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Abstract: The quest to harvest untapped renewable infrared energy sources has led to significant
research effort in design, fabrication and optimization of a self-biased rectenna that can operate
without external bias voltage. At the heart of its design is the engineering of a high-frequency rectifier
that can convert terahertz and infrared alternating current (AC) signals to usable direct current
(DC). The Metal Insulator Metal (MIM) diode has been considered as one of the ideal candidates
for the rectenna system. Its unparalleled ability to have a high response time is due to the fast,
femtosecond tunneling process that governs current transport. This paper presents an overview of
single, double and triple insulator MIM diodes that have been fabricated so far, in particular focusing
on reviewing key figures of merit, such as zero-bias responsivity (β0), zero-bias dynamic resistance
(R0) and asymmetry. The two major oxide contenders for MInM diodes have been NiO and Al2O3,
in combination with HfO2, Ta2O5, Nb2O5, ZnO and TiO2. The latter oxide has also been used in
combination with Co3O4 and TiOx. The most advanced rectennas based on MI2M diodes have shown
that optimal (β0 and R0) can be achieved by carefully tailoring fabrication processes to control oxide
stoichiometry and thicknesses to sub-nanometer accuracy.

Keywords: rectenna; MIM; diode; terahertz; infrared; oxide; energy harvesting

1. Introduction

Renewable energy sources are a key element in the drive towards zero-carbon economy
targets worldwide in the decades to come. There has been unprecedented research activity
towards sustainable energy materials and devices. Our earth receives ~1000 W/m2 at
sea level during clear weather conditions. The major component of this solar energy of
over 50% is in the infrared region (IR). The mid-IR wavelength range from 1.5 to 20 µm
is the most important since it is re-emitted from the earth’s surface as IR radiation from 8
to 14 µm with maximum emissivity at 10.6 µm (28.3 THz). It is this energy that remains
untapped by current solar cell-based harvesting sources. Conventional photovoltaic (PV)
renewable technology has been used to harvest only the energy from the visible spectrum
(400 to 750 nm) of the sun. Furthermore, unlike the energy of solar panels being limited
by daylight and climate conditions, the energy of infrared heat can be harvested day and
night. The concept of a rectifying antenna (rectenna) is not new [1,2], and its efficient design
and operation in the IR region has been intriguing scientists for several decades. The use
of an antenna and rectifying diode has only been successfully demonstrated for energy
collection at microwave and radio frequencies [3]. An important point is that contrary to the
photovoltaic technology where the conversion efficiency is limited by the semiconductor
band gap, rectennas can, theoretically, achieve 100% conversion efficiency [4–6]. As such,
the rectenna technology sits at the frontiers of high-frequency electronic devices and
nanophotonics applications, to name just a few: optical transceivers in communication
systems [7], IR and optical detection [8,9], and biosensors [10].

An optical rectenna consists of a receiving nano-antenna and a rectifying diode, as
illustrated in Figure 1a. A metal-insulator-metal (MIM) diode has been considered as
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a prime contender for the rectenna system, and it is the main focus of review in this
paper. The MIM diode can operate at terahertz (1 THz = 1012 Hz) frequencies due to the
tunneling current mechanism having the electron transit time in femtoseconds (10−15 s).
The rectification involves converting the oscillating charges (the alternating current (AC)
electromagnetic signal), provided by the antenna arms flowing through the insulating thin
film of a MIM rectifier, into a direct current (DC) signal. A simple equivalent circuit of
a rectenna is shown in Figure 1b. It consists of an alternating voltage source (VA) with
associated antenna resistance (RA) in series with the diode part comprising of the dynamic
resistance (RD) and diode capacitance (CD) in parallel with the load resistance RL.
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Figure 1. (a) Schematic of a rectenna device and (b) its equivalent circuit.

For efficient terahertz rectification, low diode capacitance and dynamic resistance are
mandatory. The cut-off frequency (fc) can be calculated as:

fc =
1

2πRDCD
(1)

Lowering the diode capacitance can be achieved by fabricating an MIM diode with
minimal area or using a thick dielectric, since

CD =
Aεrεo

d
(2)

where d is the thickness of the insulator, εr—its relative permittivity, εo—permittivity of
vacuum and A is the diode area. However, increasing the oxide thickness will increase the
diode resistance, which leads to a reduction of the electron tunneling probability through
a wider energy barrier. Moreover, the insulator thickness should be in the range of a few
nanometers so that electron tunneling dominates other parasitic transport mechanisms.
The selection of materials for both metals and insulators as well as the insulator thickness
control the diode electrical characteristics. A selection of typical metals that have been used
in MIM diode fabrication is shown in Figure 2 and Table 1 with values of work function as
reported in the literature [11–20]. At terahertz frequencies, the metal conductivity decreases,
hence the skin effect should be considered. It can be calculated using Equation (3) for each
metal, where the thickness of metal should be about five times the skin depth value to
maintain good conductivity in the metal at a high-frequency regime:

δ = (ρ/π f µoµr)
1/2 (3)

where δ is the skin depth, ρ is the resistivity of metal, µr is relative magnetic permeability
of the metal, µo is the magnetic permeability of vacuum and f is the operating frequency.
The skin depths for frequently used metals in rectennas that can operate at 0.14 and
28.3 THz are shown in Figure 2a and calculated using ρ and µr in [21–26]. It can be
seen that Ni has the smallest skin depth, and some of the first successful demonstrations
of bowtie rectenna designs were realized using Ni-NiO-Ni diodes [27,28]. In terms of
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work function, the lowest values have Co, Cr and Ti, although there is a large range of
values reported, especially for the former two metals (Table 1, Figure 2b) [11,13,15,16].
Furthermore, conductive oxides (indium tin oxide (ITO) and SrRuO3 (SRO)) and nitrides
(TiN and NbN, see References in [29]) as well as multicomponent amorphous metals
(ZCAN (ZrCuAlNi) and TiAl3) [18,30,31] can also act as electrodes in MIM diodes.
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Figure 2. (a) Skin depth and (b) work function [11–20] for typical metals used in a rectenna. 
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Table 1. Physical properties of metals and oxides: work function, electron affinity and band gap.

