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Abstract: The crystal stacking order plays a crucial role in determining the structure and physical
properties of 2D layered materials. A variation in the stacking sequence of adjacent 2D building
blocks causes drastic changes in their functionalities. In this work, the structural variation of belloite
(Cu(OH)Cl), as a function of pressure, is presented. Through in situ synchrotron X-ray diffraction and
Raman scattering studies, in combination with first-principles theoretical simulations, a structural
transformation from the initial monoclinic phase into an orthorhombic one has been established at
18.7 GPa, featuring variations in the stacking sequence of the tectonic monolayers. In the monoclinic
phase, they are arranged in an AAAA sequence. While in the orthorhombic phase, the monolayers
are stacked in an ABAB sequence. Such phenomena are similar to those observed in van der Waals
2D materials, with pressure-induced changes in the stacking order between layers. In addition,
an isostructural phase transition within the initial monoclinic phase is also observed to occur at
12.9–16 GPa, which is associated with layer-sliding and a change in hydrogen bond configuration.
These results show that Cu(OH)Cl, as well as other hydrogen-bonded 2D layered materials, can
provide a convenient platform for studying the effects of the crystal stacking order.

Keywords: high pressure; Cu(OH)Cl; 2D layered materials; crystal stacking order

1. Introduction

The effects of crystal stacking order on the physics of low-dimensional van der Waals
(vdW) materials have attracted considerable current research enthusiasm [1,2]. Drastic
changes in certain physical properties may be induced by even a slight variation in the
relative position between adjacent one-dimensional or two-dimensional building blocks.
For example, in two-dimensional van der Waals magnets of atomically thin CrI3 sheets,
experiments and theoretical calculations show that interlayer exchange coupling is strongly
dependent on layer separation, while the stacking arrangement can even change the sign
of the interlayer magnetic exchange, thus drastically modifying the ground state [3–9].
Rhombohedral graphite (RG), a metastable polymorph of carbon, possesses a peculiar
ABCABC stacking sequence of the graphene layers, in contrast to the ABAB stacking se-
quence in ordinary hexagonal graphite. Such a variation in the stacking sequence endows
multi-layered rhombohedral graphite with gapped bulk electron states and electron trans-
port properties that are dominated by topological surface states, which are distinct from
those of its hexagonal counterpart [10]. In addition, in the quasi-one-dimensional van der
Waals material of Bi4Br4, a slight modification of the stacking structure of the Bi4Br4 chains
induces a transition from a trivial insulator to a higher-order topological insulator [11]. An-
other current focus of intense research activity concerns stacked two-dimensional crystals,
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correlated with symmetry [12]. The engineering of symmetry breaking can be effectively
achieved by controlling the stacking order as well as the crystal phase. For example, for
bilayer transition metal dichalcogenides, 3R stacking lacks inversion symmetry, while 2H
stacking does have inversion symmetry. Because of the broken inversion symmetry, bilayer
transition metal dichalcogenides with 3R stacking can show exotic valley physics and
nonlinear optical responses [13–17]. These scientific findings suggest that the crystal stack-
ing order has profound effects on the intrinsic nature of low-dimensional van der Waals
materials. Control and regulation of the crystal stacking structures offer the opportunity to
pave the path for progress in the science and technology of low-dimensional materials.

The modern high-pressure technique has been proven to be a clean, reversible, and
versatile tool for the continuous control of interlayer coupling via interlayer spacing in
vdW low-dimensional materials and bulk crystals. Hydrostatic pressure has recently been
employed to modify the bands in graphene/hexagonal boron nitride (hBN) moiré superlat-
tices [18] and transition metal dichalcogenides [19,20], as well as the correlated electronic
phases in twisted bilayer graphene [21]. In particular, it was reported in a previous study
that the irreversible antiferromagnetic-ferromagnetic transition between layers in atom-
ically thin CrI3 is observed when hydrostatic pressure is applied to change the stacking
order in the van der Waals magnetic insulator CrI3 [22,23].

