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Abstract: The popularity of micro-machining is rapidly increasing due to the growing demands for
miniature products. Among different micro-machining approaches, micro-turning and micro-milling
are widely used in the manufacturing industry. The various cutting parameters of micro-turning
and micro-milling has a significant effect on the machining performance. Thus, it is essential that
the cutting parameters are optimized to obtain the most from the machining process. However,
it is often seen that many machining objectives have conflicting parameter settings. For example,
generally, a high material removal rate (MRR) is accompanied by high surface roughness (SR). In this
paper, metaheuristic multi-objective optimization algorithms are utilized to generate Pareto optimal
solutions for micro-turning and micro-milling applications. A comparative study is carried out to
assess the performance of non-dominated sorting genetic algorithm II (NSGA-II), multi-objective
ant lion optimization (MOALO) and multi-objective dragonfly optimization (MODA) in micro-
machining applications. The complex proportional assessment (COPRAS) method is used to compare
the NSGA-II, MOALO and MODA generated Pareto solutions.

Keywords: process optimization; metaheuristics; ant lion optimization; dragonfly algorithm; NSGA

1. Introduction

In this new age of industrialization, the conventional and non-conventional manu-
facturing processes are undergoing revolutionary changes in their capability to fabricate
micro-components with extreme precision [1]. There is a growing need to manufacture
micro-scale pumps, small valves, and various micro components of electronics and medical
applications [2]. The micro-components demand high accuracy and a high production rate.
For the fabrication of these tiny elements, a potential machining process needs to be selected.
Micro-turning is one of the suitable machining processes widely used to manufacture these
types of components [3]. The micro-manufacturing processes are the extension of the
traditional manufacturing process [4]. The working principle of micro-turning operation is
the same as the traditional turning operation. The tools used for machining are in the range
of 50–1000 µm. The micro-turning operation can fabricate 3-D structures on a micro-scale.
This machining process is influenced by several factors, namely speed, feed rate, depth
of cut, dimension, tool cutting force, work materials, etc. Hence, the fabrication of micro
components with required dimensional accuracy is a great challenge [5]. Micro-milling is
also an important micro-machining process and can produce complex 3-D structures [6].
Proper selection of process parameters is one of the ways to overcome this challenge.
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The surface roughness is a very important factor as it directly influences the tribo-
logical performance of the machined component. Thus, the smoother machined surface
needs to produce by proper cutting conditions to enhance quality and performance [7].
Along with that, a higher material removal rate (MRR) is required to increase the produc-
tion rate. These two objectives are conflicting in nature. To achieve better performance,
the optimal parameter setting is essential. This can be achieved by the utilization of
optimization techniques [8]. Researchers have applied various optimization techniques
for the selection of proper machining conditions [9–13]. Kibria et al. [14,15] developed
mathematical models using response surface methodology for micro-turning operation.
Analysis of variance (ANOVA) analysis was performed to check adequacy. Pradhan and
Bhattacharyya [16] used response surface methodology for modelling and optimization of
micro- electro-discharge machining (µ-EDM) process. Dhupal et al. [17] developed mathe-
matical relations and optimized process parameters of the micro-grooving process using
response surface methodology (RSM). Mia et al. [18] developed mathematical relations and
investigated the influence of machining parameters using RSM. Chen et al. [19] developed
a mathematical model using RSM and utilized this model as a fitness function in the genetic
algorithm-particle swarm optimization (GA-PSO) hybrid technique to optimize the plastic
injection moulding process. Bharti et al. [20] utilized the non-dominated sorting genetic
algorithm II (NSGA-II) technique to optimize the machining process. Pasandideh et al. [21]
carried out a comparative study between NSGA-II and multi-objective particle swarm
optimization (MOPSO) for optimizing bi-objective multi-product EPQ model. Slightly
better performance was found for MOPSO. Majumder et al. [22,23] developed mathemat-
ical models and adequacy checks by ANOVA test. The developed models were used
in conjunction with MOPSO to optimize the EDM process. Similarly, Prakash et al. [24]
also used RSM models with MOPSO to find optimal parameter settings. Mirjalili intro-
duced Ant Lion Optimization (ALO) [25] and a Dragonfly algorithm (DA) [26] to solve
real-life engineering problems. Dubey et al. [27] demonstrated the applicability of the
ALO algorithm in real-world problems, and it is found that this is proficient in producing
encouraging solutions. Wang et al. [28] utilized multi-objective dragonfly optimization
(MODA) to optimize electrical power systems, and it is observed that this is an effective
tool for optimization. Optimization algorithms find widespread applicability in diverse
fields [29–31].

