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Abstract: This article presents a study on the effect of strain rate, specimen orientation, and plastic
strain on the value and distribution of the temperature of dog-bone 1 mm-thick specimens during
their deformation in uniaxial tensile tests. Full-field image correlation and infrared thermography
techniques were used. A titanium-stabilised austenitic 321 stainless steel was used as test materials.
The dog-bone specimens used for uniaxial tensile tests were cut along the sheet metal rolling direction
and three strain rates were considered: 4 × 10−3 s−1, 8 × 10−3 s−1 and 16 × 10−3 s−1. It was
found that increasing the strain rate resulted in the intensification of heat generation. High-quality
regression models (Ra > 0.9) developed for the austenitic 321 steel revealed that sample orientation
does not play a significant role in the heat generation when the sample is plastically deformed. It was
found that at the moment of formation of a necking at the highest strain rate, the maximum sample
temperature increased more than four times compared to the initial temperature. A synergistic
effect of the strain hardening exponent and yield stress revealed that heat is generated more rapidly
towards small values of strain hardening exponent and yield stress.

Keywords: digital image correlation; mechanical properties; stainless steel; temperature; thermovi-
sion; uniaxial tensile test

1. Introduction

Metals and their alloys have a crystalline structure, which is characterised by a regular
arrangement of atomic cores. Technical metals obtained by conventional metallurgical
methods have a polycrystalline structure [1,2]. This means that metals are made up of grains
characterised by approximately the correct crystal structure. Polycrystalline materials
consist of grains with various orientations. For many polycrystalline materials, the grain
orientations are random before any working (deformation) of the material is undertaken.
Therefore, even if the individual grains are anisotropic, the property differences tend to
average out and, overall, the material is isotropic. When a material is formed, the grains
are usually distorted and elongated in one or more directions which makes the material
anisotropic [3].

In metals subjected to plastic working, the most important defects of the crystal lattice
are dislocations and grain boundaries. Strain hardening—hardening of a material with
deformation—results from interaction and multiplication of dislocations during plastic
deformation. Grain boundaries have a much greater influence on the mechanical properties
of metals than dislocations [4,5]. The high energy level of grain boundaries determines

Materials 2021, 14, 5259. https://doi.org/10.3390/ma14185259 https://www.mdpi.com/journal/materials

https://www.mdpi.com/journal/materials
https://www.mdpi.com
https://orcid.org/0000-0002-6541-885X
https://orcid.org/0000-0002-4366-0135
https://doi.org/10.3390/ma14185259
https://doi.org/10.3390/ma14185259
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/ma14185259
https://www.mdpi.com/journal/materials
https://www.mdpi.com/article/10.3390/ma14185259?type=check_update&version=1


Materials 2021, 14, 5259 2 of 15

the occurrence of many phenomena, such as continuous mobility of boundaries leading to
grain growth and lower corrosion resistance [6–8]. Grain boundaries also have a strong
influence on the ductility of metals. The degree of strain hardening of materials by grain
refining is described by the Hall–Petch relationship [9,10] according to which the yield
strength of the material increases with the degree of grain refinement. On the one hand,
grain boundaries inhibit the free movement of dislocations during grain deformation
while participating in the process of material strengthening and in the formation of the
deformation texture [1]. On the other hand, the grain boundaries are the main area of
permanent deformation during creep or superplastic flow.

The deformation of the material (elastic or plastic) occurs under the influence of a
load applied to it. Elastic deformation disappears when the load is removed. Plastic
deformation remains after the material is unloaded. There are two main mechanisms of
plastic deformation: the gliding motion of dislocations and deformation twinning [11,12].
The gliding motion does not occur simultaneously in all possible planes and directions
of slip. Deformation occurs gradually, starting from the sliding planes and directions
prioritised in relation to the direction of the applied load. During deformation, the number
of active slip planes and free dislocations that are generated during deformation increases.
Further plastic deformation requires the application of greater stress in order to initiate
new dislocations [13–15]. The process by which stress increases with deformation is called
work hardening. Plastic deformation is also accompanied by heat generation due to the
internal resistance of the material, which can be detected at the microstructure scale when
loading the material [16,17].