Metal Work Function (eV) Oxide Electron Affinity, χ (eV) Band Gap (eV)

Ni 4.9 [11,12], 4.99 [13], 5.04–5.35 [14] NiO 1.46 [32], 3.0 [33] 3.4 [45], 3.8 [33], 4.0 [46]

Co 4.00 [11], 4.8 [13], 5.00 [15] Al2O3 1.57 [17], 2.58 [34], 3.50 [9] 5.95 [45], 6.4 [38,47]
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Cu 4.5 [11,12], 4.63 [13], 4.65 [16] TiO2 3.9 [36], 4.0 [33] 3.05 [36], 3.2 [33], 3.3 [49]

Au 4.8 [11], 5.1 [16], 5.28 [12] CuO 4.07 [37] 1.2–1.8 [50]
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W 4.5 [11,19], 4.8 [13] Nb2O5 3.72 [17], 4.23 [38] 3.71 [51], 3.8 [38]

Mo 4.2 [11], 4.4 [13], 4.6 [16] Cr2O3 3.16–4.05 [39] 3.2 [52], 3.24 [53]

Zn 4.3 [11,16] Co3O4 3.05–4.05 [40] 2.10 [54]

Pd 5.0 [11], 5.12 [12] SiO2 0.9 [33,36] 8.8 [38], 9.0 [33]

Pt 5.3 [11], 5.65 [16] HfO2 2.2 [33], 2.25 [41] 5.6 [38], 6.0 [36]

Cr 4.0 [13], 4.4 [11], 4.5 [16] V2O5 7.1 [42] 2.36 [55]

Ta 4.1 [11,13], 4.25 [16] Sc2O3 2.06 [43], 1.98–2.5 [44] 5.7–6.0 [43]

Nb 4.1 [17], 4.3 [16] - - -

V 4.44 [20] - - -

Ti 3.7 [13], 4.1 [11], 4.33 [16] - - -

Figure 3a,b present electron affinities [9,17,32–44] and band gap [33,35,36,38,43,45–55]
of typical oxides that have been used in the design and fabrication of MIM diodes. Full
details are listed in Table 1 for completeness. Note that the large variation of reported
values for electron affinity for Al2O3, NiO, Co3O4 and Cr2O3 is likely to be related to the
variations in fabrication conditions. Changes in work function and χ can be up to 1 eV
for metals and semiconductors depending on the surface conditions. These changes are
likely to be due to the formation of electronic dipoles at the surface, changing the minimum
energy for an electron to leave the sample [45]. Furthermore, the reported measured values
of oxide band gap (Table 1) are found to vary depending on the stoichiometry and struc-
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tural properties (amorphous, crystalline, polycrystalline) of films fabricated by different
deposition techniques. As can be seen from Table 1, the band gap of amorphous Al2O3
thin films prepared by atomic layer deposition (ALD) [38] or molecular beam epitaxy [47]
is found to be ~6.4 eV, while non-stoichiometric AlOx prepared by radio frequency (RF)
sputtering exhibits a smaller band gap of 5.95 eV [45]. Another example is crystalline Sc2O3
films measured to have a band gap of 6.0 eV, while amorphous films have smaller values
of ~5.7–5.8 eV [43]. Crystalline NiO was found to have a band gap of ~4.0 eV [46], while
the most recent study shows a much smaller value of 3.4 eV for an RF-sputtered, 2 nm NiO
film [45]. It is worth mentioning also that the variation of ±0.25 eV in reported band gap
values in Table 1 could also be due to tolerances in using different characterization tech-
niques to measure the band gap; that is, for Ta2O5, 4.2 eV from UV-vis (ultra violet-visible)
absorbance spectra [35] in comparison to ~4.4 eV measured by reflection electron energy
loss spectroscopy [38] or variable angle spectroscopic ellipsometry [51].
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As stated in Equation (1), to achieve very small resistance × capacitance (RC) time
constant and harvest IR energy, a trade-off between different physical parameters of diodes
often limits practical implementation in rectennas. A number of significant issues need to
be overcome, including (i) a precise manufacturing process with smooth metal electrodes
and high-quality ultra-thin oxides, (ii) patterning of nano-scale devices as well as (iii)
coupling efficiency and diode integration with the antenna. A rough metal surface affects
oxide uniformity and hence the diode’s electrical characteristics. This eventually reduces
the yield of functioning devices. Furthermore, even a small variation in oxide thickness
largely affects the tunneling probability and the resulting current density of the diode due
to the exponential relationship between current and electric field. Moreover, any defects
present in the oxide film in the form of pinholes or traps may also give rise to undesirable
conduction mechanisms such as Schottky and Poole Frenkel (PF) emission or trap assisted
tunneling (TAT). Hence, growing or depositing a uniform, thin and defect-free insulator
is a crucial step for efficient and reliable operation of a diode. Among several deposition
methods, atomic layer deposition offers the best quality oxides with low defect density,
excellent stoichiometry and superb uniformity [56]. The nano-scale patterning, to facilitate
small diode area, requires the use of the most advanced ultra-fine mask-less lithographic
techniques such as electron beam lithography. The latter can allow small capacitance while
keeping resistance in the order of up to 100 Ω to match the antenna.

Another important point is that it is preferable to have a self-biased rectenna that
operates without any external bias, so-called zero-bias rectenna. Furthermore, in practice,
arrays of rectennas will be required to increase the collected power to useful levels. This
can lead to a more efficient, higher, DC output power to the load.
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Efficient IR frequency rectification requires nonlinear DC current−voltage (I-V) char-
acteristics. The key MIM diode rectification figures of merit that can be determined from
I-V characteristic are asymmetry, responsivity, nonlinearity and dynamic resistance. The
asymmetry (ηasym) is defined as the absolute ratio of positive (I+) to negative current (I−),
or vice versa at a specific bias voltage:

ηasym =
|I+|
|I−| or

|I−|
|I+| (4)

Small signal rectification, however, is governed by nonlinearity around the operating
point and is usually realized by square law rectification. A measure of small signal nonlin-
earity is responsivity, defined as the ratio of DC rectified current, IDC to input AC power,
Pin [57], that is

β =
IDC
Pin

=
1
2

I ′′

I′

∣∣∣∣
Vp

=
1
2

dgd/dV
gd

(5)

where I′ and I′′ are the first and second derivatives of current and gd is dynamic conductance
at operating point Vp. Maraghechi et al. [58] have defined a nonlinearity factor as the ratio
of dynamic to static conductance, that is

χ =
dI/dV

I/V
(6)

and also used the rate of change in nonlinearity to reflect the small signal nonlinearity. The
dynamic resistance is defined as the inverse of the derivative of the current with respect to
the applied voltage:

RD =

(
dI
dV

)−1
(7)

For MIM diodes, a particular interest is in dynamic resistance (R0 = 1/I′) and responsivity
(β0 = I′′/(2I′)) near zero-bias, as the self-biasing voltage is around millivolt. The latter is
small due to generally poor coupling efficiencies that reduce the input power delivered
to the MIM diode. Optimizing the parameters defined by Equations (4)–(7) from the DC
I-V characteristics of the MIM diode can help in an improvement in the rectenna device
performance under IR illumination.