From the literature, it is observed that RSM is a widely used and well-established
technique to formulate mathematical relations between input process parameters and
the output responses. These mathematical or empirical relations developed using the
experimental data can be used as objective functions in the optimization process. As
evident from the brief section of literature discussed above, single-objective optimization is
mostly carried out by researchers. However, single-objective optimization is not necessarily
helpful in real-life applications as multiple responses must be looked at simultaneously to
assess the effectiveness or suitability of a machining process. Most research conducted on
multi-objective optimization has generally considered some variant of NSGA or MOPSO.
However, NSGA was proposed by Srinivas and Deb in 1995 [32] and MOPSO by Coello
and Lechuga in 2002 [33]. Thus, there is tremendous need for application of more recent
and powerful multi-objective optimization algorithms to machining problems. This could
lead to better optimized solutions which would translate into cost saving and efficiency
increment in the real-world situations. It is also observed from the literature search that
there are very limited studies carried out on the comparison of various metaheuristics for
multi-objective optimization of machining processes. Further, no suitable studies on the
implementation of MOALO and MODA for multi-objective optimization of machining
processes are found. Thus, in the present study, NSGA-II, MOALO and MODA are used
for multi-response Pareto optimization of micro-machining processes. Two examples from
the literature on micro-turning and micro-milling are selected to demonstrate and compare
the three metaheuristics.
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2. Multi-Objective Optimization

In this section, three different metaheuristic multi-objective algorithms are described.
These algorithms simultaneously optimize multiple objectives to generate a set of non-
dominated solutions known as the Pareto front.

2.1. Non-Dominated Sorting Genetic Algorithm (NSGA-II)

The NSGA-II is an advanced multi-objective optimization algorithm that efficiently
handles multi-objective optimization problems. This algorithm was proposed by Deb et al. [34].
This algorithm is implemented based on the idea of the selection of the dominant among
all solutions. This algorithm is described in brief as follows [35]:

(I) Initialization of population Po of size N using a uniform distribution.
(II) Generate new offspring population Qt by utilizing binary tournament selection which

is based on crowding comparison operator, crossover, and mutation operation on
the parent population (Pt). Here, t denoted the number of generations. The en-
tire population (Rt) is the combination of offspring population (Qt) and its parent
population (Pt).

(III) Non-dominated fronts of different objective functions are obtained by performing a
fast non-dominated sorting approach on the entire population (Rt).

(IV) Generate a new parent population (Pt+1) from the obtained fronts.
(V) This process is continued until the maximum number of iterations is reached.

2.2. Multi-Objective ant Lion Optimization (MOALO)

The algorithm of Ant Lion Optimization (ALO) was inspired by the unique hunting
behaviour of antlions [25,36,37]. It solves the optimization problem by considering the
random walk of ants, constructing traps, entrapment of ants in traps, catching ants, and
re-building of traps. It mimics the relationship between antlions and the trapping of ants.
To model this relationship, ants are needed to be move over the search space, and antlions
are allowed to hunt them using traps. The ants move stochastically in search of food. The
random movement of ants are mathematically denoted as Equation (1),

X(t) = [0, cs(2r(t1)− 1), cs(2r(t2)− 1), . . . , cs(2r(tn)− 1)] (1)

where cs is the calculative sum, n is the maximum number of iterations, t is the step of
random walk, and r(t) is the stochastic function defined as Equation (2),

r(t) =
{

1, i f rand > 0.5
0, i f rand ≤ 0.5

(2)

where rand is a uniform distribution random number, generated within the interval [0, 1].
The random walk of ants is maintained within the search space and normalized using
Equation (3),

Xt
i =

(
Xt

i − ai
)
×
(
dt

i − ct
i
)

(bi − ai)
+ ct

i (3)

where ai and bi are the minimum and maximum random walk, respectively of the ith vari-
able. ct

i and dt
i are the minimum and maximum value of the ith variable at the tth iteration.