As a necessary complement to vdW low-dimensional materials and bulk crystals
when approaching the physical nature of the effects of crystal stacking structures, quasi-
two-dimensional layered materials with interlayer bonding other than van der Waals
interactions are a matter of interest. Layered metal hydroxyhalide/oxide, such as Cu(OH)F
and γ-AlOOH [24,25], features a quasi-two-dimensional structure consisting of thin atomic
sheets held together with weak-interlayer hydrogen bonding. The complicated compres-
sion behaviors of these MOHX (M is a metal, such as Cu, Zn, and Al, and X is for halogen
or oxygen) materials, endowed by the collaboration and competition between the strong
intralayer chemical bonds and weak interlayer hydrogen bond, have been revealed recently.
MOHX materials comprise a large family of layered metal hydroxyhalide/oxide with
diverse intralayer elemental compositions and interlayer hydrogen-bonding geometry.
From this viewpoint, they provide a convenient platform for studying the effects of crys-
tal stacking structures, as well as the coupling between interlayer hydrogen bonds and
intralayer strong chemical bonds.

In this study, the pressure-induced variation of the crystal stacking order in the
hydrogen-bonded quasi-two-dimensional layered metal hydroxychloride, Cu(OH)Cl, has
been investigated systematically through experimental observations and theoretical simu-
lations in parallel. The results herein are expected to contribute to a deeper insight into
the physics related to the crystal stacking structure in quasi-two-dimensional materials
in general.

2. Materials and Methods
2.1. Sample Preparation

All the chemicals involved are reagents of analytical grade and are used without
further purification. In a typical synthetic process, powders of 5.68 g copper chloride
dihydrate (CuCl2·2H2O) (Alfa Aesar, Shanghai, China) and 4.26 g copper oxide (CuO)
(Alfa Aesar, Shanghai, China) were weighed proportionally. The raw materials were mixed
and ground in an agate mortar for 2 h until a homogeneous mixture was obtained. The
mixture was transferred into a 30 mL Teflon-lined autoclave. After being sealed and heated
at 180 ◦C for 12 h, the autoclave was gradually cooled to room temperature. The mixtures
in the autoclave were collected into an agate mortar and ground for an additional 30 min
to make them homogeneous. They were then heat-treated again in the autoclave at the
same temperature for the same time period. These processes were repeated several times,
with a total grinding time of 5 h and a total reaction time of 60 h. Subsequently, the dark
green powders of copper hydroxychloride, Cu(OH)Cl, were obtained.
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2.2. In Situ High-Pressure XRD, Absorption and Raman Measurements

High-pressure experiments were carried out with a symmetric diamond anvil cell
(DAC). Diamond anvils with culets of 300 µm diameter were used for this study. The
sample and a small ruby ball were loaded into the 80 µm diameter chamber of a DAC,
constructed from a T301 steel gasket pre-indented to a thickness of 45 µm. The pressure
calibration was determined by utilizing the standard ruby fluorescent technique [26]. We
performed in situ high-pressure angle-dispersive X-ray diffraction (ADXRD) measurements,
with wavelengths of 0.6199 Å at 4W2 beamline, at the High-Pressure Station of the Beijing
Synchrotron Radiation Facility (Beijing, China). The two-dimensional Debye–Scherrer
diffraction rings were recorded using an imaging plate detector and were integrated
into the one-dimensional profile using the Fit2D program [27]. Absorption spectra were
measured by using a deuterium-halogen light source, and the measurements were between
250 nm and 1000 nm. The intercept of the absorption edge onto the energy axis from
a plot of (αhν)1/2 versus photon energy (hν) gives a good approximation of the Cu(OH)Cl
bandgap energy. High-pressure Raman measurements were performed using a LabRam
HR Evolution spectrometer (Horiba, France) equipped with a 473 nm laser. In order to
avoid the probable damage from heating or oxidizing under laser exposure, the laser
power at the surface of the sample was attenuated to be less than 0.5 mW. The signals
were dispersed by an 1800 g mm−1 (Raman) grating and were collected via a 20× objective
lens under atmospheric conditions and high pressures. In the high-pressure experiments,
silicon oil was utilized as the pressure-transmitting medium (PTM) for optical absorption
and ADXRD experiments. For the Raman experiments, nitrogen served as the pressure
transmitting medium.

