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Abstract: The upper bound theorem is used in conjunction with Hill’s quadratic yield criterion for
determining the force required to upset a solid cylinder. The kinematically admissible velocity field
accounts for the singular behavior of the real velocity field in the vicinity of the friction surface if the
maximum friction law is adopted. The regime of sticking is also taken into consideration. The effect
of this regime on the upper bound limit load is revealed. In particular, the kinematically admissible
velocity field that includes the regime of sticking may result in a lower upper bound than that with
no sticking. The boundary value problem is classified by a great number of geometric and material
parameters. Therefore, a systematic parametric analysis of the effect of these parameters on the
compression force is practically impossible. An advantage of the solution found is that it provides a
quick estimate of this force for any given set of parameters.

Keywords: upsetting; orthotropy; singularity; upper bound

1. Introduction

The upsetting of solid cylinders is an important metal-forming operation [1]. Moreover,
this process is used as a test for evaluating flow stress and friction [2]. An experimental
technique for accurately determining the strains on the cylindrical surface and the flat
ends of a cylindrical compression specimen was developed and applied in [3]. Another
experimental method for evaluating strain inhomogeneity was proposed in [4]. Hot
upsetting tests on steel cylindrical specimens were carried out in [5,6]. The development of
damage in the upsetting of cylinders was studied in [7]. A measure of barreling appearing
in the cylinders’ upsetting was used to study frictional conditions and lubricant properties
in [8–13].

The experimental studies above should be complemented with theoretical solutions.
For this purpose, the finite element method is widely used (for example, [2,5,6,13].
However, the upper bound theorem also provides an efficient method for finding an ap-
proximate solution to these boundary value problems. It is worthy to note that the upper
bound method applies to micro-forming [14] and novel metal forming processes (for exam-
ple, the process for extruding curved profiles [15]). Sometimes, the upper bound method
is even more efficient than the finite element method. In particular, solutions for several
materials models are singular in the vicinity of maximum friction surfaces [16,17]. Finite
element solutions based on standard shape functions do not converge in this case [18,19].
On the other hand, upper bound solutions incorporate this singularity with no difficulty
(for example, [20,21]). Other advantages of the upper bound method over the finite element
method were summarized in the recent paper [22]. A typical disadvantage of upper bound
solutions is that the regime of sticking friction is ignored (for example, [23–27]). On the
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other hand, such a regime inevitably occurs over a certain portion of the friction surface in
many metal forming processes.

Cylindrical orthotropy of material properties is frequently generated in the course of
such processes as axisymmetric extrusion and drawing. This material property is often
taken into account in structural analysis and design (for example, [28–33]). However, as
follows from the review above, the analysis of cylinder’s upsetting is usually based on
isotropic models. An exception is the solution provided in [34] for the upsetting of a hollow
cylinder. This solution is based on Hill’s quadratic yield criterion [35]. However, it ignores
the regime of sticking. Therefore, its practical value is questionable. The present paper also
adopts Hill’s quadratic yield criterion. The effect of plastic anisotropy on the force required
to upset a solid cylinder is demonstrated. Moreover, the effect of the regime of sticking
on the upper bound limit load is revealed. In particular, the kinematically admissible
velocity field that includes this regime may result in a lower upper bound than that with
no sticking.

The overall motivation of this research is to demonstrate, using a simple example, that
plastic anisotropy, which is a very common property of metallic materials, should not be
ignored in upper bound solutions for metal forming processes.

2. Statement of the Problem

A circular solid cylinder is upset between two parallel rough plates (Figure 1). The
radius of the cylinder is R0, and its height is 2H0. Each plate moves with velocity U. The
force P applies to each plate. This force should be found from the solution. The material of
the cylinder is plastically orthotropic. The principal axes of anisotropy coincide with the
radial, circumferential, and axial directions. Hill’s quadratic yield criterion is adopted [35].
Under the conditions of axial symmetry, this criterion reads as follows.

