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Abstract: This paper conducts a parameter interval uncertainty analysis of the internal resonance
of a rotating porous shaft–disk–blade assembly reinforced by graphene nanoplatelets (GPLs). The
nanocomposite rotating assembly is considered to be composed of a porous metal matrix and
graphene nanoplatelet (GPL) reinforcement material. Effective material properties are obtained by
using the rule of mixture and the Halpin–Tsai micromechanical model. The modeling and internal
resonance analysis of a rotating shaft–disk–blade assembly are carried out based on the finite element
method. Moreover, based on the Chebyshev polynomial approximation method, the parameter
interval uncertainty analysis of the rotating assembly is conducted. The effects of the uncertainties of
the GPL length-to-width ratio, porosity coefficient and GPL length-to-thickness ratio are investigated
in detail. The present analysis procedure can give an interval estimation of the vibration behavior of
porous shaft–disk–blade rotors reinforced with graphene nanoplatelets (GPLs).

Keywords: shaft–disk–blade assembly; Chebyshev polynomial approximation method; interval
uncertainty; graphene nanoplatelets; porosity

1. Introduction

Shaft–disk–blade assemblies are commonly applied in many rotor structures, such
as gas turbines, aero-engines, and so on. It is reported that more than 60% of faults of
shaft–disk–blade assemblies are due to vibration faults. Thus, many scholars have focused
on the vibration behaviors of shaft–disk–blade assemblies [1–3]. However, modern rotating
machinery is faced with high temperatures and high pressures under multiple physical
fields. Traditional materials cannot meet the requirements of high strength and light
weight at the same time. It is quite necessary to introduce an advanced composite to solve
this issue.

Graphene [4,5] is the most popular advanced material in the world because of its
outstanding mechanical performance since being discovered. In recent years, GPLs, which
have great reinforcing effect at low contents [6], have attracted a lot of attention [7–10]. Jie
Yang, Sritawat Kitipornchai and their partners have contributed many achievements about
the vibration characteristics of structures reinforced by GPLs [11–15]. Twinkle et al. [16]
studied the vibrations of porous cylindrical panels reinforced with GPLs. Considering the
effect of the elastic medium, Mohammad et al. [17] investigated the nonlinear performance
of a GPL-reinforced functionally graded (FG) conical panel. Within the frame of the shear
deformable theory, Salehi et al. [18] developed an analytical method to obtain the nonlinear
vibration behavior of an imperfect porous cylindrical shell reinforced by GPLs. Considering
conveying fluid flow, dynamic behaviors of porous sandwich pipes reinforced by GPLs
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are presented by Nejadi et al. [19]. The analysis of the vibrations of an FG spherical shell
reinforced by GPLs was carried out by Liu et al. [20]. Zhao et al. [21–25] conducted a
dynamic analysis of FG-GPL-reinforced nanocomposite disk–shaft, blade–disk and blade–
shaft rotor systems. By adopting the spectral Chebyshev approach, Mirmeysam et al. [26]
studied the inherent characteristics of an FG plate reinforced by GPLs. To the best of
the authors’ knowledge, few studies have focused on GPL-reinforced shaft–disk–blade
assemblies. Thus, it is important to study the vibration behavior of GPL-reinforced shaft–
disk–blade assemblies. In addition, the matrix should be porous metal [27–32] to achieve a
light weight.

As GPLs are nanofillers, the dimensions of a single GPL are difficult to obtain. Thus,
statistical values for the dimensions are adopted. Moreover, the porosity is an approximate
measurement for the dimension and density of the pores. The uncertain issue has to
exist in the vibration analysis of the porous shaft–disk–blade reinforced by GPLs. If those
uncertainties are ignored, the mechanical performance of the porous shaft–disk–blade rotor
is partial and cannot be used in practical engineering.

However, the uncertainty analysis of porous structures reinforced with GPLs is ex-
tremely limited. Only Baghlani et al. [33] examined the influences of property uncertainties
on the free vibration behavior of an FG-GPL-reinforced porous shell. This paper aims
to conduct an uncertainty analysis of the internal resonance of porous shaft–disk–blade
assemblies reinforced by GPLs. The modeling and internal resonance analysis of the shaft–
disk–blade assembly are presented based on the finite element method. In addition, on the
basis of the Chebyshev polynomial approximation method, the parameter interval uncer-
tainty analysis of the assembly is conducted. A parametric study is given to investigate
the impact of the uncertain porosity coefficient, uncertain GPL length-to-width ratio and
uncertain GPL length-to-thickness ratio.

