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Abstract: The orthogrid-stiffened FRP panel (OSFP) is a generic structural element in weight-sensitive
structure applications. Based on the variational asymptotic method, a 2D reduced-order plate model
(2D-RPM) of OSFP was constructed through matching the strain energy of the original panel for static
and dynamic analyses. The local field distributions were recovered using the recovery relationship
and global response. The relative influences of select parameters on the effective performance of
the OSFP were revealed by parametric studies. The comparative results showed that the effective
performance of the OSFP predicted by the 2D-RPM were consistent with those predicted by the 3D
finite element model, but the computational efficiency was greatly improved. The stiffener height had
the greatest influence on the natural frequency of the panel. The layup configurations of laminates
had significant influences on the equivalent stiffness and buckling load of the OSFP but had little
effect on the vibration modes, which could be varied by adjusting the stiffening forms.

Keywords: variational asymptotic method; reduced-order plate model; orthogrid-stiffened panel;
free-vibration analysis; global buckling

1. Introduction

Fiber-reinforced polymer (FRP) has the advantages of being lightweight and having
high strength, corrosion resistance, and tailorability. It is a new type of material that exhibits
excellent performances, and has been extensively used in civil engineering, shipbuilding,
aerospace and so on. Under the same load capacity, the weight of an FRP bridge is only 30%
of that of a steel bridge and 5% of that of a reinforced concrete bridge. Due to the excellent
properties of FRP, it has gradually become a substitute for traditional building materials
(e.g., steel and concrete). Compared with traditional steel and concrete bridges, FRP bridges
are not only lightweight but are also more convenient to manufacture, transport, and install.
Furthermore, they have long service lives of more than 100 years [1].

The orthogrid-stiffened FRP panel (OSFP) is characterized by a lattice of rigid, inter-
connected stiffeners, which is a generic structural element in weight-sensitive structure
applications [2]. Its stiffness, buckling, and vibration characteristics are not only related to
the stiffening forms but are also closely related to the structural and material parameters,
which increases the difficulty of analysis. At present, most analysis methods for stiffened
panels can be summarized as numerical methods, analytical methods, and a combination of
the two methods. The calculation models for the effective analysis of stiffened panels can be
divided into finite element models (FEMs) [3–8], discrete stiffener models (DSMs) [9], and
smeared stiffener models (SSMs) [10]. The stiffeners are modeled as members with axial
bending/torsion stiffnesses on the attached skin in DSM, and they can only be effectively
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applied for the analysis of stiffened panels with thin skins and rigid stiffeners. The geo-
metric features of the stiffeners and skin are contained in FEM, which is more flexible and
accurate than DSM. However, it not only requires a long simulation time due to the large
computational workload, but also the inability to set different configurations and materials
during preliminary design and optimization [11]. The basic idea of SSM is to smear the
stiffnesses of the stiffeners into the panel and calculate the effective properties [12–14]. This
may be applicable to the overall analysis of stiffened panels with intensive interconnected
stiffeners but not to the stress and strain analysis of stiffeners [15].

The global buckling is considered as the main failure mode of stiffened panels under
axial compression or/and external pressure according to the failure mode map [16,17].
Among the methods used to study the global buckling of stiffened panels, extensive studies
have concentrated on the FEM and SSM [18,19]. The extension–bending coupling interac-
tion caused by the eccentricity of the stiffeners was neglected in the work by Chen et al. [20],
which resulted in the imprecise buckling prediction results [21]. Abhijit et al. [22] used the
FEM to study the free vibration characteristics of stiffened plates with symmetric stiffen-
ers. Later, the isoparametric stiffened-plate element was introduced to analyze the free
vibration of eccentrically stiffened plates [23,24]. Lam et al. [25] explored the vibrations of
stiffened plates by dividing the plate domain into appropriate rectangular segments.

On the basis of literature review, there were some issues in the existing methods for
predicting the effective performance of stiffened panels. First, the shear stiffness matrix
cannot be predicted using the homogenized elastic constants and plate thickness together
with classic plate theory. Second, due to the assumptions for defining the kinematics, the
models were usually applicable to some specific form of stiffeners. Third, few plate models
can accurately predict the local stress and strain distributions of stiffeners, which were of
great significance to the failure analysis of stiffened panels.

Recently, Yu and Zhong [26–29] put forward a new multiscale modeling technique to
deal with dimensionality-reducing structures based on the variational asymptotic method
(VAM) [30]. With this method, the small structural parameters (such as the thickness–
width ratio) were used to asymptotically expand the energy functional, and the higher-
order terms were removed to obtain the approximate energy of different orders and the
corresponding dimension reduction model, which achieved a good tradeoff between
accuracy and effectiveness. In this work, a VAM-based reduced-order plate model of
stiffened FRP panel was established to solve the three issues mentioned above. The
influences of geometric parameters (such as height, thickness, length-width ratio, and
period length) on the effective performance of the OSFP were investigated. Finally, the
displacements and free-vibration modes of stiffened FRP panels with different stiffening
forms, such as the orthogrid-, T- and blade-stiffened panels, were compared. To the author’s
knowledge, this method has never been used for this purpose.