F(σθθ − σzz)
2 + G(σzz − σrr)

2 + H(σrr − σθθ)
2 + 2Mσ2

rz = 1. (1)

where σrr, σθθ , σzz, and σrz are the components of the stress tensor referred to a cylindrical
coordinate system (r, θ, z). The z-axis coincides with the axis of symmetry of the cylinder,
and the plane z = 0 coincides with the plane of symmetry of the cylinder. Since z = 0 is
the plane of symmetry for the flow, it is sufficient to find the solution in the region z ≥ 0.
The coefficients involved in (1) are material constants. Let Υ, Θ, and Z be the tensile yield
stresses in the radial, circumferential, and axial directions, respectively, and S be the shear
yield stress in the rz-plane. Then, we have the following:

2F =
1

Θ2 +
1

Z2 −
1

Υ2 , 2G =
1

Z2 +
1

Υ2 −
1

Θ2 , 2H =
1

Υ2 +
1

Θ2 −
1

Z2 , 2M =
1
S2 . (2)

The equivalent strain rate is determined as follows [35]:

ξeq =

√
2
3

√
F + G + H

√√√√√√√√
F
(

Gξθθ − Hξzz

FG + GH + HF

)2
+ H

(
Fξrr − Gξθθ

FG + GH + HF

)2
+

G
(

Hξzz − Fξrr

FG + GH + HF

)2
+ 2ξ2

rz
M

. (3)

where ξrr, ξθθ , ξzz, and ξrz are the components of the strain rate tensor referred to the
cylindrical coordinate system. The plastic work rate per unit volume is as follows [35]:

ω =

√
3
2
(F + G + H)−1/2ξeq. (4)

The velocity boundary conditions are as follows:

uz = 0 (5)
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for z = 0 and

uz = −U (6)

for z = H0. Moreover, we have the following:

ur = 0 (7)

for r = 0. Here, ur and uz are the radial and axial velocities, respectively. The lateral surface
of the cylinder is traction-free. Friction occurs at the surface z = H0. It is assumed that
the friction stress is equal to a constant fraction of the local shear yield stress. Taking into
account the orientation of the principal axes of anisotropy, one obtains the friction stress as
τf = mS where m is constant. Then, we have the following for z = H0:

σrz = −mS (8)

The friction law (8) is valid if the regime of sliding occurs.

Figure 1. Schematic of the upsetting of a cylinder.

3. Kinematically Admissible Velocity Field

A general kinematically admissible velocity field for a class of axisymmetric problems
was proposed in [21]. This paper deals with isotropic materials. However, the same velocity
field is kinematically admissible for anisotropic materials. The general kinematically
admissible velocity field can be reduced to a form appropriate for the upsetting of cylinders.
The general structure of this velocity field is shown in Figure 2. The rigid region moves
together with the plate. Therefore, its velocity is U. The rigid and plastic regions are
separated by a velocity discontinuity line ac. This line must pass through the origin of the
coordinate system. The shape of this line should be found from the solution. The solution
below is valid if the radial coordinate of point c is less or equal to the radial coordinate of
point b. Since the axis of symmetry belongs to the rigid region, the boundary condition (7)
is satisfied. The kinematically admissible velocity field in the plastic region is as follows:

ur

U
=

ρ

2h
+

f (ζ)
ρ

and
uz

U
= −ζ. (9)

where ρ = r/R0, ζ = z/H0, h = H0/R0 and f (ζ) is an arbitrary function of its argument.
One can readily verify that the velocity field (9) satisfies the incompressibility equation
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∂ur
/

∂r + ur/r + ∂uz
/

∂z = 0. In addition, the axial velocity satisfies the boundary con-
ditions (5) and (6). The strain rate components involved in (3) are determined from (9)
as follows:

ξrr =
∂ur
∂r = U

R0

[
1

2h −
f (ζ)
ρ2

]
, ξθθ = ur

r = U
R0

[
1

2h + f (ζ)
ρ2

]
,

ξzz =
∂uz
∂z = − U

H0
, ξrz =

1
2

(
∂uz
∂r + ∂ur

∂z

)
= U

2H0

f ′(ζ)
ρ .

(10)

Figure 2. General structure of the kinematically admissible velocity field.