2. Physical Model

A spinning shaft–disk–blade model is given in Figure 1. The connections between
the shaft, disk and blades are taken to be ideal, where the supports are considered simply
supported. The shaft–disk–blade structure is composed of graphene nanoplatelets and
porous copper metal foam.
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Based on the open-cell scheme [34], the Poisson’s ratio, mass density and Young’s
modulus are: 

υ(z) = υ∗(z)
ρ(z) = ρ∗(z)en
E(z) = E∗(z)e1

(1)
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in which en and e1 are the mass density coefficients and porosity coefficients, respectively;
and υ*(z), ρ*(z) and E*(z) are the Poisson’s ratio, mass density and Young’s modulus in the
case of no pores, respectively.

According to the mechanical properties of porous metal foam [35], one can obtain:

E(z)
E∗(z)

=

[
ρ(z)
ρ∗(z)

]2
(2)

Thus, one can obtain:
en =

√
e1 (3)

On the basis of the Halpin–Tsai theory [36], Young’s modulus in the case of no pores is:

E∗(z) =
5
8

(
1 + ξwηwVGPL

1− ηwVGPL

)
EM +

3
8

(
1 + ξlηlVGPL

1− ηlVGPL

)
EM (4)

where ξl and ξw are the dimension factors of GPLs, and ξl and ξw are:{
ηw = 1−EM/EGPL

1+EMξw/EGPL

ηl =
1−EM/EGPL

1+EMξl /EGPL

(5)

in which EM and EGPL are the Young’s modulus of the matrix and GPLs, respectively.
Herein, ξw and ξl are given by:{

ξw = 2wGPL/hGPL
ξl = 2lGPL/hGPL

(6)

where hGPL, wGPL and lGPL are the GPL thickness, GPL width and GPL length, respectively.
According to the rule of mixture, υ*(z) and ρ*(z) are given by:{

υ∗(z) = (υGPL − υM)VGPL + υM
ρ∗(z) = (ρGPL − ρM)VGPL + ρM

(7)

in which υM and ρM are the Poisson’s ratio and mass density of the matrix, respectively;
υGPL and ρGPL are the Poisson’s ratio and mass density of GPLs, respectively; and the GPL
volume fraction is:

VGPL(z) =
WGPL(z)ρM

WGPL(z)ρM + [1−WGPL(z)]ρGPL
(8)

The GPL weight fraction (WGPL) is expressed as:

WGPL(z) = λW0 (9)

where W0 and λ are the characteristic value and weight fraction index of GPLs, respectively.

3. Finite Element Implementation

Solid elements with eight nodes are adopted in this paper and their displacements are
given by: {

u v w
}T

=
8

∑
j=1

Nj
{

uj vj wj
}T (10)

in which (ui, vi, wi) and Ni are the node displacements and shape functions, respectively.
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The expressions of shape functions are:

N1 = 0.125(1− z∗)(1− y∗)(1− x∗)
N2 = 0.125(1− z∗)(1 + y∗)(1− x∗)
N3 = 0.125(1 + z∗)(1 + y∗)(1− x∗)
N4 = 0.125(1 + z∗)(1− y∗)(1− x∗)
N5 = 0.125(1− z∗)(1− y∗)(1 + x∗)
N6 = 0.125(1− z∗)(1 + y∗)(1 + x∗)
N7 = 0.125(1 + z∗)(1 + y∗)(1 + x∗)
N8 = 0.125(1 + z∗)(1− y∗)(1 + x∗)

(11)

where z*, y* and x* are the element coordinates.
The physical equation is:

δ =
{

δx δy δz τxy τyz τzx
}T

= D
{

εx εy εz γxy γyz γzx
}T

= Dε
(12)

where (γxy, γyz, γzx) are the shear strains; (εx, εy, εz) are the normal strains; (τxy, τyz, τzx)
are the shear stresses; (δx, δy, δz) are the normal stresses; and the elastic material matrix
D is:

D =
E

1 + υ



1−υ
1−2υ

υ
1−2υ

υ
1−2υ 0 0 0

υ
1−2υ

1−υ
1−2υ

υ
1−2υ 0 0 0

υ
1−2υ

υ
1−2υ

1−υ
1−2υ 0 0 0

0 0 0 1
2 0 0

0 0 0 0 1
2 0

0 0 0 0 0 1
2


(13)

Then, one can obtain that:

ε =
{

∂u
∂x

∂u
∂y

∂w
∂z

∂u
∂y + ∂v

∂x
∂v
∂z +

∂u
∂y

∂u
∂z + ∂w

∂x

}
=


∂

∂x 0 0 ∂
∂y 0 ∂

∂z
0 ∂

∂y 0 ∂
∂x

∂
∂z 0

0 0 ∂
∂z 0 ∂

∂y
∂

∂x


T{

u v w
} (14)

Setting
φ = {u v w }T = {ϕu ϕv ϕw }T (15)

and supplying Equation (15) into Equation (14) gives:

ε = Bφ (16)

where B is the geometric matrix; and ϕw, ϕv and ϕu are the node displacement vectors
along the z-axis, y-axis and x-axis, respectively.

B can be written as:

B =


∂

∂x 0 0 ∂
∂y 0 ∂

∂z
0 ∂

∂y 0 ∂
∂x

∂
∂z 0

0 0 ∂
∂z 0 ∂

∂y
∂

∂x


T N

N
N

 (17)

in which N = {N1, N2, . . . , N8}.
The deformation energy and kinetic energy are:{

U =
∫

V
1
2δ

TεdV =
∫

V
1
2φ

TBTDBφdV
T = ρ

∫
V

1
2δ

TNTNδdV
(18)
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Considering the expressions: {
∂U
∂φ = Kφ
∂T
∂φ = Mφ

(19)

give the stiffness matrix K and mass matrix M, indicated as:{
K =

∫
V BTDBdV

M = ρ
∫

V NTNdV
(20)

The equations of motion are:

Mü + Ku = F (21)

where F is the harmonic exciting force vector; and u is the harmonic response vector. Their
expressions are: {

F = Fmaxeiωt

u = umaxeiωt (22)

Substituting Equation (22) into Equation (21) gives:(
−ω2M + K

)
umax = Fmax (23)

Thus, the relation between the response and frequency can be obtained from Equation (23).

4. Interval Uncertainty Analysis

The first kind of Chebyshev orthogonal polynomial is:

Tn(x) = cos[narccos(x)], x ∈ [−1, 1] (24)

As the first kind of Chebyshev orthogonal polynomial is orthogonal to:

ρ(x) =
√

1− x2 (25)

Equation (24) can be obtained as:
T0(x) = 1
T1(x) = x
Tn+1(x) = 2xTn(x)− Tn−1(x)

, n = 1, 2, . . . (26)

Based on the Weierstrass theorem, we can always find a polynomial function g(x)
that satisfies:

‖g(x)− f (x)‖ ≤ ε (27)

where ε is a small positive real number; and f (x) is a real function, which is defined in the
real interval [−1, 1].

In the subspace Tn = span {T0, T1, . . . , Tn}, f (x) is established as:

f (x) ≈ gn(x) =
A0

2
+

n

∑
i=0

AiTi(x), x ∈ [−1, 1] (28)

in which Ai are undetermined coefficients in the form of:

A0 = 2
π

∫ 1
−1

f (x)√
1−x2 dx ≈

q
∑

k=1
A′k f (xk)

Ai =
2
π

∫ 1
−1

f (x)Ti(x)√
1−x2 dx ≈

q
∑

k=1
A′k f (xk)Ti(xk)

(29)
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where k = 1, 2, . . . , q; q is the number of interpolation points; and A′k is the Gaussian
integral coefficient. It is worth noting that the number of interpolation points must be
greater than the order of the approximation equation.