The random walk of the ants is affected by the pits of antlions. The entrapment of ants
is found by changing the random walks around the antlions, and this is mathematically
expressed as Equations (4) and (5),

ct
i = Antliont

j + ct (4)

dt
i = Antliont

j + dt (5)
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where ct is the minimum of all variables at tth iteration, dt indicates the vector including
the maximum of all variables at tth iteration, ct

i is the minimum of all variables for ith ant,
dt

i is the maximum of all variables for ith ant. Antliont
j shows the position of the selected jth

antlion at tth iteration. Large size antlions build large size pits to increase the possibilities
to slide the ants into the pits. For sliding into the pits, the boundaries of random walks
need to be reduced, and it expresses mathematically as Equations (6) and (7),

ct =
ct

I
(6)

dt =
dt

I
(7)

where I = 1 + 10w t
maximum iteration , t is the current iteration, and w is a constant and the

values are given as follows,

w =


2 when t > 0.1 ∗ maximum iteration
3 when t > 0.5 ∗ maximum iteration
4 when t > 0.75 ∗ maximum iteration
5 when t > 0.9 ∗ maximum iteration
6 when t > 0.95 ∗ maximum iteration

(8)

Finally, an ant is trapped into the bottom of the pit and caught by the antlion. After
this stage, the antlion changes its position and re-construct pits for catching a new ant. The
mathematical equation in this regard is,

Antliont
j = Antt

i i f f
(

Antt
i
)
> f

(
Antliont

j

)
(9)

where t is the current iteration, Antt
i is the position of ith ant at tth iteration and Antliont

j is
the position of jth antlion at tth iteration. In evolutionary algorithms, elitism is an important
characteristic. In this process, the best antlion is considered as an elite and stored. It is
conducted by using Equation (10),

Antt
i =

Rt
A + Rt

E
2

(10)

where Rt
A and Rt

E are the random walk around the antlion and elite at tth iteration, respec-
tively. During each iteration, if it is found that the current antlion is fitter than the existing
elite, then an update of the elite is conducted. An archive is used in MOALO to store the
Pareto optimal solutions. To improve the Pareto optimal solution distribution and diversity
in the archive, niching is adopted.

2.3. Multi-Objective Dragonfly Algorithm (MODA)

A dragonfly is a beautiful, small insect, having unique swarming behaviours for
hunting and migration [26,38,39]. These two behaviours of the Dragonfly are also termed
as static and dynamic swarm behaviour. Dragonflies form small sub-group and fly over lo-
cality by changing the steps in a static swarm. In migratory (dynamic) swarms, dragonflies
create large groups and move over long distances. The dragonfly algorithm (DA) is based
on five different behaviours of the dragonfly in a swarm, namely separation, alignment,
cohesion, attraction towards the food and distraction from enemy sources. The separation
behaviour is mathematically expressed as Equation (11),

Si = −
N

∑
j=1

X− Xj (11)
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where X is the position of current individual, Xj is the position of the jth neighbouring
individual, and N is the total number of neighbouring individuals.

