.

Models
Independent Parameters Prediction

(%)
Experiment

(%)
Absolute
Error (%)A B C D

BBD 8.43 5.09 14.30 437.4 95.80 93.28 2.52
ANN-PSO 12.00 5.31 16.62 764.3 96.13 95.79 0.34
ANN-GA 8.01 5.85 14.49 581.3 95.84 92.17 3.67
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3.5. Adsorption Kinetics

The kinetic study of the adsorption process is mainly for describing the rate of solute
adsorption by the adsorbent, and the kinetic model was used to fit the data to investi-
gate the adsorption mechanism [37]. In this investigation, to study the mechanism of the
rGO/Fe/Cu nanohybrids and the rate-controlling step of the process, adsorption experi-
ments of the simulated dye wastewater with different initial concentrations were carried
out at 180 W and pH = 5, and four kinetic models were used to evaluate and analyze the
adsorption kinetics of the material.

The pseudo first-order adsorption model uses the Lagergren equation to calculate the
adsorption rate [38]:

dqt

dt
= k1(qe − qt) (7)

where qe (mg/g) and qt (mg/g) are the amounts of carmine adsorbed at equilibrium and
time t (min), respectively, and K1 (min−1) is the equilibrium rate constant of quasi-primary
adsorption. An integral of Equation (8) from t = 0 to t > 0 (q = 0 to q > 0) is obtained:

ln(qe − qt) = lnqe− k1t (8)

The pseudo-secondary adsorption model is built on the basis that the rate control step
is a chemical reaction or chemisorption through electron sharing or electron gain or loss
with the pseudo-secondary kinetic equation, expressed as follows [39]:

dqt

dt
= k2(qe − qt)

2 (9)

where k2 (g/mg/min) is the equilibrium rate constant for pseudo-secondary adsorption.
Perform the integration of Equation (10) from t = 0 to t > 0 (q = 0 to q > 0) and in the form of
a straight line as follows [40]:

t
qt

=
1

k2q2
e
+

t
qe

(10)

The intraparticle diffusion model was first proposed by Weber et al., and its expression
is as follows [41]:

qt = k3t
1
2
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where k3 is the intraparticle diffusion rate constant and qt is the amount of carmine adsorbed
at time t, where t1/2 is the square root of time.

Elovich concluded that the adsorption rate decreased exponentially with the increase
in adsorption on the surface of the adsorbent, and its simplified mathematical expression is
as follows [42]:

qt =

(
1

βE

)
ln(αEβE) +

(
1

βE

)
lnt (11)

where αE (mg/g/min) is the initial adsorption rate constant and βE (g/mg) is the desorption
rate constant, which is also related to the degree of surface coverage and activation energy
of chemisorption.

The parameters obtained from these four kinetic models are presented in Table 9, and
it can be seen from the R2 values that the pseudo-secondary model described the kinetic
experiments more satisfactorily than the pseudo-secondary, intraparticle diffusion and
Elvoich kinetics, which indicates the adsorption process was mainly controlled by chemical
interactions (Figure 27).

Table 9. The R2 values of the kinetics for carmine adsorption on rGO/Fe/Cu nanohybrids.

Kinetic Models Values of R2

Pseudo-first-order 0.9897
Pseudo-second-order 0.9931
Intraparticle diffusion 0.9044

Elovich 0.9496
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3.6. Adsorption Thermodynamics Study

The Langmuir equation can be applied to both physisorption and chemisorption,
assuming that the adsorption is a single molecular layer on a uniform surface and ignores
the lateral interactions between the adsorbed molecules. The Langmuir equation can be
expressed as [43,44],

Ce

qe
=

1
qmKL

+
Ce

qm
(12)

RL =
1

1 + KLCO
(13)
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qe =
qmkLCE

1 + kLCE
(14)

where co and ce are the initial and final carmine concentrations (mg/L), respectively; qe
is the adsorption amount of carmine at equilibrium (mg/g); qm is the maximum adsorp-
tion capacity; KL is the Langmuir constant (L/mg); and RL is the separation factor. The
parameter RL indicates the nature of the isotherm as follows (Table 10) [45].

Table 10. Rules for judging the type of adsorption isotherm by RL value.