2. Theoretical Formulation for Reduced-Order Plate Model Using VAM
2.1. Kinematics of the OSFP

As shown in Figure 1, if the sizes of the whole panel (denoted by the macro-coordinates
xi) are much larger than those of a unit cell (denoted by the micro-coordinates yi), then
yi = xi/ξ (ξ is a small parameter), and the derivative of the function f ξ(xα) with respect to
xα is

∂ f ξ(xα)

∂xα
=

∂ f (xα; yi)

∂xα

∣∣∣∣
yi=const

+
1
ξ

∂ f (xα; yi)

∂yi

∣∣∣∣
xα=const

≡ f,α +
1
ξ

f;i (1)

where i, j = 1, 2, 3; α, β = 1, 2.



Materials 2021, 14, 4908 3 of 21

Figure 1. Dimension reduction analysis of the original orthogrid-stiffened FRP panel (OSFP).

To construct a reduced-order plate model of the OSFP using VAM, the 3D displacement
field of the original OSFP ui need to be represented by using 2D plate variables vi such as

u1(xα; yi) = v1(x1, x2)− ξy3v3,1(x1, x2) + ξw1(xα; yi)

u2(xα; yi) = v2(x1, x2)− ξy3v3,2(x1, x2) + ξw2(xα; yi)

u3(xα; yi) = v3(x1, x2) + ξw3(xα; yi)

(2)

where wi is the fluctuating function to be solved, and the underlined terms should meet
the following constraints

v1 = 〈u1〉+ ξ〈y3〉v3,1
v2 = 〈u2〉+ ξ〈y3〉v3,2
v3 = 〈u3〉

(3)

where 〈·〉 represents the volume integration over the unit cell.
The non-underlined terms should satisfy the following conditions

〈ξwi〉 = 0 (4)

The 3D strain field can be expressed as

Γij =
1
2

(
∂ui
∂xj

+
∂uj

∂xi

)
(5)

Plugging Equation (2) into Equation (5) gives the 3D strain field as

Γ11 = ε11 + ξy3κ11 + w1,1
2Γ12 = 2ε22 + 2ξy3κ12 + w1,2 + w2,1
Γ22 = ε22 + ξy3κ22 + w2,2
2Γ13 = w1,3 + w3,1
2Γ23 = w2,3 + w3,2
Γ33 = w3,3

(6)
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where εαβ and καβ can be expressed as

ε11(x1, x2) = v1,1(x1, x2), ε22(x1, x2) = v2,2(x1, x2),
2ε12(x1, x2) = v1,2(x1, x2) + v2,1(x1, x2),
κ11(x1, x2) = −v3,11(x1, x2), κ22(x1, x2) = −v3,22(x1, x2),
κ12(x1, x2) = −v3,12(x1, x2)

(7)

The 3D strain field can be obtained as

Γe = [Γ11 Γ22 2Γ12]
T = ε + x3κ + ∂ew||

2Γs = [2Γ13 2Γ23]
T = w|| + ∂tw3

Γt = Γ33 = w3,3

(8)

where Γe, Γs, Γt are strain matrices of 3D-FEM; ()|| = [()1 ()2]
T, ε = [ ε11 2ε12 ε22 ]T,

κ = [κ11 κ12 + κ21 κ22]
T, and

∂e =

 (),1 0
(),2 (),1
0 (),2

, ∂t =

{
(),1
(),2

}
(9)

As shown in Figure 2, the unit cell within the OSFP can be divided into three parts to
facilitate the integral solution. Then we obtain the strain energy of the panel as

U =
1
2

∫ a/2

−a/2

∫ b/2

−b/2

1
Ω

UΩdx2dx1 (10)

where

UΩ =
∫ 0

−t1

∫ L1
2

− L1
2

∫ L2
2

− L2
2

ΓT
ADAΓAdy1dy2dy3

+
∫ h

0

∫ L1
2

− L1
2

∫ t2
2

− t2
2

ΓT
BDBΓBdy1dy2dy3

+
∫ h

0

∫ t3
2

− t3
2

∫ L2
2

− L2
2

ΓT
CDCΓCdy1dy2dy3

(11)

with the subscripts A, B, and C representing the skin, longitudinal stiffener, and transverse
stiffener, respectively.

Figure 2. Decomposition diagram of unit cell within the OSFP.
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Equation (10) can be rewritten as

U =
1
2

∫ a/2

−a/2

∫ b/2

−b/2

1
Ω

〈
ΓT DΓ

〉
dx2 dx1

=
1
2

∫ a/2

−a/2

∫ b/2

−b/2

1
Ω

〈
Γe

2Γs
Γt


T De Des Det

DT
es Ds Dst

DT
et DT

st Dt


Γe

2Γs
Γt


〉

dx2 dx1

(12)

where De, Des, Det, Ds, Dst, and Dt are the corresponding sub-matrices of three-dimensional
6× 6 material matrix.

