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Abstract: A theory of a pseudogap phase of high-temperature superconductors where current carriers
are translation invariant bipolarons is developed. A temperature T∗ of a transition from a pseudogap
phase to a normal one is calculated. For the temperature of a transition to the pseudogap phase,
the isotope coefficient is found. It is shown that the results obtained, in particular, the possibility of
negative values of the isotope coefficient, are consistent with the experiment. New experiments on
the influence of the magnetic field on the isotope coefficient are proposed.
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1. Introduction

Among the most amazing and mysterious phenomena of high-temperature super-
conductivity (HTSC) is the existence of a pseudogap phase at a temperature above the
critical temperature of a superconducting (SC) transition [1–5]. In a pseudogap phase the
spectral density of states near the Fermi surface demonstrates a gap for T > Tc, where Tc is
a temperature of an SC transition which persists up to the temperatures T∗(T∗ > Tc) above
which the pseudogap disappears. Presently, the explanation of this phenomenon is reduced
to two possibilities. According to the first one, it is believed that for T > Tc some incoherent
electron pairs persist in the sample, while for T < Tc their motion becomes coherent and
they pass on to the SC state. For T > T∗, the pairs disintegrate and the pseudogap state
disappears [6–9]. According to the second one, the transition to the pseudogap phase is
not concerned with superconductivity, but is caused by the formation of a certain phase
with a hidden order parameter or a phase with spin fluctuations [10–12].

Presently the first viewpoint on the nature of a pseudogap in HTSC increasingly
dominates which is associated with the idea that paired electron states exist for T > Tc. The
question of the nature of paired electron states per se remains open. In this paper paired
electron states are taken to be translation invariant (TI) bipolarons.

The TI bipolaron theory of SC based on the Pekar–Fröhlich Hamiltonian of electron-
phonon interaction (EPI) when EPI cannot be considered to be weak as distinct from
the Bardeen–Cooper–Schrieffer theory [12], was developed in papers [13–15] (see also
review [16]). The role of Cooper pairs in this theory belongs to TI bipolarons whose size
(≈ 1 nm ) is much less than that of Cooper pairs

(
≈ 103 nm

)
. According to [13–16], in HTSC

materials TI bipolarons are formed near the Fermi surface and represent a charged Bose gas
capable of experiencing Bose–Einstein condensation (BEC) at a high critical temperature
which determines the temperature of an SC transition.

As distinct from Cooper pairs, TI bipolarons have their own excitation spectrum [13–16]:

Ebp
k = Ebp∆k,0 +

(
ω0 + Ebp + k2/2Me

)
(1− ∆k,0), (1)

Me = 2m, ∆k,0 = 1 for k = 0 and ∆k,0 = 0 for k 6= 0,

Materials 2021, 14, 4973. https://doi.org/10.3390/ma14174973 https://www.mdpi.com/journal/materials

https://www.mdpi.com/journal/materials
https://www.mdpi.com
https://orcid.org/0000-0001-9224-769X
https://doi.org/10.3390/ma14174973
https://doi.org/10.3390/ma14174973
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/ma14174973
https://www.mdpi.com/journal/materials
https://www.mdpi.com/article/10.3390/ma14174973?type=check_update&version=3


Materials 2021, 14, 4973 2 of 8

where Ebp is the ground state energy of a TI bipolaron (reckoned from the Fermi level), ω0
is the frequency of an optical phonon (h̄ = 1), m is a mass of a band electron (hole), k is a
wave vector numbering excited states of a TI bipolaron.

This spectrum has a gap which in the isotropic case is equal to the frequency of an
optical phonon ω0. At that, the inequality ω0 �

∣∣∣Ebp

∣∣∣ corresponds to the case of a weak EPI,

ω0 �
∣∣∣Ebp

∣∣∣—to the case of strong coupling and ω0 ∼
∣∣∣Ebp

∣∣∣—to the case of intermediate
coupling. According to [13–16], the number of TI bipolarons Nbp at temperature T = 0 is
equal to: Nbp

∼= Nω0/2EF, where N is the total number of electrons (holes), EF is the Fermi
energy, i.e., Nbp � N.

The scenario of an SC based on the idea of a TI bipolaron as a fundamental boson
responsible for superconducting properties explains many thermodynamic and spectro-
scopic properties of HTSC [13–16]. For this reason, the problem of the temperature of a
transition to the pseudogap state and its isotope dependence is of interest.