Values of RL Type of Adsorption Nature

RL > 1 Unfavorable
RL = 1 Linear

0 < RL < 1 Favorable
RL = 0 Irreversible

The Freundlich equation was suitable for physical adsorption and chemical adsorp-
tion. It was assumed that the heat of adsorption on a non-uniform surface decreased
logarithmically as the surface coverage increased. Its expression can be written as [46],

lnqe = lnk +
1
n

lnCe (15)

where k and n are Freundlich constants related to the adsorption capacity and intensity of
adsorption, respectively.

The Temkin equation, which describes chemisorption, assumes that the heat of ad-
sorption decreases linearly with increasing adsorption due to the interaction between
the adsorbent and the adsorbent and that the binding energy of adsorption is uniformly
distributed [47]. The expression is

qe = alnKT + alnCe (16)

where a is related to the heat of adsorption and KT (L/g) is the binding constant responding
to the maximum binding energy at equilibrium.

A linear fit for the Langmuir and Freundlich models is displayed in Figure 28, and
Table 11 presents the R2 values for the three thermodynamic studies. The results revealed
that Freundlich’s linear fit R2 value (0.9709) was higher than that of Langmuir and Temkin’s
linear fit. Thus, the adsorption of carmine on nanohybrids could be better described by
Freundlich adsorption lines. The maximum adsorption capacity calculated by Langmuir
was 1848.96, which once again proved the superior adsorption performance of the material.

Table 11. The R2 values of the thermodynamics for carmine adsorption onto rGO/Fe/Cu nanohy-
brids.

Thermodynamics Models Values of R2

Langmuir 0.8704
Freundlich 0.9709

Temkin 0.8837

3.7. rGo/Fe/Cu Removal Dual Dye

Industrial wastewater is diverse and is a mixture we generally used (in order to
simulate more vividly) as a mixture of carmine and Congo red to simulate and explore
the adsorption effect of the material for the mixed dye. The effect of the rGo/Fe/Cu
nanocompounds on the adsorption of the binary dyes (carmine and Congo red) was
investigated by single-factor experiments while controlling the following variables: contact
time (2–30 min), dosage (10–30 mg), concentration (300–900 mg/L) and pH (3–9) (Figure 29).
It was concluded that under optimal conditions (dosage of 20 mg, pH of 4, concentration
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of 500 mg/L and reaction time of 14 min), the removal of binary dyes could reach 96.85%.
The high efficiency of the material for dye adsorption was further demonstrated.
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4. Conclusions

Dyes are very difficult to treat once they enter the water because of their complex
molecular structure. The efficient treatment of wastewater containing dyes has become a
major research hotspot in recent years. Preparation of adsorbents with excellent adsorption
effects and mechanical properties from inexpensive and environmentally friendly raw
materials is the way to go for dye adsorption. In this work, graphene oxide was synthesized
through a modified Hummers method with graphite powder as the main material, and then
the rGO/Fe/Cu composites were prepared by the co-precipitation method. This research
demonstrated that the mesoporous rGO/Fe/Cu nanocomposite is a good decontaminant
for both carmine and the binary dyes (carmine and Congo red) from simulated wastewater,
and the adsorption efficiency can reach a high level in a short period (<12 min). The
material was characterized by XRD, SEM, EDS, Raman spectroscopy, N2 adsorption and
XPS. The post-experimental material was also characterized, and it was found that the
material did not change much before or after the experiment, providing the possibility of
reusing it to operate the repeated experiments; that is, the rGO/Fe/Cu nanohybrids can be
regenerated and have application prospects as a useful adsorbent for water treatment. The
decontamination performance of rGO/Fe/Cu for the treatment of a carmine dye solution
and binary dye solutions (containing carmine and Congo red) was successfully predicted
and optimized by the BBD, ANN-PSO and ANN-GA. The absolute errors between the
predicted and experimental results were 2.52, 0.34, and 3.67, respectively. The existence
of a high degree of agreement between the predicted results and experimental results
indicated that the ANN-PSO could be used effectively for the evaluation and optimization
of the effects of the independent variables on carmine and binary dye (carmine and Congo
red) decontamination. In addition, the experimental data were well fitted to the pseudo-
second-order kinetic model. The maximum adsorption capacity was calculated as 1848.96
mg/g based on the Langmuir isothermal adsorption model. In summary, this investigation
developed a promising mesoporous material for the treatment of wastewater containing the
unitary or binary dyes of high concentrations with a short contact time and high efficiency,
and ANN technology could offer great potential for pollutant removal applications. There
is a great possibility for the material to be applied practically in wastewater treatment
systems.
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