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Abstract: This paper numerically investigates the required superplasticizer (SP) demand for self-
consolidating concrete (SCC) as a valuable information source to obtain a durable SCC. In this re-
gard, an adaptive neuro-fuzzy inference system (ANFIS) is integrated with three metaheuristic al-
gorithms to evaluate a dataset from non-destructive tests. Hence, five different non-destructive test-
ing methods, including J-ring test, V-funnel test, U-box test, 3 min slump value and 50 min slump 
(T50) value were performed. Then, three metaheuristic algorithms, namely particle swarm optimi-
zation (PSO), ant colony optimization (ACO) and differential evolution optimization (DEO), were 
considered to predict the SP demand of SCC mixtures. To compare the optimization algorithms, 
ANFIS parameters were kept constant (clusters = 10, train samples = 70% and test samples = 30%). 
The metaheuristic parameters were adjusted, and each algorithm was tuned to attain the best per-
formance. In general, it was found that the ANFIS method is a good base to be combined with other 
optimization algorithms. The results indicated that hybrid algorithms (ANFIS-PSO, ANFIS-DEO 
and ANFIS-ACO) can be used as reliable prediction methods and considered as an alternative for 
experimental techniques. In order to perform a reliable analogy of the developed algorithms, three 
evaluation criteria were employed, including root mean square error (RMSE), Pearson correlation 
coefficient (r) and determination regression coefficient (R2). As a result, the ANFIS-PSO algorithm 
represented the most accurate prediction of SP demand with RMSE = 0.0633, r = 0.9387 and R2 = 
0.9871 in the testing phase. 

Keywords: artificial intelligence; metaheuristic algorithm; superplasticizer demand; self-consoli-
dating concrete 

1. Introduction
Over the past few years, several studies were carried out to investigate the relation-

ship between the percentage of mixing pozzolanic materials with cement and water for 
obtaining the optimum water-to-cement ratio in different types of concrete. Many re-
searchers have worked on the application of cement replacements, such as fly ash, silica 
fume and slag, in concrete mixes [1–5]. The effect of natural powders, such as pumice, rice 
husk ash (RHA) and perlite on concrete properties, have been also investigated [6–9]. In-
corporating concrete with pumice led to a higher strength-to-weight ratio in comparison 
with concrete with cement [10–15]. Slag is another most used cement replacement pow-
der, which can provide some benefits such as low heat in hydration, proper performance, 
resistance to sulfate attack, acid, abrasion and corrosion [16]. 

Self-consolidating concrete (SCC) is one of the common types of concrete, which has 
been used in structural applications due to suitable workability and the spreading ability 
without the need for mechanical vibration [17]. Using a lower value of coarse aggregates 
in comparison to fine aggregates and higher cement content leads to better compactability 
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and lower segregation and enhances the workability of concrete. Compactability can be 
enhanced by working on SCC mix design. In order to obtain a sustainable SCC, a reliable 
mix design is required. Slump retention is a critical parameter in SCC mix design, which 
has been widely investigated in recent years. One of the governing parameters in control-
ling slump retention is superplasticizer (SP) demand. Slump loss is the difference between 
measured slumps at various times of concrete production. The required amount of SP in 
SCC is directly related to the slump loss so that by increasing slump loss, more SP demand 
is required. Bani Ardalan et al. [18] studied the workability and compressive strength of 
SCC incorporating pumice, slag and fly ash as supplementary cementitious materials. The 
cement replacements proportions included 10% to 50% as binary mix designs. Silica fume 
was also used along with pumice in some mixes as ternary mix designs. It was found that 
the properties of mixtures were improved with silica fume incorporation. Shariati et al. 
[19] showed that using pumice powder and slag as cement replacements in SCC leads to 
promising results. However, more explorations on the amount of SP are still required to 
produce concrete with higher workability and placeability. There are limited non-destruc-
tive tests available for concrete, which are mostly related to fresh properties. Five key de-
sign parameters of SCC, including J-ring, U-box, V-funnel, 3 min slump and 50 min slump 
(T50), have a non-destructive nature. 