In what follows, it is convenient to use the following dimensionless strain rate components:

ξ̄rr = ξrr
H0

U
, ξ̄θθ = ξθθ

H0

U
, ξ̄zz = ξzz

H0

U
, ξ̄rz = ξrz

H0

U
. (11)

Equations (10) and (11) combine to give the following:

ξ̄rr =
1
2
− h f (ζ)

ρ2 , ξ̄θθ =
1
2
+

h f (ζ)
ρ2 , ξ̄zz = −1, ξ̄rz =

f ′(ζ)
2ρ

. (12)

Let i and j be the unit base vectors of the axes r and z, respectively. Then, the
velocity vector in the rigid region is represented as Ur = −Uj, and in the plastic region as
Up = uri + uzj. The velocity normal to the velocity discontinuity line must be continuous.
Then, Ur · n = Up · n, or the following holds:

−Uj · n = uri · n + uzj · n. (13)

The velocity components ur and uz are understood to be calculated at the velocity
discontinuity line using (9). From the geometry of Figure 2, we have the following:

n = −i sin ϕ + j cos ϕ and tan ϕ =
dz
dr

. (14)

where ϕ is the orientation of the tangent to the velocity discontinuity line relative to the
r-axis. Substituting (9) and (14) into (13) and using the dimensionless coordinates yields
the following:

dρ

dζ
=

h
(1− ζ)

[
ρ

2h
+

f (ζ)
ρ

]
. (15)

Using the substitution η = ρ2, one transforms (15) into the following linear ordinary
differential equation:

dη

dζ
=

h
(1− ζ)

[η

h
+ 2 f (ζ)

]
. (16)
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The solution of this equation supplies the shape of the velocity discontinuity line. Since
this line must pass through the origin of the coordinate system, the boundary condition to
Equation (16) is as follows:

η = 0 (17)

for ζ = 0. The general solution of (16) can be represented as follows:

η = ηac(ζ) =
2hΦ(ζ) + C

1− ζ
(18)

where C is constant and

Φ(ζ) =

ζ∫
1

f (λ)dλ. (19)

The denominator in (18) approaches zero as ζ → 1. Therefore, the velocity disconti-
nuity line can reach the friction surface ζ = 1 only if C = 0. Then, Equation (18) becomes
the following:

η = ηac(ζ) =
2hΦ(ζ)

1− ζ
. (20)

This equation determines the velocity discontinuity line. Applying l’Hospital’s rule
and taking into account (19), one obtains the following:

ηc = −2h f (1). (21)

where ηc is the value of η at point c (Figure 2).
Having found the velocity discontinuity line, one can readily determine an infinitesi-

mal length element of this line from (19) and (20) as follows:

dL = H0

√√√√[ 1
2h

+
f (ζ)

ηac(ζ)

]2 ηac(ζ)

(1− ζ)2 + 1. (22)

The amount of velocity jump across the velocity discontinuity line is [u] =
∣∣Ur −Up

∣∣.
The velocity vectors are understood to be calculated at this line. Then, using (9) and (20),
one arrives at the following:

[u] = U

√[
1

2h
+

f (ζ)
ηac(ζ)

]2
ηac(ζ) + (1− ζ)2. (23)

4. Upper Bound Solution

It follows from the upper bound theorem that [35]

PU ≤WV + Wd + W f . (24)

where WV is the plastic work rate in the plastic region, Wd is the plastic work rate at the
velocity discontinuity line, and W f is the plastic work rate at the friction surface. The
infinitesimal volume element in the cylindrical coordinate system is dV = rdrdθdz. Using
the dimensionless coordinates, one arrives at the following:

dV = R2
0H0ρdρdθdζ =

R2
0H0

2
dηdθdζ. (25)

The plastic work rate in the plastic region is determined as follows:
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WV =
∫∫∫

ωdV = πR2
0H0

1∫
0

1∫
ηac(ζ)

ωdζdη. (26)

Substituting (3) into (4) and using (11), one obtains the following:

ω =
UZ
H0

ω̄ (27)

where

ω̄ =
√

F + G

√√√√√√√√
F
(

Gξ̄θθ − Hξ̄zz

FG + GH + HF

)2

+ H
(

Fξ̄rr − Gξ̄θθ

FG + GH + HF

)2

+

G
(

Hξ̄zz − Fξ̄rr

FG + GH + HF

)2

+
2ξ̄2

rz
M

. (28)

where (2) is used. In (12), one can express ρ in terms of η. As a result, we have the following:

ξ̄rr =
1
2
− h f (ζ)

η
, ξ̄θθ =

1
2
+

h f (ζ)
η

, ξ̄zz = −1, ξ̄rz =
f ′(ζ)
2
√

η
. (29)

Eliminating ξ̄rr, ξ̄θθ , ξ̄zz, and ξ̄rz in (28) using (29), one arrives at ω̄ as a function of η
and ζ. Equation (26) becomes the following:

WV

πZR2
0U

=

1∫
0

1∫
ηac(ζ)

ω̄dζdη. (30)

The integral here can be evaluated numerically.
The general expression for the plastic work rate at the velocity discontinuity line is

as follows:

Wd = 2π
∫

τs[u]rdL = 2πR0

∫
τs[u]ρdL = 2πR0

∫
τs[u]

√
ηac(ζ)dL. (31)

where τs is the shear stress on the velocity discontinuity line. It is known that [35]

τs = S
√

1− csin22ϕ (32)

where

c = 1− M(F + H)

2(FG + GH + HF)
. (33)

Using some trigonometry, one transforms (32) to the following:

τs = S

√√√√1− 4ccot2 ϕ(
1 + cot2 ϕ

)2 . (34)

where the angle ϕ is understood to be calculated at the velocity discontinuity line. Therefore,
from(14) and (16), we have the following:

cot ϕ =
dr
dz

=
R0dρ

H0dζ
=

1
2h
√

η

dη

dζ
=

1
(1− ζ)

[√
ηac(ζ)

2h
+

f (ζ)√
ηac(ζ)

]
. (35)

Equations (22) and (23) yield the following:

[u]dL = UH0q(ζ)dζ (36)

where
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q(ζ) = (1− ζ)

{[
1

2h
+

f (ζ)
ηac(ζ)

]2 ηac(ζ)

(1− ζ)2 + 1

}
(37)

Substituting (34) and (36) into (31) gives the following:

Wd

πZR2
0U

=
2hS
Z

1∫
0

√√√√1− 4ccot2 ϕ(
1 + cot2 ϕ

)2 q(ζ)
√

ηac(ζ)dζ. (38)

Taking into account (20), (36), and (37), one can evaluate the integral in (38) numerically.
Using (8), one can represent the plastic work rate at the friction surface as follows:

W f = 2πmS
∫

urrdr = 2πmSR2
0

∫
urρdρ = πmSR2

0

∫
urdη. (39)

The radial velocity is understood to be calculated at the friction surface. Therefore,
using (9), one transforms (39) to the following:

W f =
πmUSR2

0
2h

1∫
ηc

(
√

η − ηc√
η

)
dη. (40)

where Equation (21) is used. The integral in (40) can be immediately evaluated to give
the following:

W f

πZR2
0U

=
mS
hZ

(
1
3
+

2
3

η3/2
c − ηc

)
. (41)

Substituting (30), (38), and (41) into (24) results in the following:

pu = Pu
πZR2

0
=

1∫
0

1∫
ηac(ζ)

ω̄dζdη + 2hS
Z

1∫
0

√
1− 4ccot2 ϕ

(1+cot2 ϕ)
2 q(ζ)

√
ηac(ζ)dζ+

mS
hZ

(
1
3 + 2

3 η3/2
c − ηc

)
.

(42)

where Pu is the upper bound of the force required to deform the cylinder, and pu is its
dimensionless representation. The right-hand side of this equation can be found, using the
procedure above for the arbitrary function f (ζ) and any set of parameters. The function
f (ζ) may involve additional parameters. In this case, the right-hand side of (42) should
be minimized with respect to these parameters to find the best upper bound based on the
kinematically admissible velocity field chosen.

The solution above is valid if the following holds:

0 ≤ ηc ≤ 1. (43)

The solution with no rigid region can be obtained from the solution above, with
the following:

f (ζ) = 0. (44)

In this case, there is no velocity discontinuity line, and Equation (24) becomes as follows:

PuU = WV + W f . (45)

The regime of sliding occurs over the entire friction surface. Therefore, Equations (9),
(39) and (44) combine to give the following:
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W f = πmSR2
0

1∫
0

urdη =
πmSR2

0U
2h

1∫
0

√
ηdη =

πmSR2
0U

3h
. (46)

Moreover, using (27), one transforms Equation (26) to the following:

WV = πR2
0UZ

1∫
0

1∫
0

ω̄dζdη. (47)

Substituting (44) into (29) leads to the following:

ξ̄rr =
1
2

, ξ̄θθ =
1
2

, ξ̄zz = −1, ξ̄rz = 0. (48)

Then, Equation (28) becomes the following:

ω̄ =

√
F + G

(FG + GH + HF)

√
F
(

G
2
+ H

)2
+

H
4
(F− G)2 + G

(
H +

F
2

)2
. (49)