2.3. Theoretical Simulations

All calculations were performed by using the first-principles method within the den-
sity functional theory (DFT) framework, as implemented in the Vienna ab initio simulation
package (VASP) [28]. The projector augmented-wave (PAW) method employed with
Perdew–Burke–Ernzerhof (PBE) [29] exchange-correlation functions are used to describe
the interaction between valence electrons and ions. The plane wave energy cutoff and
k-point sampling are set to be 550 eV and a 5 × 4 × 4 grid within the Monkhorst–Pack
scheme [30], respectively, and the convergence threshold is set to be 1 × 10−6 eV/atom in
energy and 1 × 10−3 eV Å−1 in force. The generalized gradient approximation (GGA) and
the Hubbard correction U = 8 eV within the GGA+U scheme [31] was used to correct the
electron delocalization that occurs in strongly correlated systems. The optimized lattice
parameters for Cu(OH)Cl within GGA + U are a = 5.62 Å; b = 6.67 Å; c = 6.13 Å; β = 113.53◦,
which also matches well with reported experimental data [32]. The phonon spectrums are
calculated via a combination of VASP (Version 5.4.4., Wien, Austria) and Phonopy (2009,
Atsushi Togo) software [33].

3. Results

The XRD analysis was performed using an X-ray source of Cu Kα radiation (λ = 1.5406 Å).
The typical XRD patterns of the prepared samples are shown in Figure 1a. All the detected
peaks can be indexed to the monoclinic crystal structure (PDF no. 77-0324 P21/a). No
additional crystalline impurity phases can be observed, indicating the high purity of the
obtained samples. The sharp peaks also indicate that the prepared samples have perfect
crystallinity. In addition to XRD results, the chemical composition of the prepared samples
was further checked by energy dispersive X-ray analysis (EDS). A typical EDS spectrum
is shown in Figure 1b. It can be seen that the prepared sample contained mainly Cu, O
and Cl elements. The Si element coming from the supporting substrate was also detected.
According to the quantitative analysis, based on EDS, the Cu:O:Cl ratio was determined to
be 0.95:0.98:1, indicating the nearly perfect stoichiometry of Cu(OH)Cl. Therefore, both
XRD and EDS analyses show that pure monoclinic phase Cu(OH)Cl with high crystallinity
was successfully synthesized by the present synthetic strategy. The morphological features
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of the prepared Cu(OH)Cl samples were observed via SEM (FEI Magellan 400L XHR,
Tokyo, Japan) and TEM (JEOL, JEM-2200FS, Tokyo, Japan) techniques. The scanning
electron microscope (SEM) image of the prepared sample, as shown in Figure 1c, reveals
that the product is composed mostly of particles with diameters of 1–2 µm. Figure 1d
shows a typical TEM micrograph of the prepared Cu(OH)Cl nanoparticles. It indicates
that the particles have a thin lamella morphology, as observed at the overlapping region of
two particles.
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Figure 1. The typical XRD pattern (a), the EDX spectra (b), the SEM image (c), and the TEM image
(d) of the prepared Cu(OH)Cl sample.

High-pressure powder X-ray diffraction (XRD) measurements of Cu(OH)Cl were
performed under pressures of up to 28.4 GPa. As shown in Figure 2a, the XRD patterns at
low pressures (e.g., 1.5 GPa) can be closely indexed to the monoclinic phase in space group
P21/a. All the diffraction peaks shift slightly to higher angles with increasing pressure, due
to the shrinkage of the lattice. With the increase in pressure, the intensities of the diffraction
peaks gradually weaken, and some weak peaks eventually disappear. As the pressure
increased from 14.2 to 17 GPa, the Bragg peaks of (1 1 2) (see Figure 2b) and (1 2 −2) shifted
notably to lower angles, implying that the d-spacings of (1 1 2) and (1 2 −2) abnormally
increased upon compression. When the pressure reaches about 18.7 GPa, the characteristics
of the diffraction pattern change significantly.

Two new diffraction peaks appeared at 7.1◦ and 12.7◦ (marked with arrows in Figure 2a),
respectively. Figure 2c shows the two-dimensional XRD image of Cu(OH)Cl at 18.7 GPa.
Two new diffraction rings can be observed, which further confirm that the appearance
of the new peaks is indeed caused by structural changes. As the pressure increased, the
intensities of the new peaks gradually increased, and they were maintained up to the
highest pressure achieved in this study.