This paper will present an overview of DC rectification parameters in the state-of-the-
art single, double and triple MIM diodes with the aim of providing an outlook on their
feasibility in IR nano-rectennas for real-life applications.

2. Overview of Metal Insulator Metal Diodes as Terahertz Rectifiers
2.1. Single Insulator MIM Diodes

Various MIM diodes with different oxide layers and metal electrodes have been
fabricated and characterized as depicted in Figure 4. A range of values for rectification
figures of merit have been reported depending on the selection of materials, thickness of
oxides, size of diodes and fabrication techniques, as listed in Table 2. It can be seen from
Figure 4 and Table 2 that NiO [27,28,59–69] and Al2O3 [9,65,70–75] have been explored
the most. The early work of Wilke et al. [27] and Fumeaux et al. [28] demonstrated the
fabrication of ultra-small area diodes of 0.056 and 0.012 µm2, respectively, based on ~3.5 nm
NiO combined with dipole, bowtie and spiral antennas. Although they demonstrated the
operation of thin-film diode as mixers of 28 THz radiation for the first-time, there were
issues with yield and repeatability of the fabrication process as well as low responsivity.
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Hobbs et al. [76] demonstrated better responsivity and improved quantum efficiencies
of 6% of waveguide-integrated near-infrared detectors based on antennas made of a
multilayer Ni/Au stack that combines good IR properties of Au with the very low tunnel
barrier (0.2 eV) of the Ni/NiO in MIM diodes. The geometric field enhancement technique
in a Ni/NiO/Ni has been used by Choi et al. [61] to lower tunneling resistance and
enhance the effective AC signal amplitude; The responsivity for this diode was superior to
previously reported. Using Ni antennas makes it easy to grow NiO; However, Ni is very
lossy in the infrared, especially at shorter wavelengths; Hence, there has been a resurgence
of interest in fabricating NiO based diodes with other metals, such as Ag [64], Pt [65],
CrAu [66,67], Cu [68] and Mo [69]. Krishnan et al. [66] realized a highly-sensitive diode
(1.45 µm2 contact area) showing βMAX = 2.5 A/W at 0.1 V and zero-bias resistance of 500 kΩ
using Ni/CrAu electrodes. By combining Ni/Cu electrochemical deposition and thermal
oxidation for 2–12 nm NiO, Zhang et al. [68] reported diodes with a small area of 0.008 µm2,
maximum responsivity of 3.65 A/W at 0.1 V but very high R0 of 1.2 MΩ. The responsivity
could be further increased to 4.25 A/W by utilizing the same deposition technique for 6 nm
NiO but using Ni/Ag [64]. Kaur et al. [69] reported reduced dynamic resistance to 6 kΩ
when Ni/Mo electrodes were used and plasma oxidation for thin NiO film on a flexible
substrate. Very high sensitivity (S = 2 × β) of 35 V−1 and resistivity of ~100 Ω at 0.6 V have
been reported for Ni/NiO/Au diodes fabricated by the Langmuir–Blodgett method [63];
However, no zero-bias values are stated.
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Table 2. A summary of rectification parameters for state-of-the-art MIM diodes, including the device area, oxide thickness
and deposition technique.

Oxides Metals β0
(A/W)

βMAX
(A/W)

R0
(Ω) ηasym

Area
(µm2)

Thickness
(nm) Deposition Technique

NiO

Ni/Ni [27] - 0.8 200 - 0.056 3.3 Sputtering
Ni/Ni [28] - - 100 - 0.012 ~3.5 Sputtering
Ni/Ni [59] - 0.825 180 - 0.075 3.5 Sputtering
Ni/Ni [60] - 0.5 ~4.6 k - 0.01192 2.5 Plasma oxidation
Ni/Ni [61] −0.41 −2.65 42.4 M - 0.018 <4 Plasma oxidation
Ni/Au [62] 2.8 4.56 - - 0.64 2.2 Plasma oxidation
Ni/Au [63] - 17.5 - 22 at 0.6 V 4.4 × 10−5 2.6–4.2 Langmuir-Blodgett
Ni/Ag [64] 2.9 4.25 - 4.7 at 1.0 V 3.1 × 10−4 6 Thermal oxidation
Ni/Pt [65] −1.5 −6.5 - - 0.075 1–2 Native oxidation

Ni/CrAu [66] 0.5 2.5 500 k - 1.45 ~3 Plasma oxidation
Ni/CrAu [67] - - - 6 at 0.2 V 100 5.5 Plasma oxidation

Ni/Cu [68] - 3.65 1.2 M - 0.008 12 Thermal oxidation
Ni/Mo [69] - - 6 k - - 2.4 Plasma oxidation

Al2O3

Al/Al [65] 0.05 −0.7 - - - 1–2 Controlled oxidation
Al/Ni [65] 0.25 0.5 - - - 1–2 Controlled oxidation
Al/Ti [65] 0.3 1.0 - - - 1–2 Controlled oxidation
Al/Pt [65] 0.5 0.65 - - - 1–2 Controlled oxidation
Al/Pt [70] 0.5 2.25 - - 0.0025 2–2.5 Controlled oxidation
Al/Pt [71] −0.64 2.4 312 M - 0.004 1–2.5 O2 exposure
Al/Pt [72] - - 125 - - 1–2 O2 exposure
Al/Ag [73] 9.0 9.0 27 k 1.2 at 0.6 V 1,760,000 - Plasma oxidation
Au/Mo [74] 9.4 9.4 113 k - 1.0 ~6 Sputtering
Au/Au [75] 0.1 2.3 83 M 1.3 at 1.2 V 10,000 3 ALD

Au/Ti [9] 0.44 1.25 98 k - 0.04 * 1.5 ALD
Au/Ti [75] −0.6 5 35 M 1.7 at 1.5 V 10,000 3 ALD

AlOx
Al/Gr [29] - - 600 2500 at 1 V - ~3 Thermal oxidation
Al/Pt [77] ~0.15 −1.2 ~220 k - 0.0056 * ~2 nm O2 exposure

TiOx
Ti/Pt [78] 2.75 7.5 ~150 k - - - Plasma oxidation
Gr/Ti [79] - - - 9000 at 1 V 12 - Thermal oxidation

NiOx Ni/Cr [80] - 5.5 157 M 400 7 Sputtering

ZnO
Ti/Pt [81] 0.125 - 1.2 k - 90,000 4 ALD

AuCr/Ni [82] - 16 - 12 at 0.78 V 100 ~4 Langmuir-Blodgett

V2O5
V/Al [20] - 4.26 20 k - 4.0 3 Sputtering
V/V [83] - −1.18 13.4 k - 4.0 1.45 Sputtering

SiO2
PolySi/Au [84] ~1.25 −7.25 120 M 5 at 0.4 V 0.35 1.38 Boiling water oxidation