The investigation of heat generation and dissipation during plastic deformation was
reflected in scientific research. Bodelot et al. [18] applied infrared (IR) coupled full-field
measurements to observe the heterogeneities of kinematic and thermal data at the grain
scale of austenitic stainless steel. Specimens were subjected to a cyclic loading. It was
found that the temperature was significantly affected by diffusion and this observation
tends to confirm that temperature may not be used as a damage indicator. Boulanger
et al. [19] have focused on the determination of heat sources from a temperature field
provided by an IR camera. They separately identified the dissipative and thermo-elastic
heat sources. Thermal full-field measurements from infrared thermography were used to
study the Portevin-Le Chatelier effect [20]. The temperature field provided insights into
the dynamics of band formation and motion.

The non-contact optical methods for the measurement of temperature displacement in-
clude video extensometers [21], laser speckle correlation [22], interferometry methods [23–25]
and temperature-calibrated CCD cameras [26]. In addition to IR thermography, the other
technique that allows temperature changes to be coupled with strains is digital image corre-
lation (DIC), in which digital images of an object before and after deformation are captured
using a non-contact optic and material-independent measuring instrument, and then they
are subject to correlation analysis [23,24,27]. High-speed DIC allows deformation and dam-
age mechanisms to be analysed in a quantitative manner [28]. DIC was used to obtain strain
fields and to investigate the propagation of the Lüders band in steel specimens subjected to
the uniaxial tensile test [29]. The strain states associated with localised necking and diffuse
strains are also investigated. Results show that the cross-section of a tensile specimen must
be regarded as a structure, not as an elementary volume of material which is subjected to
the uniform load. The results of investigations of Hung and Voloshin [30] indicated that for
the uniform tension test, DIC is a very convenient and efficient tool for the measurement of
in-plane strain measurement. Feng and Xue [31] applied infrared thermography tests and
DIC tests for the display of the thermal field during mechanical tensile tests of 3D printed
bolts. Cholewa et al. [32] developed the method of calibrated infrared thermal cameras
with a stereo-vision DIC system applicable to scales of lengths both large and small. Żaba
et al. [33] used DIC and IR thermography to find the relationship between yield stress and
the Taylor–Quinney coefficient and their change with the strain rate during the stretching of
nickel-based superalloys. A coupled thermography and DIC system was calibrated using a
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series of one sided heat exposure experiments performed on loaded sandwich composites.
Infrared thermography and DIC measurements are not applicable to experiments with low
conductivity materials or discontinuous materials [33,34]. Maynadier, et al. [35] developed
an infrared image correlation system equipped with a single IR camera to measure simulta-
neous thermal fields and deformation. The disadvantage of the proposed method is that
this technique requires the use of a special coating for displacement measurement using the
single camera. Chrysochoos et al. [34] proposed DIC and thermography measurements for
the determination of the mechanical energy and heat sources involved at local scale during
a heterogeneous tensile test. Thermodynamic analysis of the energy balance showed the
influence of the dissipated mechanism on the stress–strain response.

Many of studies take place at a macroscopic scale with the measurement of the average
temperature of the material [36,37]. Meanwhile, due to the grain structure of polycrystalline
metals and the occurrence of various plastic deformation mechanisms, the temperature
of the body subjected to loading is not uniform. The way to explain this phenomenon
is to take full-field measurements. In this paper, the coupled IR and DIC measurements
were conducted to assess the thermomechanical response of stainless steel strip samples
subjected to tensile load at different strain rates. An analysis of variance (ANOVA) was
used to gain information about the relationship between the strain hardening phenomenon,
yield stress, sample orientation in respect of the sheet rolling direction, strain rate, and
plastic strain of the specimen and temperature.