The virtual work done by the applied loads is

E =
∫ b/2

−b/2

∫ a/2

−a/2

1
Ω
(
〈 fiui〉+ βiu−i + τiu+

i
)
dx1dx2

+
∫ a/2

−a/2

∫ h/2

−h/2
(αiui)|x2=±b/2dx3dx1 +

∫ b/2

−b/2

∫ h/2

−h/2
(αiui)|x1=±a/2dx3dx2

(13)

where fi is the body force, αi is the traction force applied on the lateral surfaces, βi and τi
denote the traction forces on the bottom and top surface, respectively.

Plugging Equation (2) into Equation (13) gives

E =
∫ b/2

−b/2

∫ a/2

−a/2
(pivi + qαΦα)dx1dx2

+
∫ a/2

−a/2

∫ h/2

−h/2
(Pivi + QαΦα)|x2=±b/2dx3dx1

+
∫ b/2

−b/2

∫ h/2

−h/2
(Pivi + QαΦα)|x1=±a/2dx3dx2 + E∗

(14)

where Φ1 = v3,2, Φ2 = −v3,1, and

E∗ =
∫ b/2

−b/2

∫ a/2

−a/2

1
Ω
(
〈 fiwi〉+ βiw−i + τiw+

i
)
dx1dx2

+
∫ a/2

−a/2

∫ h/2

−h/2
(αiwi)|x2=±b/2dx3dx1 +

∫ b/2

−b/2

∫ h/2

−h/2
(αiwi)|x1=±a/2dx3dx2

(15)

The values of pi, qα, Pi, and Qα in Equation (14) can be calculated as

pi =
1
Ω
(〈 fi〉+ βi + τi)

q1 =
1
Ω
(
−x−3 β2 − x+3 τ2 − 〈x3 f2〉

)
q2 =

1
Ω
(
x−3 β1 + x+3 τ1 + 〈x3 f1〉

)
Pi = 〈〈αi〉〉
Q1 = −〈〈x3α2〉〉
Q2 = 〈〈x3α1〉〉

(16)

According to VAM, E∗ can be ignored, and the total potential energy is

δΠ = δU − δE

=
∫ b/2

−b/2

∫ a/2

−a/2

(
1
2

δ
〈

ΓT D̄Γ
〉
− piδvi − qαδΦα

)
dx1dx2

+
∫ a/2

−a/2

∫ h/2

−h/2
(Piδvi + QαδΦα)|x2=±b/2dx3dx1

+
∫ b/2

−b/2

∫ h/2

−h/2
(Piδvi + QαδΦα)|x1=±a/2dx3dx2

(17)
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2.2. VAM-Based Reduction Analysis of OSFP
2.2.1. Zeroth-Order Approximation

Plugging Equation (8) into Equation (17) gives the total potential energy density as

2Π =
〈〈

(ε + x3κ)TDe(ε + x3κ) + 2(ε + x3κ)TDe∂ew||α
+2(∂ew||α)TDe∂ew|| + 2(ε + x3κ)TDesw||,3 + 2(ε + x3κ)TDes∂tw3α

+2
(

∂ew||α
)T

Des

(
w||,3 + ∂tw3α

)
+ 2(ε + x3κ)TDetw3,3

+2
(

∂ew||α
)T

Detw3,3 + wT
||,3Dsw||,3 + 2wT

||,3Ds∂tw3α + 2(∂tw3,α)
TDs∂tw3,α

+2wT
||,3Dstw3,3 + 2(∂tw3,α)

TDstw3,3 + Dtw2
3,3

〉〉
−2
(〈〈

f T
i wi

〉〉
+ τT

i wT
i + βT

i wT
i
)

(18)

where the underlined items and the double-underlined item can be ignored according
to VAM.

To impose the constraints on the fluctuating function, we introduce the Lagrange
multipliers λi, such as

δ(Π + λi〈wi〉) = 0 (19)

The zeroth-order approximate variational expression is〈 [
(ε + x3κ)TDes + wT

||,3Ds + wT
3,3DT

st

]
δw||,3

+λiδwi +
[
(ε + x3κ)TDet + wT

||,3Dst + wT
3,3Dt

]
δw3,3

〉
= 0 (20)

The corresponding Euler–Lagrange equations are[
(ε + x3κ)TDes + wT

||,3Ds + wT
3,3DT

st

]
,3
= λ||[

(ε + x3κ)TDet + wT
||,3Dst + wT

3,3Dt

]
,3
= λ3

(21)

where λ|| = [λ1 λ2]
T.