Alignment behaviour is mathematically denoted as Equation (12),

Ai =
∑N

j=1 Vj

N
(12)

where Vj is the velocity of the jth neighbour.
The tendency of flying toward the neighbouring centre of mass refers to the cohesion

behaviour. It is mathematically expressed as Equation (13),

Ci =
∑N

j=1 Xj

N
− X (13)

Attraction and distraction refer to the tendency of dragonflies to fly towards the
food and to fly away from an enemy, respectively. These are mathematically modelled as
Equations (14) and (15),

Fi = X+ − X (14)

Ei = X− + X (15)

where X+ and X− represent the position of food and enemy.
The above five principles influence the behaviour of dragonflies. The position of

the dragonflies in the search space are updated using two vectors: step vector (∆X)
and position (X). The movement of dragonflies is represented by a step vector. The
mathematical model is represented as Equation (16),

∆Xt+1 = (w1Si + w2 Ai + w3Ci + w4Fi + w5Ei) + v∆xi (16)

where ∆x is the step size, v is the inertia weight, and the weight value of w1, . . . , w5 are
assigned for each of the operators. The values of weight are enabled to obtain different
exploration and intensification behaviours.

The position of an individual in search space is updated as per Equation (17),

xt+1 = xt + ∆xt+1 (17)

Levy Flight equation [40] is used to update the position if no dragonfly exists in
neighbourhood radius, and the equation is expressed as Equation (18),

xt+1 = xt + levy(d)× xt (18)

where d is the dimension of the position vector.
An archive is used in MODA to store the Pareto optimal solutions.

3. Multi-Criteria Decision Making with COPRAS

Multi-criteria decision making (MCDM) methods are often used to determine compro-
mise solutions in situations where multiple criteria need to be taken into account. Complex
Proportional Assessment (COPRAS) is an MCDM method developed by Zavadskas and
Kaklauskas [41] in 2011.

Any MCDM problem that contains m alternatives and n criteria can be expressed in
form of a decision matrix D.

D =


x11 x12 · · · x1n
x21 x22 · · · x2n

...
...

. . .
...

xm1 xm2 · · · xmn

 (19)
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A relative degree of importance must be assigned to each criterion. In MCDM ter-
minology, this is called weight allocation. The weight vector can be expressed as per
Equation (20),

wj =
[

w1 . . . wn
]
, such that

n

∑
j=1

(
w1 . . . wn

)
= 1 (20)

All criteria can be classified into cost (C) and benefit (B) criteria. Cost criteria are those
that require minimization or lower values, which are desired. Similarly, benefit criteria are
those that need to be maximized, i.e., higher values are desired. Since different criterion
values are in different scales, all of them must be converted to a common scale. This process
is referred to as normalization. This is obtained as per Equation (21),

nij =
xij

∑n
j=1 xij

(21)

Next, the weighted normalized matrix is calculated as per Equation (22),

Nij = wj ∗ nij where i ∈ [1, m] and j ∈ [1, n] (22)

The sum Bi of the benefit criteria values is then calculated as per Equation (23),

Bi =
k

∑
j=1

Nij (23)

The sum Ci of the cost criteria values is then calculated as per Equation (24),

Ci =
m

∑
j=k+1

Nij (24)

where k are the benefit criteria and (m− k) are the cost criteria.
The relative significance Qi of each alternative is then calculated as per Equation (25),

Qi = Bi +
min(Ci)·∑n

i=1 Ci

Ci·∑n
i=1

(
min(Ci)

Ci

) (25)

Finally, the utility degree for each alternative is determined as per Equation (26),

UDi =
Qi

max(Qi)
× 100% (26)

4. Results and Discussion
4.1. Example 1: Optimization of Micro-Turning Process Parameters

In this case study, a micro-turning example from Kumar [42] is used. Kumar [42]
carried out micro-turning of C360 Copper alloy using a Tungsten carbide insert. He
used a Taguchi L27 orthogonal array for the design of experiments and a polynomial
regression approach to generate empirical mathematical relations between the responses
and the process parameters. MRR and surface roughness (Ra) are considered as the
responses while cutting speed (N), feed rate ( f ), and depth of cut (D) are considered as the
process parameters.

4.1.1. Mathematical Modelling

In this paper, the mathematical relations from [42] are made more robust by analysing
them using ANOVA and then using the stepwise elimination method to remove the
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statistically insignificant terms. The modified mathematical relations are presented in
Equations (27) and (28).