2. Materials and Methods
2.1. Material

The research material was a titanium-stabilised austenitic stainless steel, 321 (AMS
5510). Steel 321 is a steel with good formability, weldability and resistance to intergranular
corrosion that is mainly used in the chemical and aviation industries. The thickness of the
sheets was 1 mm. The test samples were cut from the sheet in three directions: the rolling
direction (RD), at an angle of 45◦ to the RD and perpendicular to the RD. The dimensions
of test samples (Figure 1) were in accordance with the ASTM E8/E8M–11 standard [38].
The requirements for the chemical composition of the test steel are shown in Table 1 and
are in accordance SAE AMS 5510 [39].
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Figure 1. Dimensions (in mm) of the samples for the tensile test.

Table 1. Chemical composition of 321 steel (wt.%) [39].

C (Max.) Si Mo Mn (Max.) P + S (Max.) Cr Ni Ti (Max.) N (Max.) Fe

0.08 0.25–1.00 0.75 2.0 0.04 P
0.03 S 17.0–19.0 9.0–12.0 0.7 0.1 balance

2.2. Uniaxial Tensile Test

Dog-bone samples (Figure 1) were stretched in a uniaxial tensile test machine Zwick/Roell
Z100 (Figure 2). Three different strain rates were used in the investigations: 4 × 10−3 s−1,
8 × 10−3 s−1 and 16 × 10−3 s−1. The tests were carried out at a temperature of 24 ◦C.
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2.3. Digital Image Correlation Technique

The digital image correlation Aramis system (GOM, Braunschweig, Germany) was
used to determine the character of the deformation of the sample in a non-contact manner
during the stretching process of samples. The measuring system consists of two essential
components. The first is a scanner, consisting of two high-resolution digital cameras
(Figure 2) positioned in relation to each other in such a way as to be able to build a spatial
image. The second element of the set is a computer with special software for the numerical
processing of images.

Proper surface preparation of the samples is necessary for DIC analysis. First, the
samples are covered with white paint, and then a random pattern of contrasting black
spots is applied. The selection of the size of the spots depends on the size of the test object
and the optical properties of the measuring apparatus. The measurement process consists
in taking a series of images of the sample by two cameras in successive stages of loading.
Correlation of images from these cameras makes it possible to determine the position of
each pixel by giving them coordinates in a three-dimensional coordinate system. Then
the images are divided into so-called deformation grids, each of which contains a unique
pattern of dots [40]. The initial setup becomes the reference step. Due to the deformation of
the sheet surface, the spots in each element of the mesh change their position in relation to
each other, which makes it possible to calculate the full field deformation in relation to the
reference position. However, in order to make such an analysis possible, the system divides
the measurement area into fields of a fixed size called facets. Local strains are obtained
from the formula:

εeng =

(
lim
l→0

(
lin + ∆ld

lin

)
− 1

)
·100% (1)

where lin is the initial dostance between two neighbouring facets and ∆ld is the distance
increase during uniaxial tensile test.

The dimension of standard facet is 21 × 21 pixels. The second characteristic value
is the distance between the centres of adjacent facets. The Aramis system offers many
benefits, such as:

• a stable solution for full-field analyses of test objects of just a few millimeters up to
structural components of several metres in size,

• it is a material-independent and non-contact measuring system,
• it performs high-precision measurements with a 3D measurement resolution in the

sub-micrometer range,
• it is a high-resolution for point-based and full-field measurements.
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2.4. Infrared (IR) Thermal Mapping

The surface temperature of the samples during the stretching was measured using
a high-sensitivity IR Flir T640 camera (Flir Systems AB, Antennvägen 6, 187 66 Täby,
Sweden). The measurements of temperature were correlated with the measurement of
strain using the A0Aramis system. Non-invasive distance measurement was performed
with an accuracy of thermographic measurements in the range of +/− 2 ◦C. The principal
parameters of the Flir T640 camera are listed in Table 2.

Table 2. Parameters of a Flir T640 camera.