PolySi/PolySi [85] ~1.5 −15.5 - - 6 × 10−5 - Boiling water oxidation

Nb2O5
Nb/Pt [86] - 10 - 1500 at 0.5 V 45,239 * 15 Anodic oxidation
Nb/Pt [87] - 8.45 - 7700 at 0.5 V 6400 * 15 Anodic oxidation

CuO Au/Cu [8] 2.0 3.0 500 - 0.004489 0.7 ALD

TiO2 Ti/Pd [69] - - 100 k - - 3 Plasma oxidation

Cr2O3 Au/Cr [88] - 4.0 - - - 5 Electron beam
evaporation

HfO2 Au/Pt [89] - 3.29 405 - 4.0 6 ALD

Sc2O3 Al/Al [90] 1.0 2.7 960 k 1.3 at 1.2 V 10,000 3 Sputtering

* Device area calculated based on stated dimensions.
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Alumina (Al2O3) is another oxide contender for MIM high-frequency
applications [9,65,70–75]. Kinzel et al. [72] have demonstrated a slot-antenna-based fre-
quency selective surface with integrated Al/Al2O3/Pt diodes showing zero-bias resistivity
of 124.6 Ω. Bean et al. [71] have fabricated a dipole antenna-coupled Al/Al2O3/Pt detector
using electron beam lithography and shadow evaporation metal deposition. Its specific
detectivity for 28.3 THz radiation of 2.15 × 106 cmHz1/2W−1 has been found to exceed IR
detector performance based on Ni/NiO/Ni with 1 × 106 cmHz1/2W−1 [59]. The highest
zero-bias responsivity of ~9 A/W for Al2O3-based MIMs was achieved with Al/Ag [73]
and Au/Mo [74] metal electrodes. Jayaswal et al. [9] designed a 28.3 THz rectenna using a
bowtie nano-antenna coupled with the Au/Al2O3/Ti diode. Its zero-bias responsivity of
0.44 A/W and dynamic resistance of ~98 kΩ yielded an overall efficiency of the rectenna
of 2.05 × 10−14.

There are a few studies of non-stoichiometric AlOx [29,77], TiOx [78,79] and NiOx [80]
based MIMs, where the fabrication parameters are varied to control oxide thickness and
hence optimize device responsivity and resistance. A very high asymmetry of 2500 and
low zero-bias resistivity of 600 Ω have been achieved with Al/AlOx/Gr (graphene) elec-
trodes [29]. The dipole antenna-coupled Al/AlOx/Pt has been demonstrated with associ-
ated IR detectivity of 9.65 × 106 cmHz1/2W−1 [77].

Other oxides that have been considered for inclusion in MIM diodes include ZnO [81,82],
V2O5 [20,83], SiO2 [84,85], Nb2O5 [86,87], CuO [8], TiO2 [69], Cr2O3 [88], HfO2 [89] and
Sc2O3 [90]. A simple process for fabricating planar-type MIM tunneling diodes using
electron beam writing and a boiling water oxidation process has been proposed, achieving
high diode sensitivity of −31 V−1 for Poly Si/PolySi [85] and −14.5 V−1 for PolySi/Au
electrodes [84] but too high R0. Very high asymmetry of 7700 at 0.5 V [87] and 9000 at 1 V [79]
have been reported for Nb/Nb2O5/Pt and Gr/TiOx/Ti, respectively; however, no β0 and
R0 were reported for these diodes. Gadalla et al. [8] demonstrated an Au/0.7 nm CuO/Cu
diode with β0 = 2 A/W and R0 = 500 Ω. A similar low R0 of 405 Ω has been achieved by
using Au/6 nm HfO2/Pt diode [89].

In summary, some diodes show high responsivity but also high dynamic resistance,
which is undesirable for rectifying IR energy. An alternative way to enhance the figures of
merit of MIM diodes is by using multiple insulators, which is now further discussed.

2.2. Multiple Insulator MInM Diodes, n = 2 and 3

The performance of MIM diodes can be enhanced by using multiple insulator diodes
(MInM) [91] that increase the nonlinearity of the I-V characteristics. There are two mecha-
nisms that allow MInM diodes to have a high responsivity while keeping the resistance
low [51,56,75,91]. First is to exploit the use of resonant tunneling (RT) of electrons through
a quantum well formed between the two or three insulators (Figure 5a,b). In MI2M, this
occurs when the metal Fermi level on the higher barrier side is positively biased, creating a
right-triangular well at the interface of the two insulators (Figure 5a). Moreover, Figure 5b
depicts a non-cascaded triple-insulator diode, where the deep quantum well already exists
even at zero bias. There are localized eigenstates in this quantum well that are referred to
as bound states and electrons can propagate through these energy states enhancing current
transport [92,93].



Materials 2021, 14, 5218 9 of 21

Materials 2021, 14, x FOR PEER REVIEW 8 of 20 
 

 

Sc2O3 Al/Al [90] 1.0 2.7 960 k 1.3 at 1.2 V 10,000 3 Sputtering 
* Device area calculated based on stated dimensions. 

There are a few studies of non-stoichiometric AlOx [29,77], TiOx [78,79] and NiOx [80] 
based MIMs, where the fabrication parameters are varied to control oxide thickness and 
hence optimize device responsivity and resistance. A very high asymmetry of 2500 and 
low zero-bias resistivity of 600 Ω have been achieved with Al/AlOx/Gr (graphene) elec-
trodes [29]. The dipole antenna-coupled Al/AlOx/Pt has been demonstrated with associ-
ated IR detectivity of 9.65 × 106 cmHz1/2W–1 [77]. 

Other oxides that have been considered for inclusion in MIM diodes include ZnO 
[81,82], V2O5 [20,83], SiO2 [84,85], Nb2O5 [86,87], CuO [8], TiO2 [69], Cr2O3 [88], HfO2 [89] 
and Sc2O3 [90]. A simple process for fabricating planar-type MIM tunneling diodes using 
electron beam writing and a boiling water oxidation process has been proposed, achieving 
high diode sensitivity of –31 V–1 for Poly Si/PolySi [85] and –14.5 V–1 for PolySi/Au elec-
trodes [84] but too high R0. Very high asymmetry of 7700 at 0.5 V [87] and 9000 at 1 V [79] 
have been reported for Nb/Nb2O5/Pt and Gr/TiOx/Ti, respectively; however, no β0 and R0 
were reported for these diodes. Gadalla et al. [8] demonstrated an Au/0.7 nm CuO/Cu 
diode with β0 = 2 A/W and R0 = 500 Ω. A similar low R0 of 405 Ω has been achieved by 
using Au/6 nm HfO2/Pt diode [89]. 