The pressure dependencies of the interplanar d-spacings and the lattice parameters
of Cu(OH)Cl are demonstrated in Figure 3. It can be seen from Figure 3a that several
d-spacings exhibit noteworthy anomalies in the variations of pressure at the critical points.
The d-spacing of (1 1 −2) decreases monotonously below 14.2 GPa but remains nearly
pressure-independent in the range of 14.2–17.5 GPa. The d-spacings of (1 1 2) and (1 2 −2)
exhibited more exotic behavior. They decreased at low pressures; however, a peculiar
increase occurred in their variation with increasing pressure. Considering the above
results in combination, it can be determined that the structure of the initial phase (Phase-I)
starts to transform above 14.2 GPa, and a new phase (Phase-II) is established at 18.7 GPa.
After the phase transformation occurred, it was also observed that the (0 0 1), (1 1 −2)
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and (2 0 0) diffraction peaks, which are characteristic of phase-I, retain up to the highest
pressure achieved in this study, with a continuous decrease in the values of their d-spacings
with increased pressure. This means that the initial phase (Phase-I) may be preserved at
high pressures, though it loses stability from a thermodynamic viewpoint. The pressure-
dependency of the lattice parameters of Phase-I was ascertained from the XRD patterns and
is shown in Figure 3b,f. The lattice parameter b decreased monotonously with increasing
pressure. However, inflection points may be observed at 14.2 GPa in the plots of the lattice
parameters a and c with pressure. The variation of the beta angle with pressure showed
a discontinuity near 12.9 GPa. In order to show explicitly the subtle changes in compression
behavior, the variations in the axial ratios of b/a and c/a with pressure were carefully
checked and are plotted in Figure 3d,e, respectively. The ratio of b/a remained nearly
constant at the first few gigapascals, and then increased rapidly to a maximum of 1.202 at
12.9 GPa, after which it decreased with the further increase in pressure. The ratio of c/a
increased rapidly to a maximum at 14.2 GPa, and then remained almost constant with the
further increase in pressure. These subtle changes in the lattice parameters were related
to the changes in the hydrogen bonding configuration, as discussed below. The above
results indicate that the initial structure of Cu(OH)Cl undergoes isostructural changes in
the pressure range of 12.9–14.2 GPa.
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Figure 2. (a) The representative ADXRD patterns of Cu(OH)Cl measured at pressures up to 28.4 GPa
at room temperature and released to ambient pressure (top pattern). The down arrows are used
to mark the emergence of new peaks. (b) An enlarged view of the Bragg peak (1 1 2). (c) The
two-dimensional ADXRD pattern of Cu(OH)Cl at 18.7 GPa. (d) The enlarged view of the split-peak
fit near 6.2 Å after decompression.
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In addition, the pressure dependency of the cell volume of Phase-I was fitted to the
third-order Birch−Murnaghan (BM) equation of state (EOS). The fitting yielded the bulk
modulus B0 = 49.2 GPa and its derivative B’0 = 10.2, as shown in Figure 3c. The relatively
large value of B’ suggests a strong change of volume compressibility under pressure. The
relatively lower bulk modulus of Cu(OH)Cl compared to Cu(OH)F (B0 = 61.1 GPa) suggests
that Cu(OH)Cl is relatively easier to compress [24]. The reason lies in the fact that the
interlayer hydrogen bonds in Cu(OH)Cl are weaker than those in Cu(OH)F.

In order to determine the structure of the new high-pressure phase (Phase-II), the XRD
pattern of Cu(OH)Cl at 20 GPa was theoretically simulated (Figure 4a). An orthorhombic
lattice structure with the space group Pbn21 was considered as a proper candidate for Phase-
II. It has been postulated previously by Voronova et al. [34] that such an orthorhombic
(Pbn21) structure of Cu(OH)Cl may exist, at least metastably. The two simulated patterns,
according to the space groups P21/a and Pbn21, respectively, resembled each other to
a large extent. They reflected similar configurations of atoms in the two phases under
consideration. Notably, a plain superposition of the simulated XRD patterns of the two
phases showed that the main features are in good agreement with the experimental XRD
patterns at pressures above 18.7 GPa. To check the dynamical stability of the orthorhombic
phase at high pressure, we calculated the phonon spectrum of Pbn21 at 20 GPa. There
were no imaginary frequencies appearing in the phonon dispersion curves (Figure 4b),
confirming that the orthorhombic phase is dynamically stable at high pressures. To further
test the validity of the postulated orthorhombic phase and to determine the transition
pressure at T = 0 K, the enthalpies of the two phases were considered theoretically. For
a given pressure, a stable structure is one with a lower value of enthalpy. Figure 4c shows
the plots of our calculated enthalpies as a function of pressure for both monoclinic (P21/a)
and orthorhombic (Pbn21) structures. It indicates that the energies of the two structures
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are very close to each other. The coexistence of the two phases may also be implied by
their similarity in energy. The calculated relative enthalpy ∆H indicates that Cu(OH)Cl
transforms into the orthorhombic structure at around 18 GPa (Figure 4d). These results
further confirm that Cu(OH)Cl undergoes a phase transition from the monoclinic to the
orthorhombic structure at 18.7 GPa. As pressure is further increased, the monoclinic and
the orthorhombic phases coexist over a wide pressure range from 18.7 to at least 28.4 GPa.
When the pressure is fully released, an obvious shoulder peak at about 6.6◦ is observed,
accompanying the (0 0 1) diffraction peak of the initial Phase-I at 6.4◦, which can be indexed
to the (0 0 2) diffraction of phase-II (see Figure 2d). The diffraction peaks of phase-I show
significant broadening and partial disappearance. Therefore, it is indicated that the novel
high-pressure phase (Phase-II) may be recovered on returning to the ambient conditions.
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Figure 4. (a) The experimental and simulated XRD patterns of Cu(OH)Cl at 20 GPa with the two space
groups, Pbn21 and P21/a. (b) Phonon dispersions of the Pbn21 phase of Cu(OH)Cl at 20 GPa. (c) The
calculated enthalpies of the initial monoclinic phase and the postulated high-pressure orthorhombic
phase of Cu(OH)Cl. (d) The calculated relative enthalpies ∆H of the orthorhombic phase with respect
to the monoclinic phase of Cu(OH)Cl under various pressures.