Partial replacement of cement in SCC with other materials changes the fresh and me-
chanical properties. Although these changes can be observed by experiments, it is not 
simple to identify the most influential parameters on fresh properties and predict the de-
sign parameters. To address this problem, artificial intelligence (AI) models can be em-
ployed, which are able to produce accurate results by simulating human intelligence [20–
24]. Uysal and Tanyildizi [25] used an artificial neural network (ANN) to predict the com-
pressive strength of SCC with mineral additives. They found that the ANN model can be 
an appropriate alternative for experimental methods. Asteris et al. [26] applied ANN 
models to evaluate the mechanical properties of SCC based on the experimental data. It 
was reported that the back propagation neural networks are able to provide reliable re-
sults for predicting the compressive strength of SCC. Nguyen et al. [27] employed two AI 
algorithms to predict the compressive strength of fiber-reinforced high-strength SCC. The 
results indicated that the ANN model was more accurate compared to the ANFIS method. 
Golafshani et al. [28] combined ANN and ANFIS with GWO to develop the hybrid algo-
rithms for predicting the compressive strength of normal strength concrete and high-per-
formance concrete incorporating fly ash and blast furnace slag. It was indicated that hy-
brid models can increase the accuracy of the prediction. Douma et al. [29] developed an 
ANN model to predict the fresh properties and compressive strength of SCC incorporat-
ing fly ash. It was reported that the artificial neural network is an appropriate technique 
for evaluating the properties of SCC. Elemam et al. [30] studied the fresh properties and 
compressive strength of SCC containing limestone powder, silica fume and fly ash using 
an ANN model. It was concluded that the proposed optimization model is able to deter-
mine the optimum values of variables to achieve the desirable properties of SCC. Azimi-
Pour et al. [31] deployed linear and non-linear support vector machine models to predict 
the compressive strength and fresh characteristics of high volume fly ash SCC. They de-
duced that compared to other kernel functions, the results of the SVM with radial basis 
function are more reliable. 

Adaptive neuro-fuzzy inference system (ANFIS) as an intelligence method can learn 
and adapt automatically to solve optimization problems. In contrast to most analytical 
approaches, ANFIS does not require identifying the system parameters and therefore can 
find simpler solutions for multivariable problems. ANFIS is able to produce the best esti-
mate circumstances by eliminating the vagueness in the process via excluding some input 
parameters. The ANFIS network is used to transform the compound performance charac-
teristics into a single performance index. Generally, fuzzy systems are applied to interpret 
and assess the experimental data. However, some shortcomings in the accuracy and ver-
satility of ANFIS have been identified, which were addressed by incorporating classic 
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computing algorithms and optimization techniques [32–36]. Kennedy and Eberhart [37] 
introduced particle swarm optimization (PSO) in 1995, which was an intelligence evolu-
tionary algorithm stimulated by the social behavior of bird flocking or fish schooling. This 
algorithm has a remarkable convergence rate compared to other evolutionary algorithms. 
Besides, ant colony optimization (ACO) is a continuous space algorithm inspired by ob-
servations on ant colonies, which show that they are social insects living in colonies where 
colony survival is more important than the survival of a component. One of the main as-
pects of ants’ behavior is their performance in finding food, particularly detecting the 
shortest path between food sources and nests. This mass intelligence aspect in ant behav-
ior has attracted scientists’ attention to use ACO in different applications. On the other 
hand, differential evolution optimization (DEO) algorithm was presented to overwhelm 
the primary flaw of the genetic algorithm, namely the lack of local search. In the last few 
years, different types of AI models have been applied to predict and evaluate the perfor-
mance of structural elements using experimental data [38–42]. 