In summary, some diodes show high responsivity but also high dynamic resistance, 
which is undesirable for rectifying IR energy. An alternative way to enhance the figures 
of merit of MIM diodes is by using multiple insulators, which is now further discussed. 

2.2. Multiple Insulator MInM Diodes, n = 2 and 3 
The performance of MIM diodes can be enhanced by using multiple insulator diodes 

(MInM) [91] that increase the nonlinearity of the I-V characteristics. There are two mecha-
nisms that allow MInM diodes to have a high responsivity while keeping the resistance 
low [51,56,75,91]. First is to exploit the use of resonant tunneling (RT) of electrons through 
a quantum well formed between the two or three insulators (Figure 5a,b). In MI2M, this 
occurs when the metal Fermi level on the higher barrier side is positively biased, creating a 
right-triangular well at the interface of the two insulators (Figure 5a). Moreover, Figure 5b 
depicts a non-cascaded triple-insulator diode, where the deep quantum well already ex-
ists even at zero bias. There are localized eigenstates in this quantum well that are referred 
to as bound states and electrons can propagate through these energy states enhancing 
current transport [92,93]. 

 
Figure 5. Schematics of band alignment for: (a) MI2M diode under positive bias on metal 2 showing 
bound states in a quantum well and conditions for resonant tunneling to occur; (b) MI3M diode 
under zero bias, depicting existence of bound states in a deep quantum well; (c) MI2M diode under 
negative bias on metal 2 and conditions of step tunneling. 

On the other hand, step tunneling (ST) occurs for the opposite bias polarity in MI2M 
shown in Figure 5c, where an abrupt increase in current occurs when the metal Fermi level 
on the higher barrier side rises above the conduction band of the lower barrier, thereby 
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On the other hand, step tunneling (ST) occurs for the opposite bias polarity in MI2M
shown in Figure 5c, where an abrupt increase in current occurs when the metal Fermi level
on the higher barrier side rises above the conduction band of the lower barrier, thereby
decreasing the tunnel distance. In a particular device, the choice of insulator materials,
metals and thicknesses determines the mechanism that dominates [18,51,56,58,94,95].

Figure 6 shows responsivity and zero-bias dynamic resistance values for MInM diodes
(n = 2, 3) where both parameters have been reported.

Table 3. A summary of device and rectification parameters for multiple insulator MInM diodes, n = 1, 2 including device
area, oxide thickness in the insulator stack and oxide deposition technique.

Oxides Metals β0
(A/W)

βMAX
(A/W)

R0
(Ω) ηasym

Area
(µm2)

Thickness
(nm)

Deposition
Technique

Al2O3/HfO2
ZCAN/Al [18] - - - >10 at 0.8 V 8 × 105 2.5/1 ALD

Cr/Cr [58] - ~2.5 - ~10 at 3 V 2 × 105 * 2/2 ALD

Al2O3/Ta2O5

ZCAN/Al [30] - - - 10 at 0.45 V
187 at 1.2 V 8 × 105 2.5/2.5 ALD

Al/Al [51] - 6.0 - 18 at 0.35 V 1 × 104 1/4 Sputtering/ALD
Cr/Al [96] - - >107 M ~8 at ~1 V 1 × 104 1/4 ALD

Al2O3/Nb2O5
Ag/Nb [17] - 8.0 - 35.2 at 0.06 V 1 × 104 1/4 Sputtering
Al/Al [51] - 9.0 - 7.6 at ~0 V 1 × 104 1/4 Sputtering/ALD

NiO/AlOx
Ni/CrAu [45] 0.31 - 1.75 k - 0.025 2/1.1 Sputtering
Ni/CrAu [97] 0.5 - 13 k - 0.035 4/1 Sputtering

NiO/TiO2 Ni/Cr [14] ~1.0 - 56 k - 0.071 - Sputtering/
O2 ambient

NiO/Nb2O5 Ni/CrAu [98] 0.46 ~3.0 380 ~1.15 at 0.2 V 0.1552 * 3/2 Sputtering/
O2 ambient

NiOx/ZnO Ni/Cr [80] - 8.0 234 M 16 at 0.5 V 400 * 7/7 Sputtering

ZnO/TiO2 Al/Ti [99] 1.9 10.6 5.9 k - 72.27 * 0.5/1.65 ALD

TiO2/Co3O4 Ti/Co [15] 2.2 4.4 18 k 1.2 at 0.1 V 0.071 2.7/2.5 Plasma
oxidation/sputtering

TiO2/TiO1.4 Pt/Ti [100] - - - 7.26 at 0.45 V 900 3/2 Annealing/ALD

NTiOx/NAlOx Pt/Al [101] 1.7 2.7 36 1 at 0.5 V 100 7/3 PA-ALD

Ta2O5/Nb2O5/Al2O3 Al/Al [56] - 5.1 - 12 at 0.1 V 1 × 104 2/2/1 ALD

Ta2O5/Nb2O5/Al2O3 Al/Al [75] 1.2 4.3 2.8 M 4.3 at 1.6 V 1 × 104 1/3/1 ALD

Nb2O5/Ta2O5/Al2O3 Al/Al [75] −3.7 5.5 3.6 G 117 at 1.6 V
6 at 0.1 V 1 × 104 1/3/1 ALD

* Device area calculated based on stated dimensions.
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Full details of rectification parameters, area and deposition technique for MInM diodes
are listed in Table 3 for completeness. It can be seen that one of the MIM oxide contenders,
Al2O3, has been explored in combination with lower band gap oxides, such as HfO2 [18,58],
Ta2O5 [30,51,96], Nb2O5 [17,51], and most recently NiO [45,97]. Furthermore, NiO has been
used in combination with TiO2 [14], Nb2O5 [98] and ZnO [80]. Recent work also explores
MI2M diodes with TiO2 in combination with ZnO [99], TiOx [100] and Co3O4 [15], as well
as nitrogen-doped TiO2 and Al2O3 films in a Pt/NTiOx/NAlOx/Al device [101].

The enhanced rectifying performance of a double insulator in comparison to single
insulator diodes has been reported for Cr/Al2O3/HfO2/Cr diode by Maraghechi et al. [58].
Although promising in terms of enhanced asymmetry (>10 at 3 V), the nonlinearity at low
bias was not engineered. Alimardani et al. [18,30] took a step forward in demonstrating
experimentally the step tunneling mechanism in MI2M diodes based on Al2O3/HfO2
and Al2O3/Ta2O5 with a large work function difference (~0.6 eV) of metal electrodes,
Al and ZCAN. Improved asymmetry and nonlinearity values were obtained at lower
bias voltages (10 at 0.45 V); however, no zero-bias rectification parameters were reported.
High asymmetry values of 18 at 0.35 V [51] and maximum responsivity of 6 A/W have
been reported for Al/Al2O3/Ta2O5/Al, where a sharp increase in current at ~2 V has
been ascribed to resonant tunneling. The latter was also observed in a Ni/NiOx/ZnO/Cr
diode [80], showing high asymmetry of 16 at 0.5 V and βMAX = 8 A/W.