2. The Critical Temperature of a Pseudogap Phase

Obviously, the temperature of a transition from a pseudogap phase to a normal one
T∗ in this model is determined by the disintegration of TI bipolarons into individual TI
polarons. Thermodynamically, the value of T∗ should be determined from the condition
that the free energy of a TI bipolaron gas exceeds the free energy of a TI polaron gas
determined by the spectrum of TI polarons:

EP
k = Ep∆k,0 +

(
ω0 + Ep + k2/2m

)
(1− ∆k,0), (2)

where Ep is the energy of the polaron ground state.
For further consideration, it is significant that the number of TI bipolarons in HTSC

compounds is Nbp � N. For n = N/V = 1021cm−3, where V is the system volume, the
typical values of nbp = Nbp/V are of the order of nbp ∼ 1018 − 1019cm−3 [13–16]. Taking
into account that T∗ > Tc, in order to calculate the statistical sum of the bipolaron gas Zbp
in the vicinity of T∗ one can use a classical approximation which requires that in the region
of stability of the bipolaron gas the inequality:

T∗ > T > Tc (3)

be fulfilled. In this case the expression for the statistical sum of the TI bipolaron gas has
the form:

Zbp =
1

h3Nbp Nbp!

Nbp

∏
i=1

∫
d3kie

−Ebp
ki

/T
=

[
e−(ω0+Ebp)/T

(
2πMeT

h2

)3/2 eV
Nbp

]Nbp

, (4)

where e ≈ 2.718 is the natural logarithm base, h = 2πh̄ is the Planck constant (we use the
energy units and put Boltzmann constant to unity).

Accordingly, for the statistical sum of a TI polaron gas formed as a result of disintegra-
tion of TI bipolarons, similarly to (4), we obtain:

Zp =

[
e−(ω0+Ep)/T (2πmT)3/2

h3
eV

2Nbp

]2Nbp

(5)

The condition of stability of a TI bipolaron gas with respect to its decay into a TI
polaron gas is written as:

Zbp ≥ Zp , (6)

where the equality describes the case of an equilibrium between the two gases which
corresponds to the equation for temperature T∗ of a transition from a normal phase to a
pseudogap one.
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Substitution of (4), (5) into (6) leads to the condition:

∆ =
∣∣∣Ebp

∣∣∣+ ω0 − 2
∣∣Ep
∣∣ ≥ 3

2
T ln æT, æ =

( e
4

) 2
3 πm

n
2
3
bph2

(7)

In the case of equality expression (7), yields the equation for determining T∗:

z = WeW , T∗ = æ−1eW , z = 2æ∆/3 (8)

Figure 1 shows the solution W = W(z) (Lambert function) (8) on condition that require-
ment (3) is fulfilled.

Figure 1. Solution W(z) of Equation (8).

It holds on the interval −e−1 < z < ∞. On the interval −e−1 < z < 0 Lambert
function is negative. Requirement (3) leads to the condition: −2.28 < W < ∞. Taking into
account the expression for the temperature of an SC transition obtained in [13–16]:

Tc = Tc(ω0) = (F3/2(0)/F3/2(ω0/Tc))
3/2Tc(0), (9)

Tc(0) = 3.31h̄2n2/3
bp /Me, F3/2(x) =

2√
π

∞∫
0

t1/2dt
et+x − 1

,

we express T∗ as:
T∗ ≈ 9.8(F3/2(ω0/Tc)/F3/2(0))

2/3TcexpW (10)

Thus, for example, for ω0 ≈ Tc we obtain from (10) T∗ ≈ 3Tc(1)expW, where Tc(1) is
determined by (9): Tc(1) ≈ 3.3Tc(0) that is for W=0 the pseudogap temperature T∗ exceeds
the temperature of an SC transition Tc more than threefold.

For ω0 >> Tc the temperature of a pseudogap phase is T∗ >> Tc(1). In this case for
estimating T∗ we can use an approximate formula derived from (8):

T∗ ≈ 2
3

∆/ln
2
3

æ∆, æ|∆| > 3
2

(11)

This limit, however, is observed in experiments only rarely. It can be concluded
that in HTSC materials the main contribution into EPI leading to SC is made by phonon
frequencies with ω0 < Tc (ω0 < 10 meV). This estimate is an order of magnitude less
than the estimates of phonon frequencies which are generally believed to make the main
contribution into the SC [13]. It also follows from (11) that T∗ grows only logarithmically
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as the concentration of nbp increases, while Tc ∼ n2/3
bp . Hence, for a certain value of nbp, the

condition T∗ < Tc can be fulfilled which corresponds to the disappearance of a pseudogap
phase as it follows from the form of the exact solution of Equation (8). In HTSC materials,
this takes place as doping increases to an optimal value for which the pseudogap phase no
longer exists.