The boundary conditions of the top and bottom of the panel can be defined as[
(ε + x3κ)TDes + wT

||,3Ds + w3,3DT
st

]+/−
= 0[

(ε + x3κ)TDet + wT
||,3Dst + w3,3Dt

]+/−
= 0

(22)

where the superscript “+ / −” indicates the items at the top and bottom of the panel.
From these conditions, we can solve w|| and w3 as

w|| =
〈
−(ε + x3κ)DesD−1

s

〉T
, w3 =

〈
−(ε + x3κ)DetD−1

t

〉
(23)

where

Des = Des − DetDT
stD
−1
t , Det = Det − DesD−1

s Dst, Dt = Dt − DT
sl D
−1
s Dst (24)

Plugging Equation (23) into Equation (18) gives the zeroth-order strain energy as

U2D =
1
2

〈
(ε + x3κ)TD̄e(ε + x3κ)

〉
=

1
2

{
ε
κ

}T[ A B
BT D

]{
ε
κ

}
(25)
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where A, D and B are tensile, bending, and coupling stiffness sub-matrix, respectively, and
can be expressed as

A = 〈〈D̄e〉〉, B = 〈〈x3D̄e〉〉, D =
〈〈

x2
3D̄e

〉〉
,

D̄e = De − D̄esD−1
s DT

es − D̄etDT
et/D̄t

(26)

2.2.2. Transforming into Reissner–Mindlin Model

There are two additional transverse shear strains γ = b2γ13 2γ23cT in the Reissner–
Mindlin model. To transform Equation (25) into the Reissner–Mindlin model, we must
eliminate the coupled stiffness terms between ε and γ as follows:

2ΠΩ = ΓT D̄eΓ = RT AR+ 2RT Bγ + γTCγ

= RT
(

A− BC−1BT
)
R+

(
γ + C−1BTR

)TC
(
γ + C−1BTR

) (27)

whereR is Reissner–Mindlin generalized strains.
The final form of the total energy can be expressed as

2ΠR = RTXR+ γTGγ + 2RT F (28)

where F is a load-related term and

X = A− BC−1BT

G = C
(29)

The resultant stress of the panel can be expressed as

∂ΠR
∂ε11

= N11,
∂ΠR
∂2ε12

= N12,
∂ΠR
∂ε22

= N22

∂ΠR
∂κ11

= M11,
∂ΠR
∂2κ12

= M12,
∂ΠR
∂κ22

= M22

∂ΠR
∂2γ13

= Q1,
∂ΠR
∂2γ23

= Q2

(30)

Due to the symmetry of the axis and plane, some stiffness components disappear, and
the constitutive relation of the OSFP can be obtained as

N11
N22
N12
M11
M22
M12
Q1
Q2


=



A11 A12 0 0 0 0 0 0
A12 A22 0 0 0 0 0 0
0 0 A66 0 0 0 0 0
0 0 0 D11 D12 0 0 0
0 0 0 D12 D22 0 0 0
0 0 0 0 0 D66 0 0
0 0 0 0 0 0 C11 0
0 0 0 0 0 0 0 C22





ε11
ε22

2ε12
κ11
κ22

2κ12
γ13
γ23


(31)

The original 3D geometric nonlinear problem in Equation (17) is mathematically
decomposed into constitutive modeling over the unit cell in Equation (31) and geometric
nonlinear plate analysis. That is to say, as an alternative to the direct numerical simulation
using 3D nonlinear finite element analysis, the global analysis of the OSFP can be reduced
to 2D plate analysis using the linear solver in ABAQUS, with the constitutive relation
obtained from the constitutive modeling of the unit cell.
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2.3. Equivalent Density of 2D-RPM

For heterogeneous materials and structures, the equivalent density of the unit cell is
usually used to characterize the weight of the reduced-order plate model. The total mass
of the unit cell within the OSFP can be expressed as

m = m1 + m2 + m3 = ρ1 · L1L2 · t1 + ρ2 · L2h · t2 + ρ3 · L1h · t3 (32)

where ρ1, ρ2, and ρ3 are the density of the skin, the longitudinal stiffener and transverse
stiffener, respectively.

The total volume of the unit cell is

V = L1L2 · (t1 + h) (33)

According to the equivalent density formula, we obtain

ρ =
m
V

(34)

The equivalent density of the 2D-RPM can be expressed as

ρ∗ =
ρ1 · L1L2 · t1 + ρ2 · L2h · t2 + ρ3 · L1h · t3

L1L2 · (t1 + h)
(35)

3. Validation Example

To verify the accuracy and effectiveness of the present reduced model, the static and
dynamic behaviors of OSFP predicted by the present model were compared with those
of 3D-FEM. The 3D-FEM had 15 unit cells in the x1 and x2 direction as shown in Figure 3.
The equivalent stiffness of OSFP was obtained by variational asymptotic analyzing over
the unit cell shown in Figure 4b and inputted into the 2D-RPM (300 mm × 300 mm) using
shell elements, as shown in Figure 4c, to analyze the static and dynamic behavior under
different boundary conditions. The relative error between the 2D-RPM and 3D-FEM is
defined as Error = |2D−RPM results−3D−FEM results|

3D−FEM results × 100%.