In addition to the in situ high-pressure XRD studies, systematic in situ high-pressure
Raman scattering measurements were conducted. Cu(OH)Cl samples were pressurized
to a maximum of 34.1 GPa and the spectra were recorded upon both compression and
decompression (Figure 5). According to symmetry analysis, the initial Cu(OH)Cl crystal
belonged to the space group P21/a (No. 14) and point group C5

2h. The unit cell contains
16 atoms, hence there are 48 normal phonon modes at the Γ point:

Γ = 12Ag (R) + 11Au (IR) + 12Bg (R) + 10Bu (IR) + Au + 2Bu (1)

where Ag and Bg modes are Raman-active, and Au and Bu modes are infrared-active (IR).
Therefore, there are 24 Raman-active (R) modes (ΓRaman = 12Ag + 12Bg), 21 infrared-active
(IR) modes (ΓIR = 11Au + 10Bu), and 3 acoustic modes (ΓAcoustic = Au + 2Bu).
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The Raman spectrum that was observed at ambient pressure is depicted in Figure
6. A good agreement between the theoretical and the experimental results was found,
and each of the Raman peaks could be assigned successfully to the underlying vibrational
modes. Table 1 summarizes the frequencies of the experimental and theoretical vibrational
modes at Γ in Cu(OH)Cl at room pressure. The 24 Raman frequencies were obtained from
the calculated phonon dispersion at the Γ point. Seventeen Raman modes were observed
in the Raman scattering spectra at ambient pressure. A very good agreement was reached
between the experimental and the calculated results, providing a direct assignment of the
experimentally observed Raman shifts, based on their frequencies. All of them could be
assigned to the monoclinic structure according to group analysis. The low-pressure frequen-
cies are denoted as follows: 1Ag (72 cm−1), 2Bg (91 cm−1), 3Ag (109 cm−1), 4Bg (127 cm−1),
5Ag (137 cm−1), 6Ag (158 cm−1), 7Bg + 8Bg (171 cm−1), 9Ag (186 cm−1), 12Bg (247 cm−1),
13Ag (324 cm−1), 16Bg (391 cm−1), 17Ag + 18Bg (481 cm−1), 19Ag (807 cm−1), 20Bg (856 cm−1),
21Ag (870 cm−1), 22Bg (897 cm−1) and 23Bg + 24Ag (3388 cm−1).

Table 1. Summarizes the theoretically calculated and the experimentally observed Raman-mode
frequencies of the Cu(OH)Cl sample under study.

Modes Cal. Exp. Modes Calc. Exp. Modes Cal. Exp.