MRR = 0.0437− 0.000024N − 0.003923 f − 0.000856D + 0.000002N f + 0.00000049ND + 0.000076 f D (27)

Ra = −0.002238 + 0.000017N − 0.000047 f − 0.000040D + 0.000009 f D− 0.000000004N2 + 0.000001D2 (28)

ANOVA for the mathematical relations in [42] is computed and presented in Table 1.
From Table 1, it is observed that in the MRR model, N2, f 2 and D2 terms have a p-value
greater than the threshold value of 0.1. Thus, these three terms are statistically insignificant
to the model and are responsible for artificially inflating the R2 of the model. Similarly, in
the Ra model, N f , ND and f 2 are statistically insignificant.

Table 1. ANOVA for the full quadratic mathematical models.

Source
MRR Ra

SS df F-Value p-Value SS df F-value p-Value

Model 0.0746 9 98.0800 <0.0001 0.0020 9 31.5200 <0.0001

N 0.0072 1 85.1700 <0.0001 0.0000 1 4.1000 0.0588

f 0.0246 1 291.3000 <0.0001 0.0004 1 61.6100 <0.0001

D 0.0252 1 297.5700 <0.0001 0.0012 1 176.2200 <0.0001

N f 0.0027 1 31.7900 <0.0001 0.0000 1 0.0437 0.8368

ND 0.0033 1 38.7100 <0.0001 0.0000 1 2.0700 0.1681

f D 0.0114 1 134.5800 <0.0001 0.0002 1 22.9500 0.0002

N2 0.0000 1 0.0114 0.9163 0.0000 1 5.0900 0.0375

f 2 0.0000 1 0.0089 0.9261 0.0000 1 0.4815 0.4971

D2 0.0000 1 0.0453 0.834 0.0000 1 4.4300 0.0505

Residual 0.0014 17 - - 0.0001 17 - -

Cor
Total 0.0760 26 - - 0.0021 26 - -

Thus, the stepwise elimination method is used and the ANOVA of the robust mathe-
matical models is presented in Table 2. It is seen that all the model terms in Table 2 have
p-values much smaller than 0.1, indicating the adequacy of the developed models. The
comparison of the various accuracy metrics for the previous [42] and current model is
presented in Table 3. Further, Figure 1 shows the comparison of the residuals of the models.
For MRR, as seen in Figure 1a, the improvement is minor. However, as seen from Figure 1b,
for the Ra model there is a significant improvement. Thus, these developed models are
used as objective functions for multi-objective optimization in the next section.

Table 2. ANOVA for the robust mathematical models.

Source
MRR Ra

SS df F-Value p-Value SS df F-Value p-Value

Model 0.0746 6 172.4065 <0.0001 0.0020 6 47.8004 <0.0001

N 0.0072 1 99.8168 <0.0001 0.0000 1 3.8989 0.062286

f 0.0247 1 342.5487 <0.0001 0.0004 1 62.4207 <0.0001

D 0.0252 1 349.6148 <0.0001 0.0012 1 179.8334 <0.0001

N f 0.0027 1 37.2514 <0.0001 - - - -

ND 0.0033 1 45.3691 <0.0001 - - - -
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Table 2. Cont.

Source
MRR Ra

SS df F-Value p-Value SS df F-Value p-Value

f D 0.0114 1 157.7203 <0.0001 0.0002 1 23.4227 <0.0001

N2 - - - - 0.0000 1 5.1986 0.033711

f 2 - - - - - - - -

D2 - - - - 0.0000 1 4.5198 0.04615

Residual 0.0014 20 - - 0.0001 20 - -

Cor
Total 0.0760 26 - - 0.0021 26 - -

Table 3. Accuracy of the original and modified mathematical models.

Metric
MRR Ra

Original [42] Modified Original [42] Modified

R2 0.9811 0.981 0.9435 0.9348

Adjusted R2 0.9711 0.9753 0.9135 0.9153

Predicted R2 0.9217 0.9365 0.8532 0.8788

Figure 1. Externally studentized residuals of the previous [42] and current models for (a) MRR (b) Ra.