Mitrovic et al. [17] have further demonstrated a superior low-bias asymmetry of 35
at 0.1 V and a responsivity of 5 A/W at 0.25 V for the Nb/4 nm Nb2O5/1nm Al2O3/Ag
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diode. Moreover, the onset of strong resonance in the sub-V regime (<1 V) was found
to be controlled by a work function difference of Nb/Ag electrodes in agreement with
the experimental band alignment and theoretical model [17]. The model for calculating
the bound states in a quantum well has been established [92,93], based on a modified
multibarrier Tsu–Esaki method, whereby the insulator stack is assumed to consist of
multiple slices with different barrier heights. The transmission amplitude at each energy
level is found by solving the time-independent Schrodinger equation using the transmission
matrix method. Using this model, Noureddine et al. [96] have also studied the effect of
resonant tunneling on asymmetric Al/Ta2O5/Al2O3/Cr diodes with varied oxide thickness
ratios 1:1, 1:2, 1:3 and 1:4 (in nm). They observed a good correlation between the thickness
ratio of the insulating layers and the simulated bound states between the Ta2O5/Al2O3
conduction bands. The rectifying characteristics of the diodes have been improved at low
turn-on voltages down to 0.17 V [102]. It is worth mentioning that none of the devices
reported above were of adequately small area, which is required for integration with the
antenna part; rather different metal/oxide configurations were used to engineer a diode
with improved asymmetry and nonlinearity.

Herner et al. [15] investigated the relationship between responsivity and resistance
in MI2M diodes. They fabricated Co/Co3O4/TiO2/Ti diodes of various thicknesses and
under different annealing temperatures. A significant reduction in the dynamic resistance
with a slight decrease in the responsivity has been observed after annealing of the samples
up to 256 ◦C in air. The best performing diodes have β0 = 2.2 A/W and R0 = 18 kΩ
(Table 3). In a later study [14], the zero-bias rectification performance of a Co3O4-based
diode was compared to a Ni/NiO/TiO2/Cr structure. A theoretical quantum mechanical
MIM diode simulator was used to analyze the responsivity-resistance correlation for
both diodes by varying the insulator thickness. Step tunneling has been observed as the
dominant conduction mechanism in both structures rather than resonant tunneling. It
has been concluded that resonant tunneling is a crucial factor in reducing the dynamic
resistance. The latter could be achieved by increasing the Co3O4 thickness but comes with
a requirement of a higher bias voltage. Another alternative suggested in [14] is the use of a
so-called geometric diode [4], but this work is outside the scope of this paper.

Pelz et al. [98] fabricated a travelling-wave diode (TWD) composed of Ni/NiO/Nb2O5/
CrAu to demonstrate that the transmission line impedance can overcome the RC time
constant limitations of the conventional MIM diodes at optical frequencies. According to
DC I-V measurements, dynamic resistance of 380 Ω and responsivity of 0.46 A/W were
achieved at zero-bias (Table 3). In the optical measurements, the TWD exhibited peak
responsivity of 130 µA/W and the detectivity of 1.0 × 104 jones. Elsharabasy et al. [99]
demonstrated a Ti/TiO2/ZnO/Al diode with a peak responsivity of 10.6 A/W at 0.15 V,
R0 = 5.9 kΩ and β0 = 1.9 A/W. Their optimized rectenna design parameters have been
determined by a genetic algorithm and found to have theoretically 5.5% coupling efficiency,
6.4 A/W responsivity and 34 THz cut-off frequency.

A recent important report by Matsuura et al. [100] demonstrates Pt/TiO2/TiO1.4/Ti
asymmetric diodes composed of stoichiometric and non-stoichiometric oxide layers with
the aim of increasing current density and hence asymmetry. The latter increase has
been found for non-stoichiometric TiOx, where the diode exhibited a current density
of 4.6 × 106 A/m2 and a peak asymmetry of 7.26 at 0.45 V. By exploring a similar concept
as in [100], Weerakkody et al. [45] found that Ni/NiO/AlOx/CrAu diodes could achieve
low R0 = 1.75 kΩ and reasonable high β0 = 0.31 A/W. This was achieved by engineering
the electron affinity of Al2O3 by modifying its deposition conditions so that it comprises
mostly of Al3+ ions and hence has a higher electron affinity value of 3.26 eV (the value
for thin stoichiometric Al2O3 is ~1.6 eV [17]) and hence a much lower barrier with NiO.
The bowtie antenna realized with this diode, designed to operate at 28.3 THz, has shown
significant improvement in overall conversion efficiency of 3.7 × 10−8% and detectivity of
1.7 × 105 cmHz1/2W−1. Another recent breakthrough is that resonant quasi-bound states
can be reached at near 0 V, where Ni/NiO/AlOx/CrAu diodes self-bias when illuminated
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at 30 THz by the antenna part. By modifying the depth and width of the quantum well
(Figure 5a) of a 0.035 µm2 diode by changing insulator thicknesses, low R0 = 13 kΩ and high
β0 = 0.5 A/W were achieved simultaneously [97]. The resulting bowtie rectenna for diodes
where RT has occurred shows improved power conversion efficiency of 1.7 × 10−8% [97].
The calculated coupling efficiency for this rectenna is found to be 5.1%, the highest achieved
to date.

Another recent approach is defect engineering in MI2M diodes [101]. Nitrogen doping
of TiO2 and Al2O3 using plasma-assisted ALD (PA-ALD) causes the generation of elec-
tron traps, which can assist unidirectional, defect-mediated PF transport and TAT in a
multi-insulator stack. Although the latter have been found to increase rectifying perfor-
mance of the doped diodes, it should be noted that the electron transport is considerably
slower than tunneling, which could limit the frequency response. The best performing
Pt/NTiOx/NAlOx/Al diode exhibits R0 = 36 Ω and β0 = 1.7 A/W.

The most recent theoretical study by Elsharabasy et al. [103] shows the optimization
of the responsivity of MI2M diodes by considering metal/oxide properties and fixing the
diode resistance to 100 Ω to match the nano-antenna impedance. The optimization has been
performed to ensure zero-bias operation, and the diode configuration that fits the closest
to the optimal solution has been found to be Ti/1 nm TiO2/1 nm Nb2O5/Ti, showing
R0 = 108.6 Ω and β0 = 4.99 A/W from simulations. The RC time constant was found to be
9 fs for the diode area of 0.01 µm2, resulting in a 17 THz cut-off frequency.