1Ag 77 72 9Ag 184 186 17Ag 464
4812Bg 93 91 10Bg 216 18Bg 465

3Ag 105 109 11Ag 230 19Ag 822 807
4Bg 120 127 12Bg 253 247 20Bg 854 856
5Ag 130 137 13Ag 311 324 21Ag 870 880
6Ag 151 158 14Bg 363 22Bg 899 897
7Bg 167

171
15Ag 378 23Bg 3458

33888Bg 168 16Bg 390 391 24Ag 3460
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The atomic displacements associated with the Raman-active modes in the primitive
unit cells can be found in previous work [24]. The eighteen bands below 500 cm−1 are
assigned to the lattice modes involving the deformation or relative displacement of the
Cu(OH)3Cl3 octahedra. The four bands observed at 800–900 cm−1 correspond to the
O–H bending modes. In the high-frequency region, two bands were observed at 3458 and
3460 cm−1, which could be assigned to the O–H stretching modes. At 1.9 GPa, a new Raman
mode at 290 cm−1 (M1) appeared and increased in intensity with increasing pressure, up to
about 27.6 GPa. The frequency of mode M1 is equal to one-half of the sum of the frequencies
of 11Ag and 13Ag modes. It is indicated that the new Raman mode M1 may likely be due
to the plasmon-phonon coupling band (L+ or L−) of the 11Ag and 13Ag modes. Under
pressures below about 18.0 GPa, the O–H stretching mode went through a redshift with the
increase in pressure. When the pressure was elevated above 18.9 GPa, it exhibited a blue
shift instead, which was accompanied by considerable peak broadening and weakening
of intensity.

At about 22.4 GPa, a shoulder peak (M2) appeared on the high wavenumber side
of the O–H stretching modes and grew more obvious upon increasing pressure at the
expense of the O–H stretching modes (Figure 5d). We calculated the bond lengths of the
covalent O–H bonds in the monoclinic and orthorhombic phases. The bond lengths of the
O–H bonds in the orthorhombic phase were slightly smaller than those in the monoclinic
phase. This means that the stretching vibration frequency of O–H in the orthorhombic
phase is higher than in the monoclinic phase. The correlation between the intensities of
the O–H stretching modes of the initial phase and the new peak (M2) with pressure could
be observed more clearly in the evolution of the Raman scattering spectra, as recorded
in the decompression process. The M2 peak is unambiguous, with its intensity reduced
during pressure decompression, and it can be retained at ambient pressure. At the same
time, the intensities of the O–H stretching modes of the initial phase grow stronger. When
the pressure is fully released, the peak M2 coexists with those of the initial monoclinic
phase. According to group theory, the high-pressure phase belongs to the space group
Pbn21 (No. 33) and point group C2v (mm2). The unit cell contains 64 atoms, hence there
are 192 normal phonon modes at the Γ point:

Γoptic = 47A1 + 48A2 + 47B1 + 47B2. (2)
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The bending vibration modes of O–H partly disappeared at 20 GPa, and two new
Raman peaks appeared at 167 cm−1 and 537 cm−1, which can be assigned to the vibra-
tion modes of the orthorhombic phase. The simultaneous presence of the bands of the
monoclinic phase and the new bands characteristic of the orthorhombic phase over a long
range of pressure suggests the coexistence of the monoclinic and high-pressure orthorhom-
bic phases.

To gain further insight into the vibrational properties of Cu(OH)Cl, the pressure
evolution of the Raman shifts was analyzed (Figure 7). The bending vibration modes
and stretching vibration modes of O–H had obvious fluctuations when the pressure was
higher than 14.7 GPa, and the changes of other vibration modes were not obvious. Above
21.7 GPa, the P dependence of Raman shifts seemed to show a bend at 21.7 GPa for the
majority of Cu(OH)3Cl3 octahedra-frame modes. In the crystal structure of Cu(OH)Cl,
a hydrogen bond (O–H···Cl) is formed between the Cl atom and the O–H group of the
adjacent layers, respectively. At low pressures, the strength of the O–H···Cl hydrogen bond
is enhanced with an increase in pressure, while the strength of the O–H covalent bond is
decreased. The results show that the hydrogen bonding configuration of the initial phase
changed at 14.7 GPa, and then the orthorhombic high-pressure phase appeared at 21.7 GPa.
Combining the results of high-pressure XRD and Raman revealed that a new high-pressure
phase appeared in Cu(OH)Cl at 18.7–21.7 GPa, which could coexist with the initial phase
in a large pressure range, and the high-pressure phase could be partially retained in the
material after the release of pressure.
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Figure 7. Experimental frequency versus pressure for the Raman active modes of Cu(OH)Cl and
theoretical pressure dependence of the O–H stretching modes. (a) The lattice modes involving the
deformation or relative displacement of the Cu(OH)3Cl3 octahedra. (b) Raman active bending and
stretching modes of O–H group.