4.1.2. Multi-Objective Optimization

It is well known that MRR and Ra are two important responses of turning operation,
which are conflicting in nature. Higher MRR and lower Ra is always desired for turning
operation. Hence, optimal parameter settings need to be found for obtaining high MRR
and low Ra. The two objective functions can be stated as,

Objective 1 = Maximize MRR

Objective 2 = Minimize Ra

The optimization of micro-turning process parameters is performed by implementing
three different intelligent optimization techniques. To perform the multi-objective opti-
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mization of process parameters, i.e., cutting speed, feed rate, and depth of cut with respect
to MRR and Ra, the following boundary conditions are used.

1000 ≤ N ≤ 2500 rev/min
2 ≤ f ≤ 20 µm/rev
10 ≤ D ≤ 100 µm

(29)

For the sake of ease in comparison of the performance of the three metaheuristic
algorithms, the total function evaluation is kept the same. In all the three algorithms, i.e.,
NSGA-II, MOALO and MODA, the number of search agents or population size is kept
as 100. This is then iterated for 500 generations. Thus, the total function evaluations are
50,000. The maximum archive size of the non-dominated solutions is considered to be 500.

The Pareto fronts generated by the three algorithms are presented in Figure 2. It is
seen that a small discontinuous zone is present in all the Pareto fronts at low MRR and
low Ra combination, indicating that no non-dominated solutions are present in that region.
Further, the NSGA-II is seen to be better in the continuity of the Pareto fronts as compared
to MOALO and MODA. Especially in the case of MODA, two more distinct breaks in the
Pareto front are seen. The spread of the Pareto fronts is analysed by using box plots in
Figure 2d. The spread is closer to normal distribution for NSGA as compared to MODA
and MOALO.

Figure 2. Pareto fronts for optimization of micro-turning process using (a) NSGA-II (b) MOALO
(c) MODA. (d) Box plot showing the spread of the Pareto fronts.

4.1.3. Comparison of the Metaheuristics

The numerical experiments are carried out on a Dell Inspiron 15-3567 series windows
system with Intel(R) CoreTM i7-7500U CPU @2.70 GHz, Clock Speed 2.9 Ghz, L2 Cache Size
512 and 8 GB ram. To account for the stochasticity of these algorithms, Pareto optimization
by each algorithm is carried out for 10 independent trials. The average computational time
for each trial is found to be approximately 1908 (±125) s, 972 (±38) s and 1366 (±63) s,
respectively, for NSGA-II, MOALO and MODA. The values within the bracket indicate the
standard deviation of 10 trials.
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Since no Pareto optimal solutions from the literature are found in this case study, the
NSGA-II solutions are considered as the benchmark solution. The MOALO and MODA
solutions are contrasted against the NSGA-II solutions by using various convergence and
diversity measuring metrics such as generational distance (GD), inverted generational
distance (IGD), convergence metric (CM) and spread (SP) in Table 4. Both MOALO and
MODA solutions are observed to be superior to the NSGA-II solutions.

Table 4. Comparison of MOALO and MODA with NSGA-II Pareto solutions.

Metric
MOALO MODA

Original Normalized Original Normalized

GD 0.000012 0.000211 0.000016 0.000293

IGD 0.000056 0.000884 0.000049 0.000793

CM 0.000249 0.004399 0.000326 0.005884

SP 1.525508 1.513864 1.166575 1.126299

To further analyse the performance of the three metaheuristics, COPRAS is used.
Three test case scenarios are considered where three different weights are allocated to the
MRR objective. One optimal solution as per COPRAS is predicted from the Pareto front of
each metaheuristic and is compared against each other in Table 5. It is seen that W1 = 25%
is considered the best solution for both MRR and Ra, obtained by MODA followed by
NSGA-II and MOALO. However, at W1 = 50%, MODA solution is marginally better than
MOALO solution but comprehensively better than NSGA-II solution. At W1 = 75%, all
three metaheuristics show similar performances.