Parameter Unit Value

Resolution pixel 2048 × 1536
Measuring range ◦C −40 ÷ +2000

Refresh rate Hz 30
Thermal sensitivity mK 30

2.5. Analysis of Variance

Quadratic multidimensional ANOVA was used to determine the relationship between
material properties (strain hardening exponent, yield stress, sample orientation), process
parameters (strain rate and percentage strain) and the maximum temperature appearing
in the sample during the stretching process. The values of the strain hardening exponent
were determined by approximating true stress-true strain curves using the well known
Hollomon’s power law.

ANOVA is a statistical method for examining observations that depend on one or
more factors acting simultaneously. Due to the different numerical ranges of the data, they
were normalised to the range [−1, +1] [41]. The min-max normalisation was applied by
means of a linear function bringing the data to a new interval (Coded Low, Coded High).

Explanatory variables should be independent of each other. The input data were fitted
with a polynomial, and the influence of individual variables on the quality of the model
was checked using backward elimination. The minimum and maximum values of the input
variables for samples made of 321 sheet are presented in Table 3. Intermediate values of
input parameters were coded proportionally in the range [−1, +1].

Table 3. Factors and levels for analysis of variance (ANOVA) of stretching of specimens of 321 steel.

Parameter Name Unit Type Minimum Maximum

A
Strain

hardening
exponent

- Numeric 0.35 0.392

B Yield stress MPa Numeric 341 367
C Strain rate s−1 Numeric 4 × 10−3 16 × 10−3

D Sample
orientation deg. Numeric 0 90

E Percentage
strain % Numeric 12 117.7

The regression models that were built were subjected to significance tests. The method
of backward elimination of variables was used in the analysis. It is a variable selection
procedure in which all the variables are entered into the regression equation and then
removed sequentially. The variable with the lowest partial correlation with the dependent
variable is considered for removal first. If it meets the elimination criteria, it is removed.
The basis for removing or leaving a given variable in the model is the calculation of Fisher
F statistics. The independent variable with the highest probability corresponding to the
Fisher parameter F is removed from the model if the probability p is sufficiently high
(typically p = 0.10). After the first variable is removed, the next one to be removed is the
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one that has the smallest partial correlation with the dependent variable. The procedure
exits when there are no other variables in the equation that meet the removal criteria.
The significance of the regression model at a level of α = 0.05 is determined based on the
variance due to the effect of a factor and the variance due to the error term.

3. Results and Discussion
3.1. Experimental Investigations

Figure 3 shows the evolution of the surface temperature of the samples cut along the
sheet rolling direction of the 321 steel during its stretching with different strain rates. It
is clearly visible that even within the range of proportional deformations the zone with
the highest temperature is located approximately at the central point between the grippers
of the testing machine. As a result of heat convection caused by internal friction of the
material, an increase in the temperature of the samples was also observed in the part that
is gripped where no plastic deformation occurs. Increasing the strain rate resulted in the
intensification of heat generation. At the moment of the formation of a necking at the
highest strain rate, the maximum sample temperature increased by more than 4 times
compared to the initial temperature. Similar conclusions can be drawn for the samples cut
at an angle of 45◦ with respect to RD and perpendicular to RD (Figure 4).

Only part of the mechanical energy is converted into heat in the deformation process.
The remainder is stored in the microstructure of the material increasing the internal energy
of the material. The total energy spent on deforming an elastic-plastic material is equal to
the work undertaken on elastic (reversible) deformation and permanent (plastic) deforma-
tion. Moreover, the energy consumed on plastic deformation is divided into heat dissipated
in the forming process and energy stored in the material [42–44]. The evolution of the
microstructure during deformation depends on the type of material, the initial temperature
and the loading situation [45,46]. Changing the deformation method usually leads to a
partial or complete reconstruction of the dislocation systems formed in the previous stages
of deformation and the formation of new systems [47,48]. The interaction of the lattice
defects is related to the overlapping of their stress fields. If the overlap of stress fields
caused by defects reduces the energy of the system, then with a specific activity of the
respective slip systems, these defects will form configurations compliant with the principle
of energy minimisation [49,50].