In order to track the electron band gap evolution with pressure, UV/Vis absorption
experiments were carried out on the Cu(OH)Cl samples under compression. Under ambient
conditions, Cu(OH)Cl possesses an indirect-band gap of ∼2.4 eV. The valence band of
Cu(OH)Cl is dominated by the Cl-2p orbital, while the conduction band is predominantly
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composed of the Cu-3d orbital (Figure 8a). At elevated pressures, the peculiar behavior of
the bandgap of Cu(OH)Cl can be divided into three steps. First, the bandgap blueshifts
steeply to about 2.5 eV when the pressure increased up to 7.2 GPa, with a mean pressure
coefficient (dEg/dP) of 13 meV/GPa. Then a wide plateau, with a steady Eg of about
2.5 eV, dominates the curve between 7.2 and 17.9 GPa. Finally, as the pressure is elevated
above 18.2 GPa, an abrupt decrease is observed in the bandgap, with significant bandgap
narrowing from 2.48 eV to 2.27 eV at 26.1 GPa. However, when the pressure is further
increased, detection of the optical transmission signal becomes difficult. At 18.2 GPa, a clear
discontinuity in the bandgap evolution was evidenced, which is indicative of the possible
structural changes at this pressure, confirming the occurrence of phase transition inferred
from the RS and ADXRD studies.
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Figure 8. (a) The calculated electronic band structure and the partial density of states of Cu(OH)Cl at
0 GPa. (b) The experimental and calculated pressure dependences of the bandgaps of Cu(OH)Cl.
The inset shows the linear range presented by the absorption edge of Cu(OH)Cl, corresponding
to an indirect (α1/2) bandgap at ambient pressure. (c,d) The evolutions of the bond lengths with
pressure for H−O, H···Cl, O−Cl, and the bond angle <O–H···Cl> in the monoclinic phase.

Simulations based on the density functional theory (DFT) were undertaken to gain
deeper insights into the electronic structure evolution under pressure. Figure 8b shows the
calculated bandgaps versus pressure for the monoclinic and orthorhombic structures. The
bandgap of the monoclinic structure increases firstly with pressure, reaching a maximum
at about 8 GPa, and then decreases with pressure. The bandgap of the orthorhombic
phase decreases monotonously with pressure, and the bandgap is narrower than that of
the monoclinic phase at all pressures. Therefore, it can be speculated that the sudden
decrease in band gap observed in the experiment may be related to the occurrence of phase
transition from the monoclinic to the orthogonal structure.

The hydrogen bond by definition involves the lightest atom H and, hence, is very
difficult to observe directly. The exact position of the hydrogen atoms cannot be directly
determined from XRD experiments. In recent years, quantum mechanical calculations