In contrast to MI2M, there are comparatively fewer studies reported on triple-insulator
diodes [56,75,104]. Maraghechi et al. [104] investigated and reported the resonant tunneling
phenomenon for the first time in Cr/Cr2O3/HfO2/Al2O/Cr and Cr/Cr2O3/Al2O3/HfO2/Cr
diodes in cascaded and non-cascaded configurations, respectively. Further work of Mitro-
vic et al. [56,75] demonstrated cascaded (Al/Nb2O5/Al2O3/Ta2O5/Al) and non-cascaded
(Al/Ta2O5/Nb2O5/Al2O3/Al) diode configurations based on ultra-thin oxide films (1–3 nm)
of Nb2O5, Al2O3 and Ta2O5 deposited by ALD. The diodes show strong tunneling and RT
behavior at low voltages (0.35 V for non-cascaded configuration), substantiating evidence of
the high-quality and uniqueness of atomic layer deposition that has been used to facilitate
sub-nm thickness control, low oxide defect density, excellent stoichiometry and superb
uniformity. The diodes exhibited a superior low-voltage responsivity of 5 A/W at 0.2 V and
asymmetry of 12 at 0.1 V as the best performing MI3M diodes to date. The scaling of the
contact area for these diodes is underway.

3. Permittivity and Scaling Issues

The quality of an oxide film determines the type and magnitude of the diode current.
The majority of the fabricated MIM diodes shown in Table 2 have oxide thicknesses below
5 nm, which serves to facilitate quantum-mechanical tunneling. An uneven, non-uniform
insulating layer can result in current crowding and hence variability and lack of repro-
ducibility for MIM diodes. Other conduction mechanisms, such as PF emission or TAT,
may arise due to oxide defects. Hence, the formation of a uniform, ultrathin (<10 nm) and
defect-free insulator layer is essential. Several oxide deposition techniques are apparent,
as listed in Tables 2 and 3: native [65], plasma [15,60–62,66,67,69,73,78], thermal [29,64,68],
boiling water [84,85], O2 exposure [71,72,77] and anodic [86,87] oxidation. Here, the quality
of the grown oxide depends on the surface roughness of the bottom metal electrode and
largely on the method of the oxide layer realization. Native oxidation is the easiest but gen-
erally yields poor-quality, non-uniform oxides due to varying conditions of humidity and
partial pressure of oxygen in the air. During thermal oxidation, the bottom metal electrodes
are exposed to elevated temperature to form their oxides. Such layers are also prone to the
formation of pin-holes due to surface contamination. Plasma oxidation is more reliable and
reproducible due to the ability to control process parameters, such as rate of oxygen flow,
power and oxidation time. Anodic oxidation or anodization has also been shown to produce
high-quality oxidized metal surfaces with good control of thickness [86,87]. The constraint
of only growing a derivative oxide layer of the underlying polycrystalline metal can be
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resolved by directly depositing an insulator on the bottom metal electrode using different
deposition techniques and thus facilitating the use of any type of bottom metal electrode
irrespective of its native oxide formation properties. These deposition techniques include
sputtering [14,17,20,27,28,45,51,59,74,80,83,90,97,98], electron beam evaporation [88] and
atomic layer deposition [8,9,18,30,51,56,58,75,81,89,96,99–101], as listed in Tables 2 and 3.
Among these techniques, ALD offers the best quality oxides with low defect density, ex-
cellent conformality and uniformity. The ALD process involves different reactive gases
used as precursors to deposit the target material. It is a self-saturating process where the
insulator is grown one atomic layer at a time, providing a very precise control over thick-
ness. Hence, it facilitates well-controlled stoichiometry and repeatability. These features
have made ALD the most compatible insulator deposition technique in MIM fabrication.
In addition, some other techniques have also been investigated for oxide deposition in
MIM diodes, such as Langmuir–Blodgett [63,82]. Although this method facilitates easy
and low-cost oxide deposition with appropriate thickness control, it has been mostly used
to fabricate organic material-based insulator films [29].

Different deposition methods with associated process conditions result in variations
of film homogeneity, degree of amorphousness, roughness and stoichiometry. Hence, the
measured band gap and permittivity can vary even for similarly prepared oxide films.
Table 4 depicts measured values of static and dynamic permittivity for most commonly used
oxides in MIM diodes for rectenna, such as NiO [105–109], Al2O3 [110–119], ZnO [108,120–
122], TiO2 [114,119,123–128], CuO [8,129,130], Ta2O5 [91,108,113,126,131], Nb2O5 [17,51,91,
108], Cr2O3 [132,133], SiO2 [114,119], HfO2 [114,134,135], V2O5 [136] and Sc2O3 [137–139].

Table 4. Static and dynamic permittivity (at ~1 THz and 28.3 THz) of most common oxides used in
MIM diodes for rectennas.

Oxide Permittivity (εr)
Dynamic Permittivity (ε∞)

1–3 THz 28.3 THz

NiO 7.9–16.7 [105], 11.9 [106,107] 9.6 [108] 3.24 [109]

Al2O3
7 [110], 7.6 [111], 8.3 [112], 8.9 [113],

9 [114], 10 [17,51,115,116] ~9 [117], 11.5 [118] 0.8 [45,119]

ZnO 8.5 [120], 9.4–10.4 [121] 7.0 [108] 2.4 [122]

TiO2
60 [123], 70 [124], 80 [114,125],

88–102 [126], 100 [127] ~100 [128] 1.4 [119]

CuO 103–105 [129] - 2.4 [8,130]

Ta2O5 20 [91], 23.9 [113], 25 [126] ~33 [108], 22.7 [131] -

Nb2O5 25 [17,51,91] ~22 [108] -

Cr2O3 10.3 [132], 11.8–13.3 [133] - -

SiO2 3.9 [114] - 4.7 [119]

HfO2 14 [134], 18 [135], 25 [114] - -

V2O5 11.5–22.3 [136]

Sc2O3 8.5–9.3 [137], 14 [138,139]

To further examine the merit of these oxides for rectifying THz signals, the dynamic
permittivity should be used to model the power transfer efficiency of an AC voltage source
connected to a MIM diode. The available data for NiO, Al2O3, ZnO, TiO2, CuO, Ta2O5,
Nb2O5 and SiO2 from terahertz time-domain spectroscopy [108,117,118,128], spectroscopic
ellipsometry [45,119,131] reflectance [122] and transmission measurements [130] are listed
in Table 4. It can be seen from Table 4 that some of the oxides with extremely high static
permittivity, such as CuO, exhibit very small dynamic permittivity justifying its use in
rectenna devices [8]. Another observation is that the permittivity can depend on the
thickness of the insulator, for example, it has been reported that a 2 nm TiOx film exhibits a
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permittivity of 5.1 [140] in comparison to values of 60 [123] to 100 [127] reported for thick
TiO2 films.