Several AI-based models have been utilized to predict the hardened and fresh proper-
ties of concrete. Studies have revealed that using hybrid algorithms in many cases can 
lead to improving the performance of predictive models [43–46]. The main objective of 
this paper is to predict the SP demand of specific SCC by soft computing methods to avoid 
mathematical approaches with high nonlinearity. For this purpose, ANFIS algorithm is 
developed and combined with three metaheuristic algorithms, namely particle swarm op-
timization (PSO), ant colony optimization (ACO) and differential evolution optimization 
(DEO). Besides, the verified experimental data from the literature [18,19] are used to ob-
tain an appropriate replacement for cement and optimize it by reducing environmental 
pollution and increasing the durability and properties of fresh concrete. In addition, the 
results of hybrid algorithms are compared and interpreted to determine the best one. 

2. Experimental Methodology 
A verified series of non-destructive test data has been derived from the literature 

[18,19] and employed in the soft computing process. In this section, for better understand-
ing, some significant data and non-destructive test procedures are presented. 

2.1. Materials 
Pumice, fly ash, slag and silica fume were utilized as the cement alternatives at vari-

ous replacement percentages and applied in binary and ternary mixtures. Table 1 sum-
marizes the specific density and chemical components of the considered cement. 

Table 1. The chemical components of Portland cement and other cementitious materials. 

Components (%) Cement FA 1 Pumice Slag SF 1 
SiO2 22.42 62.8 44.13 33.1 86.2 

Al2O3 4.68 45.9 16.71 13.8 1.44 
Fe2O3 3.68 0.92 1.72 3.12 0.2 
CaO 63.25 2.60 11.09 40.7 3.06 
MgO 3.63 1.40 1.95 8.70 1.32 
SO3 1.74 0.49 0.39 0.60 0.34 

Specific gravity (kg/m3) 3160 2200 2850 2850 2350 
Blaine (m2/kg) 290 260 320 445 20,000 

1 FA: Fly ash, SF: Silica fume. 

2.2. Mix Proportion 
The first series of mix designs consists of fly ash, pumice and slag binaries with re-

placement percentages of 10%, 20%, 30%, 40% and 50% and with a water-to-cement ratio 
of 0.38. The second series includes ternary mixtures of pumice and silica fume with the 
same water-to-cement ratio, as shown in Table 2. The name of each design represents the 
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replacement percentage of that material. The cementitious material content in all designs 
is 500 kg/m2. The dry materials were mixed first, and then water and SP were added. The 
total time of mixing process was about 10 min. After the first three minutes, concrete was 
rested for about four minutes and then mixed again in the machine for three minutes. 
After 10 min, the slump flow test was performed. 

Table 2. Mix proportion of self-consolidating concrete. 

Cement Material 
Powder (kg/m3) Aggregate (kg/m3) 

Pumice 
Silica 
Fume Slag 

Fly 
Ash OPC Gravel Sand Water (kg/m3) 

Control – – – – 500 1070 580 191 
FA10 – – – 50 450 1063 590 191 
FA20 – – – 100 400 1052 584 191 
FA30 – – – 150 350 1040 578 191 
FA40 – – – 200 300 1029 571 191 
FA50 – – – 250 250 1017 565 191 
Pu10 50 – – – 450 1072 595 191 
Pu20 100 – – – 400 1069 594 191 
Pu30 150 – – – 350 1066 592 191 
Pu40 200 – – – 300 1063 590 191 
Pu50 250 – – – 250 1060 589 191 
Slg10 – – 50 – 450 1072 595 191 
Slg20 – – 100 – 400 1069 594 191 
Slg30 – – 150 – 350 1066 592 191 
Slg40 – – 200 – 300 1063 590 191 
Slg50 – – 250 – 250 1069 580 191 

Pu25-SF5 125 25 – – 350 1063 590 191 
Pu45-SF5 225 25 – – 250 1057 587 191 
Pu40-SF10 250 50 – – 200 1051 584 191 