Figure 3. Meshing of 3D finite element model (3D-FEM).

The structural parameters shown in Figure 4a were: l = 20 mm, h = 3 mm, and t = 1 mm.
The OSFP is made of T300/7901 carbon/epoxy laminates. The layup configuration of skin
was [45/− 45/0/− 45/45]2s, and that of stiffener was [45/− 45]4s. The lamina properties
were: E11 = 71.76 GPa, E22 = E33 = 7.81 GPa, G12 = G13 = 2.52 GPa, G23 = 2.11 GPa,
v12 = v13 = 0.343, v23 = 0.532, ρ = 1.42 g/cm3. The effective plate properties of the skin
and the stiffener obtained by present model were given in Figure 5 for reference.
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(a) Size of unit cell (b) Meshing of unit cell (c) Meshing of 2D-RPM

Figure 4. Meshing of unit cell and 2D reduced-order plate model (2D-RPM) of OSFP.

(a) Skin

384.437 303.797 。 。 。 。 。 。

303.797 384.437 。 。 。 。 。 。

。 。 300.700 。 。 。 。 。

。 。 。 8201.319 6480.999 。 。 。

。 。 。 6480.999 8201.319 。 。 。

。 。 。 。 。 6414.925 。 。

。 。 。 。 。 。 30.479 。

。 。 。 。 。 。 。 148.472 

(b) Stiffener

Figure 5. Effective plate properties of the skin and the stiffener calculated by the present model
(unit: SI).

3.1. Static Displacement Analysis

Six typical boundary conditions shown in Figure 6, including CCCC, CCSS and CSCS,
CSSS, SSSS and FFCC, were used for static displacement analysis. The naming convention
of boundary conditions is four letters, where S denotes simply supported constraint, C for
fixed constraint, and F for free constraint.

To verify the effectiveness of the 2D-RPM, a uniform load of 5 kPa was applied to
the top surface of the OSFP, and the displacement distributions along Path 1 of the 3D-
FEM and 2D-RPM were compared in Figure 7. The comparative results show that the
displacement distributions predicted by the 2D-RPM were basically in agreement with
those of the 3D-FEM. The differences were due to the different meshing methods used in
the two models. The maximum displacement error under the CCSS boundary condition
was the largest, but it was still within 5%. It is worth noting that the differences between
the 2D-RPM and 3D-FEM in Figure 7c–e were much greater than other cases, which may
be due to the gradual enhancement of boundary constraints from SSSS to CCCC. It was
concluded that the 2D-RPM can predict the static displacement of the stiffened FRP panel
with high accuracy and effectiveness, and the equivalent stiffness obtained from the VAM
had sufficient accuracy.
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Figure 6. Typical boundary conditions of the OSFP.

(a) CCCC (b) SSSS

(c) CSSS (d) CSCS

(e) CCSS (f) FFCC

Figure 7. Vertical displacement along Path 1 of the plate under a uniform load of 5 kPa and different
boundary conditions.
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3.2. Local Displacement and Stress Field

According to Equation (2), the local displacement distributions within the unit cell
at the geometric center of the 2D-RPM can be recovered as shown in Figure 8. It can be
observed that the maximum and minimum values of U1 and U2 were located on opposite
sides of the stiffener, and the overall displacement presented a centrosymmetric distribution
trend. The smallest value of U3 was located at the center of the stiffener, while the maximum
value of U3 was on the skin. The displacement distribution was centrally symmetric about
the intersection point of the stiffeners. The maximum value of U3 within the unit cell
was 10.27 mm, and the error was about 1% compared with that of 3D-FEM presented in
Section 3.1 (U3 = 10.17 mm), indicating that the recovered displacement distribution is
accurate and can be used to evaluate the location of maximum local displacement.

(a) U1 (b) U2

(c) U3

Figure 8. Local displacement fields within the unit cell at the geometric center of the plate (unit: mm).

Figure 9 shows the local stress fields within the unit cell at the geometric center of
the plate recovered from Equation (8) and the 3D Hooke’s law. It can be observed that
the stiffeners played an important role in the process of load transfer, and there was a
large stress concentration at the intersection of the stiffeners and the skin, showing a
significant skin-stiffener effect. The stress distribution on the skin was relatively uniform,
and there was no evident mutation. It was concluded that the stiffeners improved the
bearing capacity of the panel, and the OSFP had a low weight and high strength compared
to the ordinary panel.