Substituting (49) into (47) and integrating gives the following:

WV

πR2
0UZ

=

√
F + G

(FG + GH + HF)

√
F
(

G
2
+ H

)2
+

H
4
(F− G)2 + G

(
H +

F
2

)2
. (50)

Equations (45), (46) and (50) supply the following dimensionless upper bound limit load:

pu =

√
F + G

(FG + GH + HF)

√
F
(

G
2
+ H

)2
+

H
4
(F− G)2 + G

(
H +

F
2

)2
+

mS
3hZ

. (51)

5. Numerical Examples

One should choose the function f (ζ) to evaluate the right-hand side of (42). This
function specifies the kinematically admissible velocity field. In general, it is advantageous
that kinematically admissible velocity fields exhibit some mathematical properties of the
real velocity field. The process under consideration is symmetric relative to the plane ζ = 0.
Therefore, the real velocity field is described by an even function of ζ. Moreover, the real
velocity field is singular near the friction surface if m = 1 in (8). In particular, we have the
following [17]:

ur = O
(√

1− ζ
)
+ A (52)

as ζ → 1. Here, A is independent of ζ. The general asymptotic analysis carried out in [17]
is for plane strain deformation. However, a particular solution presented in [36] shows that
(44) is also valid for axisymmetric problems. One of the simplest functions satisfying the
symmetry condition and (44) is the following:

f (ζ) = β0 − β1

√
1− ζ2. (53)

Taking into account (21), one rewrites this equation as the following:

f (ζ) = − ηc

2h
− β1

√
1− ζ2. (54)

Equations (19) and (54) combine to give the following:

Φ(ζ) =
ηc(1− ζ)− β1hζ

√
1− ζ2 + β1h arccos ζ

2h
. (55)
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It follows from (17) and (20) that

Φ(0) = 0. (56)

Then, Equations (55) and (56) combine to give β1 = −2ηc
/
(πh). Eliminating β1 in

Equations (54) and (55), one obtains the following:

f (ζ) = − ηc

2h

(
1− 4

π

√
1− ζ2

)
and Φ(ζ) =

ηc

2h

[
1− ζ +

2
π

(
ζ
√

1− ζ2 − arccos ζ

)]
. (57)

Moreover,

f ′(ζ) = − 2ηcζ

πh
√

1− ζ2
. (58)

Substituting (49) and (50) into (42), one arrives at the right-hand side of this equation
as a function of ζ. Moreover, this function involves one free parameter, ηc. One should
minimize the right-hand side of (42), taking into account (43).

The boundary value problem is classified by five dimensionless parameters: Υ/Z,
Θ/Z, S/Z, h, and m. Therefore, its systematic parametric analysis is practically impossi-
ble. The numerical example below includes the isotropic case, the anisotropic properties
determined experimentally and reported in [35], and three sets of arbitrarily chosen yield
stresses. The isotropic solution is used for showing the effect of plastic anisotropy on the
limit load. The solutions for the chosen sets of yield stresses allow one to gain insight
into the possible effect of plastic anisotropy on the interpretation of the corresponding
friction test.

The experimental results from [37] are summarized in Table 1. Table 2 shows the
chosen sets of yield stresses.

Table 1. Experimental data from Ref. [37].

FZ2 HZ2 GZ2 MZ2

Exp. Value 0.378 0.1 0.623 2.558

Table 2. Yield stresses chosen to illustrate the effect of plastic anisotropy on the interpretation of the
friction test.

Υ/Z Θ/Z S/Z

Isotropic Case 1 1 1/
√

3
Case 1 1.2 1.5 1.2/

√
3

Case 2 0.8 0.7 0.9/
√

3
Case 3 0.8 0.9 0.75/

√
3

The numerical integration has used 20 Gaussian integration points and weights for
the integrals involved in (30) and (38). With a given set of the parameters that classify
the boundary value problem, the minimization process to find the optimal value of ηc is
conducted by using hundreds to thousands of ηc-data points in the range between 0 and
1 to calculate pu. The number of data points determines the resolution and accuracy of
the optimal value of ηc. Once the ηc, pu data list is calculated, it is straightforward to find
the minimum value of pu. This value is denoted as p(1)u . The limit load found from (51) is
denoted as p(2)u . Then, the solution to the boundary value problem is as follows:

pu = min
{

p(1)u , p(2)u

}
(59)