2.3. Non-Destructive Test Method 
The slump flow test was performed based on ASTM C1611 to assess the workability 

of fresh concrete in SCC at different intervals. This test measures the concrete propagation 
after the funnel removal. Results of slump flow examination indicate the degree of filling 
ability and SCC stability. To achieve the target slump flow for each mixture, J-ring, V-
funnel and U-box tests were performed on fresh SCC according to EFNARC standards. In 
order to prepare samples for the above tests, at first, each mixture should be stirred for 20 
s. Each test methodology is summarized as follows: 
(a) As shown in Figure 1a, the J-ring apparatus includes a series of rebars positioned like 

a cage around the slump cone. The J-ring flow test measures the diameter of flow and 
the difference between concrete height inside and outside the J-ring (H2–H1). The 
slump flow test was performed with and without the J-ring in place. The passing 
ability was measured as an alteration in slump flow. 

(b) The flow-ability of concrete with aggregate with a maximum size of 20 mm was 
measured by the V-funnel flow test, as indicated in Figure 1b. The apparatus includes 
a funnel with 12 L concrete capacity. The workability of concrete was determined by 
measuring the time taken by the concrete to flow from the V-funnel after 10 s and 5 
min of preparing concrete. Once segregation occurs in concrete, the flow time of con-
crete increases significantly. 

(c) The U-box apparatus (Figure 1c) includes a vessel, which is divided into two com-
partments by a wall located in the middle. The middle wall includes a sliding gate, 
which can be lifted. To conduct the U-box test, the left-hand section is filled with 
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about 20 L concrete and then, the gate is lifted to allow the fresh concrete to freely 
flow into the other section. The result is reported by measuring the concrete heights 
in the two sections and calculating the difference (H2–H1). 

(a) (b) 

 
(c) 

Figure 1. Various test methods: (a) J-ring test; (b) V-funnel test; (c) U-box test. 

3. Test Results 
3.1. Fresh Concrete Properties 

In binary mixes of slag and pumice, slump flow drop decreases with increasing re-
placement percentage. Figure 2a,b indicates an increasing trend in slump flow from the 
initial moment until 10 min after the beginning of the first mixing, but Figure 2c depicts 
the slump loss at the fiftieth minute. The experiment was repeated more than four times 
for different percentages to increase the accuracy and confirmation of observations, and 
the same results were observed. The increasing trend of slump flow could be related to 
the physical properties of pumice particles. It seems that in the first few minutes, the pum-
ice particles are capable of absorbing mixed water and, after a while, the absorbed water 
is returned to the mixture. This ability of pumice allows the mixture to maintain the water-
to-cement ratio and slump flow in the first minutes. However, after several minutes, the 
workability deteriorates since the slump loss starts within the mixture. 
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(a) (b) 

(c) 

Figure 2. Different slump values in: (a) Instant slump, (b) 10 min slump, (c) 50 min slump (T50). 

3.2. Superplastisizer Consumption 
According to [18,19], for better comparison, the SP demand and slump loss between 

10 and 50 min for all binary mixes are compared, as can be seen in Figures 3 and 4. All 
slump losses are converted to relative numbers for improving the analysis. The control 
specimen of each binary is assumed 100%, and the other designs are proportioned based 
on each specimen. The amount of SP to achieve a slump of 65 ± 2 is determined in the 10th 
minute. The results show that more SP is consumed by binary pumice mixes to reach a 
slump of 65 ± 2, which has a lower slump loss. Increasing the replacement percentage 
leads to lower consumption of SP. 