Figure 10 shows the local von Mises stress and displacement distribution along Path
1 of the skin within the unit cell (as shown in Figures 8c and 9a) predicted by 2D-RPM
and 3D-FEM. It can be observed that the local stress and displacement curves predicted by
2D-RPM and 3D-FEM agreed well, and the maximum error was less than 5%. The local
stress at the junctions between the skin and the stiffeners decreased significantly, indicating
that these regions were very incidental to be damaged.
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(a) Von Mises stress (b) σ11

(c) σ22 (d) σ12

(e) σ13 (f) σ23

Figure 9. Local stress fields within the unit cell at the geometric center of the plate (unit: MPa).

(a) Von Mises stress (b) U3

Figure 10. Comparison of von Mises stress and U3 distribution along Path 1 within the unit cell at
the geometric center of the OSFP.

3.3. Free-Vibration Analysis

Table 1 shows the the first four vibration modes and natural frequencies of the OSFP
under the CCCC boundary condition predicted by 2D-RPM and 3D-FEM. The vibration
modes of the 3D-FEM and 2D-RPM were in good agreement. For example, there were one
and two half-waves along the x1 direction, two half-waves along the x2 direction, and two
half-waves along the x1 and x2 directions for the first, second, third, and forth mode shapes,
respectively, for both the 2D-RPM and 3D-FEM results. The natural frequencies of the
3D-FEM and 2D-RPM were also highly consistent, and the maximum error of the natural
frequency was less than 6.83%. It was worth noting that the first-order vibration frequency
showed relative big error compared with the third and fourth vibration frequencies, which
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may be because the first-order frequency was more sensitive to different meshing between
2D-RPM and 3D-FEM. The 2D-RPM was more time-efficient than the 3D-FEM in analyzing
the vibration modes: the 2D-RPM required 30 s with one CPU as opposed to the nearly
20 min required for the 3D-FEM with four CPUs.

Table 1. Comparison of the first four vibration modes and eigenvalues (Hz) of the OSFP predicted by
3D-FEM and 2D-RPM under the CCCC boundary condition.

Order 1 2 3 4

2D-RPM

103.68 212.48 215.68 283.97

3D-FEM

110.76 211.62 216.33
290.39

Error 6.83% 0.41% 0.30% 2.25%

It can be concluded that the 2D-RPM had high accuracy in free-vibration analysis of
OSFP under CCCC boundary condition. To further verify the effectiveness of 2D-FEM
in analyzing vibration modes, the vibration modes of OSFP under different boundary
conditions are analyzed as shown in Table 2. The 3D-FEM and VAM-based 2D-RPM
had good consistency in the prediction of natural frequencies and vibration modes under
various boundary conditions, and the maximum error of natural frequency was less than
6% under the CCSS boundary condition. The stronger the boundary condition is, the higher
the natural frequency is. The natural frequency under CCCC boundary condition was
about twice that under SSSS boundary condition. The natural frequencies under CCSS and
CSCS boundary conditions were almost the same, but the asymmetry of CSCS boundary
condition led to the asymmetry of vibration mode.

Table 2. Comparison of vibration modes and natural frequencies (Hz) of the OSFP under different
boundary conditions (BCs).

BCs SSSS CSSS CSCS CCSS FFCC

2D-RPM

45.48 60.11 71.43 80.29
71.93

3D-FEM

47.56 63.15 72.37 84.98 73.37

Error 4.57% 5.06% 1.31% 5.84% 2.00%

3.4. Global Buckling Analysis

To verify the accuracy and effectiveness of 2D-RPM, the buckling modes and crit-
ical loads of OSFP under different boundary and load conditions illustrated in Figure 11 are
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listed in Table 3. The combinations of boundary and load conditions included SFFF/uniaxial
(Case 1), SSFF/uniaxial (Case 2), SSSS/uniaxial (Case 3), and SSSS/biaxial (Case 4).

(a) Case 1 (b) Case 2 (c) Case 3 (d) Case 4

Figure 11. Four combination of boundary and load conditions used in buckling analysis.

Table 3. Comparison of global buckling modes and loads (N) predicted by the 2D-RPM and 3D-FEM
under different boundary and load conditions.

Order 1 2 3 4

2D-RPM

50.97 57.96 471.83 300.67

3D-FEM

51.24 59.27
482.12

310.42

Error 0.53% 2.26% 2.18% 3.24%

Table 3 shows that the buckling load in Case 3 (471.83 N) was about 9 times that in
Case 2 (57.96 N) and 1.577 times that in Case 4 (300.67 N). The buckling loads in Case 1
and Case 2 were basically the same. The error of the critical buckling load under various
boundary conditions was less than 5%, indicating that the VAM-based 2D-RPM and 3D-
FEM predictions of the global buckling of OSFP agreed closely.

4. Parameter Study

The 2D-RPM was selected to conduct parametric study. The material properties and
layup configurations of the skin and the stiffeners were the same as those in Section 3,
except where explicitly indicated. The boundary conditions for uniaxial buckling analysis
were SFFF in Case 1, while the boundary conditions for the free-vibration analysis were
CCCC.