Materials 2021, 14, 5019 12 of 16

have been used increasingly to provide structural data (including but not restricted to the
positions of hydrogen atoms) under a wide range of pressures. To gain further insight
into the intrinsic nature involved in the compression behavior of the Cu(OH)Cl samples,
density functional theory (DFT) calculations are performed to complement the experi-
mental results and to understand the physical phenomena associated with the crystalline
structure under high pressures. The calculated pressure dependencies of the interatomic
(Cl···H, O···Cl, O–H) distances and the <O–H···Cl> bond angle in the P21/a phase are
shown in Figure 8c,d. The calculated Cl···H distance decreases monotonously when the
pressure is lower than 16 GPa, and thereafter hardly changes with pressure. The calculated
O···Cl distance decreases monotonously in the whole pressure range. At pressures below
12 GPa, the lengthening of the covalent O–H bond with increasing pressure is clearly visible.
An inverse trend occurs as pressure is further elevated. The calculated <O–H···Cl> bond
angle decreases almost linearly with increasing pressure in the whole range, with a kink
occurring at about 16 GPa. Thus, it is clearly indicated that, under compression below
16 GPa, the O–H covalent bonds are weakened while the O–H···Cl hydrogen bonds are
strengthened, which originates from a pressure-induced charge transfer from the region of
covalent bonds to hydrogen bonds. When the pressure is above 16 GPa, the <O–H···Cl>
bond angle decreases more rapidly, which means that the hydrogen bond tends to be weak-
ened as the pressure increases. With the weakening of the hydrogen bond, the strength of
the covalent bond O–H may be increased, leading to an inverse variation in the bond length
of the O–H bond. These results are consistent with the variation in the Raman shift of the
stretching vibration mode of the O–H bond, as observed experimentally. In addition, the
hydrogen bonding in the high-pressure phase was investigated. Figure 9 gives the plots of
the calculated geometric parameters versus pressure for the hydrogen bond configurations
in the orthorhombic structure. At pressures higher than 20 GPa, the O–H bond length is
considerably shorter, the H···Cl distance remains almost invariable, and the <O–H···Cl>
bond angle is smaller, indicating that hydrogen bonding in the orthorhombic phase is
weaker than that in the monoclinic phase.
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At 16 GPa, exotic changes occur in the <O–H···Cl> bond angle and the covalent O–H
bond length, which indicates that the initial structure may undergo a pressure-induced
second-order phase transition. To verify this hypothesis, the phonon dispersion curves
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of Cu(OH)Cl in monoclinic structure have been calculated up to 24 GPa. As shown in
Figure 10, there is no imaginary phonon frequency in the entire Brillouin zone, indicating
that the monoclinic structure of Cu(OH)Cl is dynamically stable up to 24 GPa. In addition,
the theoretical Raman-active mode frequencies of Cu(OH)Cl are calculated as a function of
pressure up to 24 GPa. As shown in Figure 7b, the pressure evolution of the theoretical
O–H stretching modes perfectly reproduces that observed in experiments, despite the
fact that the calculated frequencies were slightly overestimated. This indicates that the
theoretical simulation of the evolution of crystal structure with pressure is consistent with
the experimental results. Thus, it may be concluded that the isostructural phase transition
of the initial monoclinic phase occurs at the pressure of 16 GPa, due to the geometrical
change in the hydrogen bond configuration.
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Figure 10. Phonon dispersions of the P21/a phase of Cu(OH)Cl at selected pressures. (a) At 0 GPa.
(b) At 24 GPa.

Figure 11 shows the crystal structures of the monoclinic (M and M’) and orthorhombic
(O) phases of Cu(OH)Cl involved in this study, with a schematic representation of the
phase transition process. The symmetry before and after the isostructural phase transition
(M to M’), which occurs at 16 GPa due to a change in the hydrogen bonding configuration,
does not change, the difference between the two being a change in the relative positions
between the different layers. The phase transition from monoclinic (M’) to orthorhombic
(O) occurs at pressures above 18.7 GP, and the monoclinic and orthorhombic phases are able
to coexist over a wide range of pressures. It is also notable that the basic building blocks
of the monoclinic and orthorhombic structures are the same, the difference being that for
the monoclinic phase, the stacking order between the layers is in the AAAA arrangement,
whereas for the orthorhombic structure, the stacking order between the layers is the ABAB
arrangement. Therefore, it can be concluded that the difference in the pressure-induced
interlayer stacking order at 18.7 GPa leads to a structural phase transition from monoclinic
to orthorhombic for Cu(OH)Cl.
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Figure 11. (a) and (b) show the crystal structures of Cu(OH)Cl in monoclinic at 0 GPa and 20 GPa,
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spheres represent Cu atoms, the red ones represent O atoms, the green ones represent Cl atoms, and
the magenta ones represent H atoms.

4. Conclusions

The structure of a copper layered hydroxyhalogenide, belloite (Cu(OH)Cl), as a func-
tion of pressure, was studied using an in situ synchrotron X-ray, Raman scattering, and
first-principle calculation. At high pressure, we observed the formation of hydrogen bonds
between O–H···Cl; the strength of the bonds increased and then decreased with increasing
pressure. Cu(OH)Cl undergoes two transitions: an isostructural one at 14~16 GPa and
a structural one at 18.7 GPa. The first transition was associated with layer sliding and
a change in hydrogen bond configuration. The second transition induces an orthorhombic
structure, which has a symmetry higher than P21/a. Furthermore, we noticed that both
the monoclinic and orthorhombic phases can coexist over a wide pressure range (18.7 to
28.4 GPa), which could be attributed to the fact that both phases possess a layered structure
and are formed from similar basic units. The difference between these phases lies in the
stacking sequence of the tectonic monolayers. In the monoclinic phase, they are arranged
in an AAAA sequence. While in the orthorhombic phase, the monolayers are stacked in an
ABAB sequence. Moreover, we found that the novel high-pressure phase (Phase-II) may be
recovered to ambient conditions.
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