The optimal value of ηc is also of interest because it may affect the interpretation of
the friction test.
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It is natural to expect that p(1)u = p(2)u for certain combinations of the parameters that
classify the boundary value problem. Figure 3 illustrates this feature of the solution for
the isotropic material at m = 0.7. In this case, the only parameter that varies is h. It is seen
from Figure 3 that p(1)u = p(2)u at h = hc. It follows from (59) that the solution (42) is valid in
the range h ≤ hc and the solution (51) in the range h ≥ hc. It is found that Case 2 results in
p(1)u < p(2)u if 0 ≤ m ≤ 1. Therefore, in this case pu = p(1)u . Figure 4 depicts the dependence
of hc on m for the isotropic material and three anisotropic materials whose properties are
given in Tables 1 and 2. It is seen from this figure that the range of validity of the solution
with no rigid region decreases as the friction factor increases for all the cases considered.

Figure 3. Existence of a critical value of h at which solutions (42) and (51) provide the same limit load
for the isotropic material at m = 0.7.

Figure 4. Effect of plastic anisotropy on the dependence of hc on m. No hc is found for Case 2 since

p(1)u < p(2)u in the m range.

Figure 5 illustrates the limit load solution at m = 1. The curves show the dependence
of pu on h for the isotropic material and four anisotropic materials whose properties are
given in Tables 1 and 2. As expected, pu increases with h. The limit load for anisotropic
materials may be lower or higher than that for the isotropic material. The difference
between the limit load for the isotropic material and that for the anisotropic material whose
properties are determined experimentally (Table 1) is between 15% and 20% in the range of
h considered.
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Figure 5. Effect of plastic anisotropy on the dimensionless limit load at m = 1.

Figure 6 depicts the variation of ηc with h at m = 1 for the isotropic material and
four anisotropic materials whose properties are given in Tables 1 and 2. It is seen from
Figures 2 and 6 that plastic anisotropy significantly affects the region of the friction surface
where Equation (8) is valid. This feature of the model may influence the interpretation of
the friction test.

Figure 6. Effect of plastic anisotropy on ηc at m = 1.

6. Conclusions

A new upper bound solution for the upsetting of a circular cylinder is proposed.
A distinguishing feature of the solution is that plastic anisotropy and the existence of a
rigid region are taken into account. The existence of the rigid region automatically means
that there is a region of sticking friction. From this work, the following conclusions can
be drawn:

1. Plastic anisotropy affects the limit load required to deform the specimen. It may
increase or decrease the limit load as compared to the isotropic case (Figure 5).

2. The upsetting of a cylinder is often used as a friction test. Plastic anisotropy signifi-
cantly affects the region of sticking friction (Figure 6). Since Equation (8) is not valid
in this region, this effect of plastic anisotropy should be taken into account in the
interpretation of the friction test results.
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3. Five dimensionless parameters classify the boundary value problem. Therefore, its
systematic parametric analysis is invisible. An advantage of the proposed solution is
that it quickly estimates the upper bound limit load for a given set of parameters.

4. The real velocity field is singular near the friction surface if m = 1 in Equation (8).
The solution proposed accounts for this singularity, which is impossible when using
ordinary finite element solutions.
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Nomenclature

i and j unit base vectors
m friction factor
n unit vector normal to the velocity discontinuity line
pu dimensionless upper bound limit load
(t, θ, z) cylindrical coordinate system
ur and uz radial and axial velocities
F, G, H and M material parameters introduced in Equation(2)
H0 half-height of the cylinder
P force
R0 radius of the cylinder
S shear yield stress in the rz-plane
U velocity of the plate
Wd plastic work rate at the velocity discontinuity line
W f plastic work rate at the friction surface
Wv plastic work rate in the plastic region
Υ, Θ and Z tensile yield stresses in the radial, circumferential, and axial directions
ξeq equivalent strain rate
ξrr, ξθθ , ξzz and ξrz strain rate components referred to the cylindrical coordinate system
ξrr, ξθθ , ξzz and ξrz dimensionless strain rate components introduced in Equation (11)
ρ, ζ and h dimensionless quantities introduced after Equation (9)
σrr, σθθ , σzz and σrz stress components referred to the cylindrical coordinate system
τf friction stress
ϕ orientation of the tangent to the velocity discontinuity line
ω plastic work rate per unit volume
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