Table 5. Deviation in solutions of different metaheuristics as compared to the best solution by
considering W1 = 0.25, 0.5 and 0.75 for COPRAS calculations.

W1
Metaheuristic

Method

COPRAS Solution % Deviation with
Respect to Best Solution Average

Deviation
MRR Ra MRR Ra

0.25
NSGA-II 0.00112 0.01456 31% 0% 16%

MOALO 0.00056 0.01453 65% 0% 33%

MODA 0.00162 0.01459 0% 0% 0%

0.5
NSGA-II 0.06910 0.05757 0% 287% 143%

MOALO 0.00569 0.01488 92% 0% 46%

MODA 0.00755 0.01504 89% 1% 45%

0.75
NSGA-II 0.06910 0.05757 1% 0% 0%

MOALO 0.06965 0.05799 0% 1% 0%

MODA 0.06970 0.05801 0% 1% 0%

4.2. Example 2: Optimization of Micro End Milling Parameters
4.2.1. Problem Description and Formulation

A micro end milling case study from the literature [43] is considered. With the micro
end milling operation, two different sizes of slots (700 µm and 800 µm) were produced
in [43]. Utilizing the experimental data, four different objective functions were developed
by using the same methodology adopted in example 1 above. Surface roughness (Ra) and
machining time (Mt) are considered as the responses to be optimized by tuning the cutting
speed (N) and feed rate ( f ). The developed mathematical relations for 700 µm size slot are,

Ra = 0.01977− 0.000013N + 0.00594 f − 0.000002N f + 0.000398 f 2 (30)
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Mt = 21.1363 + 0.000026N − 13.9241 f + 0.000013N f + 2.82084 f 2 (31)

Similarly, the original equations presented in [43] for 800 µm size slot are augmented as,

Ra = 0.0125− 0.000008N + 0.00678 f + 0.000000N2 + 0.00003 f 2 − 0.000002N f (32)

Mt = 20.9975 + 0.000133N − 13.8962 f + 2.8211 f 2 (33)

For Pareto optimization, the two objective functions can be stated as,

Objective 1 = Minimize Ra

Objective 2 = Minimize Mt

The optimization is performed subject to the boundary cutting conditions, which are
given as,

1500 ≤ N ≤ 2500 rev/min
1 ≤ f ≤ 2.5 µm/rev

(34)

4.2.2. Multi-Objective Optimization

The Pareto fronts obtained using the NSGA-II, MOALO and MODA for micro-end
milling of a 700 µm size slot is presented in Figure 3. It is seen that the NSGA-II is unable
to find a Pareto front for the problem. The Pareto fronts generated by MOALO and MODA
are highly discontinuous, indicating the absence of suitable non-dominated solutions.
MOALO and MODA Pareto fronts have 124 and 52 non-dominated solutions, respectively.
It is seen that low surface roughness is achieved by operations involving high machining
time, indicating a very low cutting speed and a low feed rate. The analysis of the spreads
of the Pareto fronts using box plots in Figure 3d show a better spread of MODA.

Figure 3. Pareto fronts for optimization of micro-milling process of 700 µm size slot using (a) NSGA-II
(b) MOALO (c) MODA. (d) Box plot showing the spread of the Pareto fronts.
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Based on the COPRAS method, the Pareto solutions of NSGA-II, MOALO and MODA
are analysed to select an optimal compromise solution. It is seen from Table 6 that all the
algorithms have solutions that are at par with each other. Moreover, no effect of W1 is
seen on the COPRAS selected optimal solutions, i.e., for W1 = 0.25, 0.5 and 0.75 the same
solution is predicted. This may be due to the small dimensionality of the test problem and
the very limited number of non-dominated solutions in the Pareto fronts.

Table 6. Deviation in solutions of different metaheuristics as compared to the COPRAS best solution
(Example 2, 700 µm slot).