Energy conversation through the diode rectifier occurs by means of the resistance
difference between the forward and reverse bias currents. Thus, the received AC signal is
converted to a DC voltage. The efficiency of a rectenna can be calculated as

η = ηaηsηcηj (8)

where ηa is the coupling efficiency of incident electromagnetic radiation to the receiving
antenna, ηs is the efficiency of collected energy in the diode-antenna junction, ηc is the
power coupling efficiency between the diode and antenna and ηj is the diode rectifying
efficiency, which is determined by device responsivity defined by Equation (5). The power
coupling efficiency (ηc) between the diode and the antenna at a specific angular frequency
ω can be calculated by

ηc =
4 RARD
(RA+RD)2

1 +
[
ω RARD

(RA+RD)
CD

]2 (9)

where RA and RD are antenna and diode resistances, respectively, and CD is the diode
capacitance, which is calculated by Equation (2). It is worth mentioning that the antenna
reactance is assumed to be negligible compared to the diode reactance in this equation and
at high frequencies (>1 THz), this effect can reduce the coupling efficiency by a factor of
≥10 [97].

Consider that the antenna has a resistance of 100 Ω for capturing IR radiation and
the case of a full impedance match between the diode and the antenna. Furthermore, let
us assume the same diode resistance as the antenna. Figure 7 depicts the power coupling
efficiency at 28.3 THz of a rectenna that constitutes an MIM diode incorporating four of the
most commonly used oxides.
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The oxide thickness was fixed at 3 nm in the calculations. The area and the dynamic
resistance values were varied between 0.01 and 1 µm2 and 100 Ω–1 kΩ, respectively. The
high-frequency permittivity values of oxides (ε∞ = n2, where n is the refractive index)
were used for the capacitance calculations [141], as stated in Table 4. As can be seen from
Figure 7, the dielectrics Al2O3 and TiO2 come out as strong contenders with the highest
coupling efficiency. An interesting observation is that the area seems to be more critical
than diode resistance, that is even if the latter is engineered to be 100 Ω, the increase in
area to 1 µm2 results in a significant reduction of coupling efficiency.

Needless to say, Figure 7 depicts an ideal case, as fabricating reliable and fully scalable
MIM diodes with capacitances of a few atto-farads to operate efficiently at 28.3 THz remains
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a significant challenge. An emerging novel design approach is an MIM diode engineered
with a junction capacitance of ~2 aF at the tip of vertically aligned multiwalled carbon
nanotubes (MW-CNTs) (~10 nm in diameter), which act as the antenna [142].

By implementing an Al2O3/ZrO2/Al2O3/ZrO2 quad-insulator laminate structure,
asymmetry of 300 and βMAX = 6 A/W has been achieved for the diode and a total conver-
sion efficiency of 3 × 10−6% for the rectenna [143]. Although very encouraging, the growth
of carbon nanotubes must be further improved to obtain a well-ordered network and to fa-
vor the amplification of the electromagnetic field structure. Variability and reproducibility
are also major challenges considering that the diodes will be incorporated into large arrays
to enable the generation of significant power levels.

Other emerging concepts relate to surface plasmon excitation within a MIM device
that produces power based on spatial confinement of electron excitation through plasmon
absorption [144]. The recent work also proposes MIM-based plasmonic structures that
incorporate a nanoslit for IR rectification [145].

4. Conclusions and Outlook

We have presented a review of the state-of-the-art single, double and triple MIM
diodes for inclusion in IR nano-rectennas. Typical metals used in MIMs (Ni, Al, Au, Cr
and Ti), their skin depths and work function have been summarized. An overview of
various oxides, their electron affinity, band gap and permittivity were presented as well as a
review of their use in MIM diodes. The lowest zero-bias resistances have been reported for
Ni/NiO/Ni (100 Ω), Al/Al2O3/Pt (125 Ω), Al/AlOx/Gr (600 Ω), Au/HfO2/Pt (405 Ω) and
Au/CuO/Cu (500 Ω). Apart from the latter diode that exhibits β0 = 2 A/W, generally, these
diodes have not been optimized to achieve the high zero-bias responsivity that is required
for practical high-frequency operation. Hence, there has been a considerable research effort
in engineering a diode with low resistance and high responsivity by utilizing resonant
or step tunneling in a double or triple insulator oxide stack. The two oxide contenders
for MIM diodes, NiO and Al2O3, have been utilized the most and combined with HfO2,
Ta2O5, Nb2O5, ZnO and TiO2. The latter oxide has also been used in combination with
Co3O4 and TiOx. The highest zero-bias responsivities of 2.2 and −3.7 A/W have been
reported for Ti/TiO2/Co3O4/Co MI2M and Al/Nb2O5/Ta2O5/Al2O3/Al MI3M diodes,
respectively, while the lowest zero-bias dynamic resistance of 380 Ω was reported for
Ni/NiO/Nb2O5/CrAu. The latest research shows that by modifying the depth and width
of the quantum well of a 0.035 µm2 Ni/NiO/AlOx/CrAu resonant tunneling MI2M diode,
relatively low R0 = 13 kΩ and high β0 = 0.5 A/W can be achieved simultaneously. The
bowtie rectenna based on this diode has been found to have overall power conversion
efficiency of 1.7 × 10−8% and a coupling efficiency of 5.1% when illuminated at 30 THz;
the highest achieved to date. Furthermore, defect engineering by nitrogen doping in
a Pt/NTiOx/NAlOx/Al diode has led recently to state-of-the-art values of R0 = 36 Ω
and β0 = 1.7 A/W. The most recent theoretical work indicates that a Ti/1 nm TiO2/1 nm
Nb2O5/Ti diode could achieve even higher β0 = 4.99 A/W and low R0 = 108.6 Ω and, with
the diode area of 0.01 µm2, could result in an efficient IR rectenna with a cut-off frequency
of 17 THz.

In summary, there is no one optimal solution of metal/oxide stack combination that
can yield an efficient MIM rectifier for IR rectenna due to engineering design trade-offs.
Rather, several options of MInM are becoming apparent. The latest research points to tech-
nological advancements and is focused on the control of oxide thicknesses to sub-nanometer
accuracy and oxide stoichiometry by carefully devised fabrication processes, which have
resulted in realizing some of the best zero-bias responsivity–resistance optimized diodes.
Although there is considerable scope for refinement in device manufacturing, the latest
research in this field shows that we are a step closer toward tapping into the infrared
spectrum with rectennas based on MIM technology. The race, however, is still on.
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