The plasticity margin measured as the difference between ultimate tensile stress and
field stress is more pronounced in the case of 321 steel than for 17-4PH steel.

Figure 5 show the effect of percentage strain on the change in the maximum tempera-
ture of the specimens of 321 steel. These dependencies, determined by the determination
coefficient R2, show a linear trend with a high correlation value R2 > 0.93. In the case of the
sample made from 321 steel cut at an angle of 45◦ tested at a strain rate of 16 × 10−3 s−1,
the last point corresponds to the advanced stage of sample necking. Therefore, the R2-value
for that case is about 0.9484 (Figure 5c). In general, the higher the strain rate the steeper the
trend lines. The samples made of 321 steel show anisotropic features, which are particularly
visible at a strain rate of 8 × 10−3 s−1 (Figure 5b). Trend lines for samples cut at different
angles are inclined at different angles with respect to the abscissa axis. True stress-strain
curves for 321 steel determined at various strain rates are shown in Figure 6. True strain is
defined as εt:

εt = ln
(

l
l0

)
(2)

where l and l0 are the current and initial gauge lengths, respectively.
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3.2. Analysis of Variance (ANOVA) for 321 Steel Samples

A quadratic model containing only statistically significant elements was chosen to fit
the experimental data. The temperature response surface for the 321 steel specimens is
given by:

T = 76.71− 18.56A− 10.02B− 4.19C + 4.71D + 48.61E− 4.97AB
+9.58AC + 8.27AD− 31.41AE− 12.99BC− 13.1BE

−21.35CE− 1.22DE + 13.36E2
(3)

The significances of the influence of the individual material parameters as well as
the conditions of the stretching process and their interaction in the regression model were
determined on the basis of the ANOVA. The quality of fit of the model obtained to the
values measured for a given research plan (Equation (3)) was then determined on the
basis of the determination coefficients R2 and the F test. The significance of the model is
confirmed by an F-value of 53.30 (Table 4). This model can, therefore, be used to predict
temperature values based on material deformation. The probability that such a large
F-value can result from data noise is only 0.01%.

Table 4. Results of analysis of variance for the regression model for 321 steel samples.

Source Sum of Squares Degrees of Freedom Mean Square F-Value p-Value Meaning

Model 8991.31 14 642.24 53.30 <0.0001 significant
A—strain
hardening
exponent

26.04 1 26.04 2.16 0.1723 -

B—yield stress 39.77 1 39.77 3.30 0.0993 -
C—strain rate 0.5708 1 0.5708 0.0474 0.8321 -

D—sample
orientation 13.38 1 13.38 1.11 0.3167 -

E—plastic strain 989.76 1 989.76 82.14 <0.0001 -
AB 1.11 1 1.11 0.0920 0.7679 -
AC 9.23 1 9.23 0.7664 0.4019 -
AD 22.41 1 22.41 1.86 0.2025 -
AE 171.00 1 171.00 14.19 0.0037 -
BC 4.45 1 4.45 0.3696 0.5568 -
BE 36.85 1 36.85 3.06 0.1109 -
CE 758.38 1 758.38 62.94 <0.0001 -
DE 2.40 1 2.40 0.1992 0.6649 -
E2 66.37 1 66.37 5.51 0.0409 -

Residual 120.49 10 12.05 - - -
Cor Total 9111.80 24 - - - -

The probability values p for E, AE, CE, E2 that are less than 0.0500 prove that these
factors are statistically significant. The parameters the removal of which will not reduce the
quality of the model include, inter alia, C, AB, BC, DE. Due to the satisfactory value of the
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determination coefficient for the model equal to R2 = 0.9868 (Table 5), it was decided to leave
these variables in the model. The predicted value of the coefficient of determination R2 =
0.8982 is in reasonable agreement with the adjusted coefficient of determination R2 = 0.9683
because the difference between their values is less than 0.2 [51]. The value of adequacy
precision 27.6342 is greater than 4. The adequacy of model is, therefore, confirmed.