4.1. Influence of Structural Parameters on Equivalent Plate Properties

Figure 12a shows the effect of the stiffener thickness on the equivalent stiffness of the
OSFP when the other parameters remained unchanged. The equivalent stiffness Aij and
Dij increased with increasing stiffener thickness, and in particular, the bending stiffness
components D11 and D22 increased significantly. This may be because Aij was directly
proportional to the cross-sectional area, which increased with increasing stiffener thickness.
In contrast, Dij was proportional to the moment of inertia, which was linearly related to
the stiffener thickness.

Figure 12b shows the effect of stiffener height on the equivalent stiffness when other
parameters remain unchanged. It can be seen that Aij increased linearly and Dij increased
nonlinearly with the increasing stiffener height. The reason was that Aij was proportional
to the sectional area, which was linear with the stiffener height, while Dij was proportional
to the moment of inertia, resulting in a parabolic growth trend.
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Figure 12c shows the effect of length–width ratio on the equivalent stiffness. It can be
observed that A11 and D11 had no obvious change with the increasing length–width ratio,
while D22 decreased significantly. The reason was that the extension area and moment of
inertia in x1 direction remained unchanged, while the extension area and moment of inertia
in the x2 direction gradually decreased with the increasing length–width ratio, which led
to the nonlinear decrease in equivalent bending stiffness.

Figure 12d shows the effect of the periodic length on the equivalent stiffness of the
stiffened FRP panel. It can be observed that Aij and Dij decreased nonlinearly with the
increase in periodic length. This was because Aij and Dij were, respectively, proportional to
the extension area and the moment inertia, and there was a negative nonlinear relationship
between the extension area/moment inertia and the periodic length, resulting in a parabolic
downward trend with the increasing periodic length.
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Figure 12. Effects of the structural parameters on the equivalent plate properties of the OSFP.

4.2. Influence of Structural Parameters on Buckling Loads and Natural Frequencies

To further investigate the influence of structural parameters on the effective perfor-
mance of OSFP, the first four buckling loads and natural frequencies of OSFP with different
stiffener height, thickness, periodic length, and length–width ratio were calculated by using
2D-RPM, as shown in Figure 13.

The first four natural frequencies of the OSFP increased with increasing stiffener
thickness and height and decreased with increasing length–width ratio and periodic length.
The effect of the stiffener height h on the natural frequency was much greater than that
of other structural parameters. The reason is that the variation trends of the equivalent
stiffness and equivalent mass were consistent with those of structural parameters, and their
influences on the natural frequency might counteract each other. However, the effect of the
stiffener height h on the equivalent stiffness was much greater than that on the equivalent
mass. The buckling load of the OSFP increased with the increase in stiffener thickness and
height but decreased with increasing length–width ratio and periodic length, which was
the same as the change trend of equivalent stiffness.
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Figure 13. Effects of the structural parameters on the natural frequency and buckling load of
the OSFP.

4.3. Influence of Layup Configuration on the Effective Performance of OSFP

The layup configurations of the laminates would affect the effective performance of
the OSFP due to the anisotropy and heterogeneity. In this section, the influences of the
layup configuration on the equivalent stiffness, free vibrations, and buckling mode of the
OSFP are analyzed. The layup configuration was set to [0/θ/0/θ/0]s, where θ increased
from 0◦ to 90◦ at 15◦ intervals. The boundary condition was fixed on one side and simply
supported on three sides (CSSS).

Figure 14a shows the effect of the layup configuration on the equivalent stiffness of
the OSFP. With the gradual increase in the ply angle, the stiffness components A11 and
D11 showed nonlinear downward trends, while A22 and D22 showed significant nonlinear
increases when the ply angle was greater than 45◦. Figure 14b shows the effect of the layup
configuration on the first four natural frequencies and buckling loads of the OSFP. It can be
observed that the layup configuration had little effect on the natural frequency, and the
first natural frequency first decreased and then increased with the increasing ply angle,
reaching the minimum value in the range of 30–60◦ ply angle. The buckling load first
increased and then decreased with the increasing ply angle, and the buckling load of each
order reached the maximum value at 30–45◦ ply angle.
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(b) Buckling load and natural frequency

Figure 14. Effects of the layup configuration on the effective performances of the OSFP.

4.4. Influence of 0◦-Ply Ratio on the Effective Performance of OSFP

The 0◦ ply ratio r was the ratio of the number of 0◦-ply to the total number of ply.
To study the influence of 0◦-ply ratio on the effective performance of the panel, the 10-
layered laminate with combination of 0◦ and 45◦ plies was considered, and the six layup
configurations are illustrated in Figure 15.

(a) r = 0% (b) r = 20 % (c) r = 40%

(d) r = 60% (e) r = 80% (f) r = 100%

Figure 15. Six different 0◦-ply ratios in the layup combination of 0◦ and 45◦ plies.