For Chebyshev Gaussian integrals, the interpolation points can be given by:

xk = cos
(

2k− 1
2q

π

)
, k = 1, 2, . . . , q (30)

The Gaussian integral coefficients can be calculated by:

Ak =
∫ 1

−1

Tq(x)√
1− x2(x− xk)T′q(xk)

dx =
π

q
(31)

Substituting Equations (29)–(31) into Equation (28) gives:

gn(x) =
1
q

q

∑
k=1

f (xk) +
2
q

n

∑
i=1

q

∑
k=1

f (xk)Ti(xk)Ti(x) (32)

Thus, the orthogonal approximation is obtained as Equation (32).
In this paper, interval uncertainty analysis is conducted for the porous shaft–disk–

blade assembly reinforced by GPLs. The uncertainty parameters are taken into account as
the porosity coefficient, GPL length-to-thickness ratio and GPL length-to-width ratio. For
convenience, the considered uncertainty parameters are defined as aI. Its expression is:

aI = [a, a] = {a ∈ R|a ≤ a ≤ a} (33)

where a and a are lower boundaries and upper boundaries of the uncertainty parameter
and R is the real number collection.

Setting

ac =
a + a

2
, β =

a− a
2

(34)

and supplying Equation (34) into Equation (33) give:

aI = [a, a] = [ac − βac, ac + βac] (35)

in which β is the fluctuation coefficient and ac is the median value of the uncertainty parameter.
If the number of uncertainty parameters of the shaft–disk–blade assembly is m, it can

be expressed as:
aI =

[
aI

1, aI
2, . . . , aI

m
]

aI
i =

[
aI

i , aI
i

] , i = 1, 2, . . . m (36)

As the Chebyshev orthogonal approximation is defined in the standard interval
[−1, 1], the linear transformation is needed as:

xi =
2ai − (ai + ai)

ai − ai
, xi ∈ [−1, 1], ai ∈ [ai, ai] (37)

For each single uncertainty parameter, the interval steady-state response of the assem-
bly can be expressed as:

gn(x) =
1
q

q

∑
k=1

U(xk) +
2
q

n

∑
i=1

q

∑
k=1

U(xk)Ti(xk)Ti(x) (38)

where U(xk) is the deterministic response at point xk.
The extremum point is: {

xroots
∣∣g′n(xroots) = 0

}
(39)
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Thus, the steady-state response boundary of the assembly in the presence of the
uncertain parameter can be obtained by comparing among gn(−1), gn(xroots) and gn(1).

Xmin and Xmax are written as the values of independent variables when gn(x) obtains
the smallest and largest values, respectively. In the case of r interval variables, uncertainty
analysis should be conducted for each one. The two marked corresponding independent
variables are:

xmin =
[
x1

min, x2
min, . . . , xr

min
]

xmax =
[
x1

max, x2
max, . . . , xr

max
] (40)

Therefore, the actual parameter vectors of the steady-state response boundaries are:

amin = ac + (a− a)× xmin
amax = ac + (a− a)× xmax

(41)

The detailed flow is shown in Figure 2.

Figure 2. Flow of uncertainty analysis for the porous shaft–disk–blade assembly reinforced by GPLs.
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5. Results and Discussions

Before uncertainty analysis with different parameters is conducted, the experimental
validation part is presented first. Due to the manufacturing difficulties of a GPL-reinforced
porous structure, a metal alloy shaft–disk–blade assembly is proposed for the valida-
tion experiment. From reference [37], it can be noted that the model in this paper has
sufficient accuracy.

The uncertainty analysis of the porous shaft–disk–blade assembly reinforced by GPLs
is conducted in this part. The blade setting angle, blade thickness, blade width and blade
length are 15◦, 1.5 mm, 18 mm and 20 mm, respectively; the disk thickness and disk
diameter are 20 mm and 78 mm, respectively; the shaft diameter and shaft length are
10 mm and 500 mm, respectively; and the material parameters are ρM = 8960 kg/m3,
υM = 0.34, EM = 130 Gpa, ρGPL = 1062.5 kg/m3, υGPL = 0.186, EGPL = 1050 Gpa, e1 = 0.1,
lGPL/wGPL = 2, lGPL/hGPL = 10 and gGPL= 1%.