Table 5. Fit statistics of the regression model for 321 steel samples.

Standard Deviation 3.47 R2 0.9868

Mean 54.09 Adjusted R2 0.9683
Coefficient of variation, % 6.42 Predicted R2 0.8982

- - Adequacy precision 27.6342

If the errors arising during the experimental tests are random, then the distribution
of residuals in the form of deviations between the actual values and the expected values
should be in accordance with the normal distribution. The distribution of residuals along a
straight line (Figure 7a) shows that the studentised residuals have a normal distribution [52].
Figure 7b shows a comparison of the actual values and the predicted temperature values
resulting from the introduction of independent variables to the regression model. The
distribution of data around a straight line indicates that the regression model is of good
quality [53,54].
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The relationship between the dependent and independent variables was analysed
using 2D response surface plots. Figures 8 and 9 show the interactive effect of two selected
parameters on the value of the maximum temperature in the sample during the stretching
test when the other input parameters are constant [55–57]. Figure 8a indicates the synergis-
tic role of the strain hardening exponent (SHE) and yield stress (YS). The heat is generated
faster towards the low values of both the SHE and YS. Figure 8b indicates that the SHE
plays a more significantly influential role in heat generation. However, the strain rate (SR)
is a significant factor, but only when considering small values of SHE. For small values of
SHE, the sample orientation in interaction with the SHE does not significantly affect the
temperature value (Figure 8c). However, if the SHE increases then the difference between
the temperature for 0◦ and 90◦ orientations increases to around 30 ◦C. For small values of
SHE, starting from a plastic strain (PS) of about 80%, the regression model overestimates
the temperature values (Figure 8d). However, the trend observed in the experimental
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studies is maintained, i.e., with an increase in PS for a given SHE value, the temperature
value increases.
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The synergistic effect of both SR and YS is more complicated (Figure 9a). Similarly, in
the case of sample orientation and YS (Figure 9b), it is only for the lowest value of YS that
strain rate and orientation significantly affect the value of temperature. Figure 9c indicates
that the orientation when testing samples with different SR values plays the following role:
for orientation 0◦, the temperature is low and increases with change in the orientation to
45◦ and 90◦. The effect of PS and SR shown in Figure 9d is very similar to the effect of PS
and SHE on temperature (Figure 8d). A strong correlation between PS and temperature
is also confirmed in Figure 9e,f by the high isotherm concentration. Specimens cut at 90◦

heat faster during deformation than specimens cut at 0◦ (Figure 9e). The reverse effect is
observed in Figure 9f: when the YS of specimens is small, the material heats up faster.
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4. Conclusions

In this paper, full-field image correlation and infrared thermography techniques were
used to analyse the effect of material properties and strain rate on heat generation in
stretched dog-bone specimens of titanium-stabilised austenitic stainless steel. Based on the
experimental results and analysis of variance, the following conclusions can be drawn:

• The heat during stretching of the samples was not generated proportionally over
the entire length of the samples. In the range of proportional deformation (before
necking formation), the zone with the highest temperature was located approximately
centrally along the distance between the grippers of the testing machine.

• At the moment of formation of a necking at the highest strain rate, the maximum sam-
ple temperature increased more than four times compared to the initial temperature.
This phenomenon was observed for all sample orientations analysed.

• The character of the effect of plastic strain on the maximum temperature generated in
the specimens was close to a linear trend in the range of strain rates analysed.

• A synergistic effect of the SHE and YS revealed that heat was generated more rapidly
towards small values of SHE and YS.

• For small values of SHE, the sample orientation in interaction with the SHE did not
significantly affect the temperature value.

• For all the orientations analysed, the temperature increased in a similar way with
increasing PS.
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