At the beginning of the mixing process, compared to other specimens, samples with 
slag represented lower viscosity due to lower water absorption (glass crystalline particles 
absorb less water compared to pumice and fly ash). These properties of slag make the 
mixture highly sensitive to SP where adding only a very small amount of SP more than 
usual will cause concrete segregation. However, Figures 3 and 4 indicate that slag has a 
better ability to keep the workability for a longer time in the desired range due to the 
moderate SP consumption and the reasonable slump loss. On the other hand, fly ash has 
the lowest SP demand and the highest slump loss due to the spherical shape of its parti-
cles, which results in decreasing intergranular fraction and improving mixture fluidity. 
High alumina oxide (45.9%) in fly ash reduces the curing period and therefore slump flow 
loss occurs faster. The alumina oxide value is much lower for pumice and slag powder, 
which is confirmed by the obtained results. 

According to the results of binary designs, more SP is used by pumice compared to 
the other two powders for a single slump flow. SP value also increases with increasing 
replacement but causes less slump flow. On the other hand, adding silica fume to the mix-
ture only causes slump loss over time and does not have a significant effect on the initial 
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slump and amount of initial SP used. Thus, in the ternary mixes of pumice and silica fume, 
a mixture containing pumice with a higher percentage of replacement requires more SP. 
However, its slump would decrease, and the mixture containing more silica fume indi-
cates opposite results. As seen in Figure 4, these explanations are in close agreement with 
the obtained results. 

According to the findings of this section, it can be concluded that there is an inverse 
relationship between the amount of SP demand and the slump flow loss, which shows 
that lower SP demand causes higher slump loss. The results also suggest that 30% replace-
ment for pumice and slag is very economical and justifiable in binary designs. In ternary 
designs, 45% pumice replacement with 5% silica fume could be propitious to the design 
requirement. 

 

Figure 3. SP consumption and relative slump flow loss in the range 10–50 min for binary designs 
[19]. 

 

Figure 4. SP consumption and relative slump flow loss in the range 10–50 min for ternary designs 
[19]. 

Unlike a binary mix of slag and pumice, fly ash shows the opposite result. Increasing fly 
ash proportion leads to rising slump loss. This behavior could be related to the fine parti-
cles of fly ash compared to the size of cement, pumice and slag aggregates, which provide 
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more surface and lead to higher friction between particles. The increase in slump flow 
continues by adding silica fume to the ternary mix of pumice and silica fume, which is 
indicated in Figures 3 and 4. Silica fume with a surface area of 2000 kg/m2 has the smallest 
particle size among all powders. Therefore, it is expected that by increasing the replace-
ment value, a further slump flow drop occurs. However, the results in the thirtieth minute 
show that the presence of pumice with the increasing trend of slump flow is capable of 
overcoming the slump flow loss induced by silica fume. In all specimens, the slump flow 
should not be lower than the initial control specimen. 

4. Artificial Intelligence Method 
4.1. Adaptive Neuro-Fuzzy Inference System (ANFIS) 

ANFIS is a fuzzy Sugeno model placed in an adaptive system framework to build 
models and then validate developed ones to facilitate training and adaptation. The fuzzy 
inference system is considered as the core of the ANFIS network. The inputs are received 
by the first layer and then converted to fuzzy values through the membership function. A 
combination of least-squares and back-propagation gradient descent methods are used 
for training parameters of membership function to simulate the given training data set. 
Figure 5 shows the structure of the whole system formed of five different layers including 
fuzzy layer, product layer, normalized layer, de-fuzzy layer and total output layer. 

 
Figure 5. ANFIS basic architecture [43]. 

4.2. Particle Swarm Optimization (PSO) 
Another component of the swarm intelligence algorithm is particle swarm optimiza-

tion (PSO) [37,47], inspired by the social behavior of bird flocks or fish schools. This tech-
nique is highly comparable to the evolutionary computing methods such as genetic algo-
rithm (GA), which has been indicated in Figure 6. Similar to other population-based intel-
ligence systems, PSO uses a preliminary random solution. The optimal search is achieved 
by updating the generation without the need for evolutionary operators such as crosso-
vers and mutations. Potential solutions are often referred to as particles in PSO. These 
particles fly in solution space according to their own experiences and the current best par-
ticles. 
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Figure 6. PSO sequential flowchart. 