Metaheuristic
Method COPRAS Solution % Deviation with Respect to

Best Solution Average
Deviation

Method MRR Ra MRR Ra

NSGA-II 0.00992 4.04054 0.00% 0.00% 0.00%

MOALO 0.00990 4.04063 0.21% 0.00% 0.11%

MODA 0.00989 4.04070 0.30% 0.00% 0.15%

For the mathematical models presented in Equations (32) and (33), the Pareto solutions
are shown in Figure 4. Here too, the NSGA-II is unable to find a Pareto front. The MOALO
and MODA, on the other hand, generate Pareto fronts with 404 and 120 numbers of non-
dominated solutions, respectively. The analysis of the solutions by COPRAS in Table 7
reveals the similar performance of NSGA-II, MOALO and MODA, as in Table 6. The least
amount of average deviation is observed in the case of MOALO followed by NSGA-II and
MODA. Despite the better performance of NSGA-II over MODA for this example, it should
be noted that NSGA-II failed to generate a Pareto optimal front for the problem, which
thereby limits options for the end user to decide from.

Figure 4. Pareto fronts for optimization of micro-milling process of 800 µm size slot using (a) NSGA-II
(b) MOALO (c) MODA. (d) Box plot showing the spread of the Pareto fronts.
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Table 7. Deviation in solutions of different metaheuristics as compared to the COPRAS best solution
(Example 2, 800 µm slot).

Metaheuristic
Method

COPRAS Solution % Deviation with Respect to
Best Solution Average

Deviation
MRR Ra MRR Ra

NSGA-II 0.00998 4.08457 0.62% 0.00% 0.31%

MOALO 0.01004 4.08499 0.00% 0.01% 0.01%

MODA 0.00991 4.08558 1.28% 0.02% 0.65%

5. Conclusions

In this work, the performance of MOALO and MODA are analysed and compared
with NSGA-II. NSGA-II is considered as the benchmark algorithm in this work due to its
immense popularity among machining and manufacturing engineers as a tool to achieve
optimal machining performance. Two micro-machining operations, namely micro-turning
and micro-milling, are considered for the case studies. These methods find widespread
application in modern industries for precision works. Polynomial regression is carried
out and the existing mathematical relations for the test problems are made more robust
by using ANOVA and a stepwise elimination method. A significant improvement in the
accuracy of the mathematical models is also observed, thereby highlighting the need for
ANOVA and elimination methods in such predictive modelling problems. The comparison
of the metaheuristics for multi-objective optimization shows that for these types of prob-
lems in terms of computation speed MOALO > MODA > NSGA-II. Further, the Pareto front
identification and generation capabilities of MOALO and MODA are found to be signifi-
cantly better than NSGA-II. The COPRAS solutions for MODA was seen to be marginally
better than MOALO, but both of them comprehensively outperformed NSGA-II. Thus, it
may be concluded that MOALO can lead to significant cost savings in such multi-objective
machining conditions by quickly and effectively identifying and generating Pareto optimal
solution sets. As a future scope of this paper, more recent algorithms such as the whale
optimization algorithm (WOA), multiverse optimization (MVO), spotted hyena optimizer
(SHO), etc. can be applied. Hybridization by coupling multiple metaheuristics to strike
a proper balance between the exploration and exploitation traits of algorithms will also
be beneficial. Since often each metaheuristic is re-run multiple times to account for its
inherent stochasticity, some mechanisms of leveraging the information from these multiple
independent runs will be a boon.
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Abbreviations

ANOVA analysis of variance
ALO ant lion optimization
CM convergence metric
COPRAS complex proportional assessment
DA dragonfly algorithm
EDM electro-discharge machining
GA-PSO genetic algorithm-particle swarm optimization
GD generational distance
IGD inverted generational distance
MCDM multi-criteria decision making
MOALO multi-objective ant lion optimization
MODA multi-objective dragonfly optimization
MOPSO multi-objective particle swarm optimization
MRR material removal rate
MVO multiverse optimization
NSGA-II non-dominated sorting genetic algorithm ii
RSM response surface methodology
SHO spotted hyena optimizer
SP spread
SR surface roughness
WOA whale optimization algorithm
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