Notice that the obtained results derived by comparison of bipolaron and polaron
classical canonical partition functions are not specific for the bipolarons. For example,
the analog of expression (11) was earlier obtained in [17] using the Saha equation for free
fermion and bosonic molecular gases.

3. Isotope Coefficient for the Pseudogap Phase

The TI bipolaron theory of the pseudogap phase developed above enables one to
investigate its isotopic properties.

It follows from (8) that like the SC phase, the pseudogap one possesses the isotopic
effect. According to (8), the isotope coefficient is:

α∗ = −dlnT∗/dlnM, (12)

where M is the mass of an atom replaced by its isotope. With regard to the fact that
ω0 ∼ M−1/2 it takes the form (see Appendix A):

α∗ =
ω0

3T∗
1

1 + W(z)
(13)

It follows from (13) and Figure 1 that for the lower branch: W(z) < −1 and α∗ < 0.
Accordingly, for the upper branch: W(z) > −1 and α∗ > 0. It should be noted that the
upper branch corresponds to ω0 > ω∗, while the lower branch to ω0 < ω∗, where ω∗ ≈ Tc.
Expressions (10), (13) yield:

W = ln
[
c(F3/2(0)/F3/2(ω0/Tc))

2/3T∗/Tc

]
, (14)

where c ≈ 0.1. Figure 2 illustrates the graph of the dependence α∗(ω0).

Figure 2. Dependence of the isotope coefficient for the pseudogap temperature T∗ on the phonon
frequency ω0(ω

∗ ≈ Tc).

Hence, depending on the value of the phonon frequency ω0 coefficient α∗ can have
any sign and the value: α∗ < 0 for ω0 < ω∗ and α∗ > 0 for ω0 > ω∗. For ω0 = ω∗, the
isotope coefficient becomes infinite: α∗(ω∗ ± 0) = ±∞. The results obtained suggest that
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the isotope exponent diverges for ω0 → ω∗ , i.e., for T∗ ≈ Tc (Figure 2). Great negative
values of the isotope coefficient in the pseudogap state were observed experimentally
in [18–20]. It should be noted that in some cases, negative values of the isotope coefficient
were also observed in ordinary SC [21], which exceeded in modulus the value of the
isotope coefficient in monoatomic systems α=0.5 yielded by the BCS. According to the
theory suggested this is possible for T∗ ≈ Tc.

4. Isotope Coefficient for Pseudogap Phase in Magnetic Field

According to [15], the spectrum of a TI bipolaron in a magnetic field
→
B is determined

by the modified expression (1):

Evp
k = Evp∆k,0 + (ω0 + Evp + k2/2Me + nvp(

→
B
→
k )/2Me)(1− ∆k,0) (15)

where the quantity nvp, according to [15], is related to the first critical field SC Bmax as:

ηvp =

√
2ω0Me

Bmax

The spectrum of a TI polaron will be determined by relation (2), since in weak fields
B < Bmax the magnetic field leaves it practically unchanged (Bmax, being the first critical
field, is always much less than the value of the quantizing magnetic field of a TI polaron).

Performing calculations similar to Section 2, we obtain the same relations as in
Sections 2 and 3 where ω0 should be replaced by ω̃0 = ω0

(
1 + B2/B2

max
)
. Thus, for ex-

ample, the graph of the dependence α(ω0), determined by Figure 2, in a magnetic field will
be a graph of the dependence α(ω̃0). Hence, for ω̃0 < ω∗ an increase in the field value
will lead to larger negative values of the isotope coefficient, and for ω̃0 > ω∗ to smaller
positive values α∗. In particular, a situation is possible when, for a certain value of the
field, the isotope coefficient, being negative, as the field increases, becomes infinite at the
point ω̃0 = ω∗ and becomes positive for ω̃0 > ω∗. It will be interesting to verify these
conclusions experimentally.

5. Discussion

The approach developed is based on the idea that in such HTSC as MgB2, Bi-2223,
Bi-2212, YBaCuO, etc. at temperatures substantially above critical temperature Tc electron
pairs in the form of TI-bipolarons represent the noninteracting strongly bound bosons,
demonstrating with a decreasing temperature a transition to the Bose–Einstein conden-
sation. This concept can explain a lot of experiments such as excess conductivity [22],
ultrafast carrier localization into the polaronic state [23], Nernst effect as one of the most
convincing demonstrations for the existence of the preformed pairs [3], tunneling, and
spectroscopic properties [16,24].