4.3. Ant Colony Optimization (ACO) 
The ant algorithm is a very powerful way to solve hybrid optimization problems. 

This algorithm is one of the metaheuristic methods inspired by the optimal behavior of 
ants [48]. Algorithms derived from the ant colony algorithm are a subset of swarm intel-
ligence methods. This methodology is a field of research and study, which investigates 
concept-inspired algorithms (Swarm Behaviors). Congestion intelligence algorithms con-
sist of a set of simple individual entities that interact and collaborate through self-organ-
izing. Self-organization means the lack of a central control system to control and coordi-
nate the members of a crowded intelligence system. In Figure 7, the employed approach 
of ACO has been indicated as a sequential flowchart. 



Materials 2021, 14, 4885 10 of 22 
 

 

 
Figure 7. ACO sequential flowchart. 

4.4. Differential Evolution Optimization (DEO) 
The DEO algorithm proposed by Price and Storn [49] is a population-based algorithm 

similar to a genetic algorithm (GA) with comparable operators: crossover, mutation and 
selection. The primary difference is that GAs depend on crossover while DEO is based on 
mutation operation, which relies on the difference between randomly sampled pairs of 
solutions in the population. Figure 8 shows the main steps of the DEO algorithm. 
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Figure 8. DEO sequential flowchart. 

4.5. Architecture of ANFIS-PSO/ACO/DEO 
Figure 9 illustrates the combination of sequential PSO/ACO/DEO and ANFIS [43]. In 

PSO, a swarm begins with a set of random solutions, and si⇀ represents the position of 
the particle. Similarly, the particle swarm moves in the problem space, where vi⇀ indi-
cates the velocity of the particle. At every time interval, the function (f) is determined by 
inputting si⇀ through a hybrid algorithm. Each particle records the best position associ-
ated with the best fit obtained at this time in the pi⇀ vector. Pig⇀ tracks the most appli-
cable location for any neighbour member ID. In the generic version of PSO, Pig⇀ repre-
sents the most suitable point in the entire population. Depending on the optimal position 
of the individual pi(t)⇀ and p⇀ig(t) neighborhood, every particle (i) achieves a new ve-
locity, which can be presented by: 

v_i⇀(t + 1) = wv_i⇀(t) + c_1 ∅_1⇀·(p_i⇀(t) − x_i⇀(t)) + c_2 ∅_2⇀·(p_i⇀(t) − x_i⇀(t)) (1)

where w represents the inertia weight, c1 and c2 are the positive acceleration coefficients, ∅1⇀ and ∅2⇀ denote uniformly distributed random vectors in [0,1], where each dimen-
sion tries a random value. The vi⇀ limit in the [-vmax⇀,vmax⇀] series depends on the 
problem. If the velocity exceeds the above limit, the velocity may be rescheduled within 
the appropriate limits. Based on their velocity, each particle changes its position according 
to the following equation: 

s_i⇀(t + 1) = s_i⇀(t) + v_i⇀(t + 1) (2)

Based on vi⇀ and si⇀, the particle population tends to cluster around the best. 

Initialization

Evaluation

Repeat

Mutation

Recombination

Evaluation

Selection

Until (termination 
criteria are met) 
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Figure 9. Diagram of the sequential combination of PSO/ACO/DEO and ANFIS. 

4.6. Performance Evaluation 
The data obtained by Equation (2) requires to be normalized, since the problem of 

prediction is non-linear. Hence, pre-processing and post-processing can be carried out 
[50], and the input data is normalized in the interval of −1 and 1 through the following 
formulas: 𝑥௜ = 𝑥௜௢ − 𝑥௠௜௡𝑥௠௔௫ − 𝑥௠௜௡ × 2 − 1 (3)𝑦௜ = 𝑦௜௢ − 𝑦௠௜௡𝑦௠௔௫ − 𝑦௠௜௡ × 2 − 1 (4)

where 𝑥௜௢ and 𝑥௜ are the i-th component of each input vector before and after normali-
zation, respectively, and 𝑦௜௢ and 𝑦௜ are the i^th component of the output vector before 
and after normalization, respectively. Also, 𝑥௠௜௡, 𝑥௠௔௫, 𝑦௠௜௡, and 𝑦௠௔௫ are the minimum 
and maximum values of each input and output vector, respectively. 