Figure 16a shows that the influences of the 0◦-ply ratio on A11 and D11 were much
greater than those on the other stiffness components because the stiffness along the fiber
direction (0◦ direction) was stronger. Figure 16b shows that the first natural frequency
increased with increasing 0◦-ply ratio and reached a maximum value when the 0◦ ply
ratio was 100%. The third to fourth natural frequencies increased first and then decreased
and reached the maximum value when the 0◦-ply ratio was between 0.2 and 0.6. With
the increase in the 0◦-ply ratio, the first to fourth buckling loads of the OSFP increased
gradually and reached a maximum value when the 0◦ ply ratio was 100%. In engineering
applications, the effective performance of the OSFP in the corresponding direction can be
improved by adjusting the 0◦-ply ratio.
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(b) Natural frequency and buckling load

Figure 16. Effects of the structural parameters on the effective performances of the OSFP.

5. Comparison with Other Stiffened FRP Panels with Different Stiffening Forms

To compare the effects of different stiffening forms on the effective performance of
the OSFP, the 3D FE models and 2D reduced-order plate models of orthogrid-, T-, and
blade-stiffened FRP panel were established. The 3D FE models were obtained by repeating
the unit cell 15 times in the x1 and x2 directions as shown in Figure 17. The structural
parameters of unit cell were l = 20 mm, h = 3 mm, and t = 1 mm. The material parameters
were the same as in Section 4, and the layup configurations of skin and stiffener were
[45/− 45/0/− 45/45]2s and [45/− 45]4s, respectively.

(a) Orthogrid-stiffener (b) T-stiffener (c) Blade-stiffener

Figure 17. 3D finite element model and its unit cell of stiffened FRP panels with different stiffening
forms.

The static displacements along the center line of the stiffened FRP panels under the
CCCC boundary condition and 5 kPa of uniform load were analyzed. The comparative
results in Figure 18 show that the displacement of the blade-stiffened FRP panel was
the largest, followed by the orthogrid- and T-stiffened FRP panels due to the fact that
the equivalent bending stiffness of T-stiffened FRP panel was greater than the other two
stiffened FRP panels.
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Figure 18. Comparison of the displacements along the center line of the stiffened FRP panel with
different stiffening forms under the CCCC boundary condition and a 5 kPa uniform load.

Table 4 shows the first four natural frequencies of the stiffened FRP panel with different
stiffening forms under the CCCC boundary condition. The first natural frequency of the
T-stiffened FRP panel was the largest. From the second order, the natural frequency of
the orthogrid-stiffened FRP panel was the largest, followed by the T- and blade-stiffened
FRP panels.

Table 4. Influence of the different stiffening forms on the natural frequencies (Hz) of stiffened FRP
panels under the CCCC boundary condition.

Orders T-Stiffened Panel Orthogrid-Stiffened Panel Blade-Stiffened Panel

1

145.88 103.68 76.24

2

147.50 212.48 77.54

3

150.75 212.48 80.68

4

154.38 283.97 86.30



Materials 2021, 14, 4908 20 of 21

The comparative results showed that the natural frequencies of the OSFP increased
faster with increasing modal order, while those of the T- and blade-stiffened FRP panels
showed little change. The vibration modes of the T- and blade-stiffened FRP panels were
basically the same, but the vibration modes of the orthogrid-stiffened FRP panel were very
different (there were one and two half-waves along the x1 direction, two half-waves along
the x2 direction, and two half-waves along the x1, and x2 directions for the first, second,
third, and forth mode shapes, respectively). It was concluded that the vibration modes of
the stiffened FRP panel could be changed by adjusting the stiffening forms.

6. Conclusions

In this work, a VAM-based reduced-order plate model was established to analyze the
effective performance of the orthogrid-stiffened FRP panel (OSFP). The influences of the
material and structural parameters of the OSFP were investigated by parametric studies,
and the following conclusions were drawn.

(1) The results of static displacement, local field distributions, natural frequencies
and buckling loads predicted by 2D-RPM were consistent with those of 3D FE model,
but the computational efficiency was greatly improved, which verifies the accuracy and
effectiveness of the VAM-based reduced-order plate model.

(2) The equivalent stiffness increased gradually with increasing stiffener thickness
or height and decreasing length–width ratio or periodic length. The influences of the
structural parameters on the buckling load were closely related to the equivalent stiffness.
The effect of the stiffener height on the natural frequency of the OSFP was much greater
than those of the other structural parameters.

(3) Different layup configurations had significant influences on the equivalent stiffness
and buckling load of the OSFP, while they had little effect on the vibration modes. With
the increase in the 0◦ ply ratio, the equivalent stiffness in the fiber direction increased
significantly, and the first buckling load and natural frequency increased gradually. The
static displacement and vibration modes of the orthogrid-stiffened FRP panel were different
from those of the blade- and T-stiffened FRP panels, indicating that the vibration modes of
the stiffened FRP panel could be varied by adjusting the stiffening forms.
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