Figures 3–5 plot the amplitude–frequency response (AFR) of the shaft–disk–blade
assembly with a single uncertain porosity coefficient, uncertain GPL length-to-width
ratio and uncertain GPL length-to-thickness ratio, respectively. It can be found that the
upper boundary of vibration amplitude goes up and the lower boundary of vibration
amplitude moves down with the increase in the fluctuation coefficient of the uncertain
parameters, which tells us that a larger fluctuation coefficient leads to more uncertain results.
Meanwhile, the upper boundary and lower boundary are symmetric about the deterministic
response. The formants with different fluctuation coefficients do not shift because the
structural damping and external excitation have little effect on the natural frequency of the
assembly. Moreover, the uncertain parameters (porosity coefficient, GPL length-to-width
ratio and GPL length-to-thickness ratio) make the fluctuation of the resonance peak (around
428 Hz) larger and the fluctuation of the non-resonance peak (away from 428 Hz) smaller.
This tells us that structural damping has a great effect on the resonance peak, but little
effect on the non-resonance peak.
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Figure 5. AFR of the shaft–disk–blade assembly with uncertain porosity.

By comparison with Figures 4–6, one can see that the fluctuation coefficient of the GPL
length-to-thickness ratio has the greatest influence on the amplitude–frequency response,
while that of porosity has the lowest impact. This implies that the thickness and surface
area of GPLs are important indexes in the manufacturing of shaft–disk–blade assemblies.



Materials 2021, 14, 5033 10 of 13

Materials 2021, 14, x FOR PEER REVIEW 11 of 14 
 

 

compared to the other two cases. This implies that the dimensions of GPLs have greater 
effects on the mechanical performance of the rotor system as thinner GPLs with larger 
surface areas provide better load transfer capability. 

. 

Figure 6. AFR of the shaft–disk–blade assembly with uncertain GPL length-to-width ratio and 
GPL length-to-thickness ratio. 

 

Figure 7. AFR of the shaft–disk–blade assembly with uncertain GPL length-to-thickness ratio and 
porosity coefficient. 

400 410 420 430 440 450 460
0

2

4

6

8

10

D
isp

la
ce

m
en

t (
m

)

Frequency (Hz)

 Deterministic response
 Deviation coefficient 1%
 Deviation coefficient 5%

×10-4

400 410 420 430 440 450 460
0

2

4

6

8

10

D
isp

la
ce

m
en

t (
m

)

Frequency (Hz)

 Deterministic response
 Deviation coefficient 1%
 Deviation coefficient 5%

×10-4

Figure 6. AFR of the shaft–disk–blade assembly with uncertain GPL length-to-width ratio and GPL
length-to-thickness ratio.

Figures 6–8 display the AFR of the shaft–disk–blade assembly with double uncertain
parameters (porosity coefficient, GPL length-to-thickness ratio and GPL length-to-width
ratio). One can see that the fluctuation of the amplitude–frequency response with double
uncertain parameters is much stronger than that with a single uncertain parameter. In the
case of double uncertain parameters, the width of the resonance peak region is increased
significantly. However, the non-resonance peak region is affected very little by the double
uncertain parameters. In addition, it is found that the AFR with an uncertain GPL length-
to-thickness ratio and GPL length-to-width ratio has the largest fluctuation effect compared
to the other two cases. This implies that the dimensions of GPLs have greater effects on
the mechanical performance of the rotor system as thinner GPLs with larger surface areas
provide better load transfer capability.
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Figure 7. AFR of the shaft–disk–blade assembly with uncertain GPL length-to-thickness ratio and
porosity coefficient.
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6. Conclusions

In this paper, a GPL-reinforced porous shaft–disk–blade assembly is established by
employing the finite element method. According to the Chebyshev polynomial approxima-
tion method, the parameter interval uncertainty analysis of the internal resonance of the
shaft–disk–blade assembly is carried out. Some conclusions are drawn as follows:

1. The uncertain parameters make the fluctuation of the resonance peak larger and the
fluctuation of the non-resonance peak smaller.

2. The fluctuation coefficient of the GPL length-to-thickness ratio has the greatest influence
on the amplitude–frequency response, while that of porosity has the lowest impact.

3. The fluctuation of the amplitude–frequency response with double uncertain parame-
ters is much stronger than that with a single uncertain parameter.

4. The dimensions of GPLs have greater effects on the vibration behavior of the shaft–
disk–blade assembly as thinner GPLs with larger surface areas provide better load
transfer capability.
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