Here, we have shown that the existence of the pseudogap state and non-standard
behavior of the isotope coefficient in HTSC materials can be explained on the basis of the
electron-phonon interaction without the involvement of any other scenarios [25–29].

We witness further discussion on the nature of the pseudogap phase in HTSC materials
(see for example [30,31]). It follows from the foregoing consideration that the pseudogap is
a universal effect and should arise as TI bipolarons are formed in a system. The fact that
for a long time the occurrence of the pseudogap phase was associated with side effects, is
caused by this phase being observed even in ordinary SC [32–37], where the occurrence of
the pseudogap was explained by a crystallographic disorder or reduced dimensionality
which are usually observed in disordered metals.

In this connection, recent experiments with MgB2 HTSC seem to be of importance [38].
As distinct from oxide ceramics, MgB2 does not have a magnetic order and, as proponents
of an external nature of the pseudogap state suggest, should not have a pseudogap. To
exclude any other possibilities concerned with disorder, low-dimensionality effects, etc.,
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in experiment [38] use was made of highly perfect crystals. Experiments made in [38]
convincingly demonstrated the availability of the pseudogap state in MgB2 and the re-
sponsibility of EPI for this state. The results obtained provide good evidence for the TI
bipolaron mechanism of the formation of the pseudogap state.

The simple scenario presented in the paper may overlap with the effects associated
with spin fluctuations, formation of charge density waves (CDW) and spin density waves
(SDW), pair density waves (PDW) and bond density waves (BDW), formation of stripes
(for example, a giant isotopic effect caused by EPI was observed in La2-xSrxCuO4 in the
vicinity of the temperature of charged stripe ordering when replacing 16O by 18O [39]),
clusters, other types of interactions, etc. The suggested TI bipolaron mechanism of the
pseudogap phase formation and explanation of isotopic effects in HTSC materials on its
basis are also important in view of the universality of this mechanism. Most HTSC is
spatially inhomogeneous. Therefore, one can think that the translation invariant bipolarons
are not applicable there. However, this can be not correct as long as inhomogeneity is not
very large. As shown in [40], the crystal defects can capture and destroy TI- bipolaron only
if their potential well is sufficiently large. Otherwise, TI-bipolaron remains stable.

In a recent paper by the author of [41], it was shown that the TI-bipolaron theory of SC
with strong EPI can explain the dependence of an isotope coefficient in HTSC on the critical
temperature of SC transition and London penetration depth. For the case of small radius
polaron, this explanation earlier was carried out by Alexandrov (for review see [42]). Due
to the large value of bipolaron effective mass, the small radius bipolaron theory can explain
a lot number of effects in low-temperature SC with strong electron–phonon coupling and is
less appropriate for HTSC. The reason why the EPI in HTSC materials is strong lies in the
dominant role of ω0 near the nodal direction even when it has a small value (EPI coupling
is infinite if ω0 is zero in nodal direction).

At present, there are only a few experiments to study the isotope effect in the pseudo-
gap phase. The experiments on the influence of the magnetic field on the isotope coefficient
proposed in the paper for the temperature of the transition to the pseudogap phase are
new. The agreement of the experimental results with the theoretical predictions would
indicate the validity of the assumption of the TI bipolaron mechanism of HTSC.

Funding: This research received no external funding.

Data Availability Statement: Data is contained within the article.

Conflicts of Interest: The authors declare no conflict of interest.

Appendix A. Derivation of Formula (13)

Taking into account the relation ω0 ∼ M−1/2 from (12) we will get:

α∗ =
1
2

dlnT∗

dlnω0
=

ω0

2T∗
dT∗

dω0
(A1)

It follows from (8) that:
dT∗

dω0
= æ−1eW dW

dω0
, (A2)

dW
dω0

=
dW
dz

dz
dω0

=
e−W

1 + W
dz

dω0
.

Taking into account that dz/dω0 = 2æ/3 for dT∗/dω0 determined by (A2), we will get:

dT∗

dω0
=

2
3(1 + W)

(A3)
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It follows from (A1) and (A3) the expression (13) for isotope coefficient α∗:

α∗ =
ω0

3T∗
1

1 + W(z)
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