By evaluating the performance of the models, the training phase is composed of 70% 
of the data, and the other 30% is assigned to the testing phase. Then, root mean square 
error (RMSE), Pearson correlation coefficient (r) and determination coefficient (R2) are 
used as performance indices of the models. These indicators are presented as follows: 
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where P and T are the predicted and target values, respectively, and S is the total number 
of training or testing samples. The above equations were written in MATLAB environ-
ment so that at the first stage, predicted and target values were placed in an individual 
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file. Secondly, equations were filled with corresponding values by written the codes and 
finally, correlation coefficient values were derived from the MATLAB software and 
placed in another file. 

4.7. Statistical Data 
The obtained results from experiments on concrete specimens include 26 data sets. 

The results of the J-ring, U-box, V-funnel tests, slump value in the third minute and slump 
value in the fiftieth minute were the inputs of the models, and the SP demand was con-
sidered as the output. Table 3 shows some details of the dataset, and Table 4 represents 
the statistical data used for hybrid models. 

Table 3. Details of the input and output variables. 

Inputs and Outputs Variables Minimum Maximum Mean Value Standard Deviation 
Input 1 J-ring (mm) 0.70 6.15 2.71 1.44 
Input 2 U-box (mm) 0.50 25.00 4.12 5.19 
Input 3 V-funnel (s) 5.00 60.00 8.73 10.58 
Input 4 3 min Slump (mm) 41.00 66.00 52.85 6.72 
Input 5 50 min Slump (mm) 43.00 62.00 55.81 4.49 
Output SP demand (mg) 0.25 2.22 0.61 0.37 

Table 4. Statistical data. 

Input 1 Input 2 Input 3 Input 4 Input 5 Output 
J-Ring (mm) U-Box (mm) V-Funnel (s) 3 min Slump (mm) 50 min Slump (mm) SP Demand (mg) 

1 0.5 5 52 58 0.45 
1 1 5 66 59 0.47 
2 1 5 46 58 0.48 
2 1.5 7 55 62 0.5 
3 2 8 52 60 0.53 
3 2.5 9 55 60 0.55 
1 0.5 5 52 58 0.45 
1 1 5 66 59 0.43 
1 1 5 46 58 0.4 
2 1.5 7 55 62 0.38 
3 2 7 52 60 0.35 
3 2 8 55 55 0.25 

0.7 3 6 42 50 0.58 
5 12 9 55 55 0.57 

2.25 8 8 55 55 0.55 
2.5 4 10 58 56 0.53 
2 3 7 66 50 0.51 

3.15 5.5 7 58 56 0.50 
4.25 4 5 53 52 0.53 
3.05 10 5 46 52 0.63 
3.1 1 6 53 52 0.72 

3.28 7 5 44 49 0.65 
2.75 2 6 53 59 0.60 
3.65 2 7 41 57 0.95 
5.75 4 10 52 56 1.14 
6.15 25 60 46 43 2.22 
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4.8. Model Development 
Table 5 summarizes the information for the 26-row data set obtained from experi-

ments, which are used in the current research. 

Table 5. Inputs and outputs at a glance. 

Inputs and Outputs Minimum Maximum Average 
J-ring (mm) 0.70 6.15 2.71 
U-box (mm) 0.50 25.00 4.12 
V-funnel (s) 5.00 60.00 8.73 

Slump 3 min (mm) 41.00 66.00 52.85 
Slump 50 min (mm) 43.00 62.00 55.80 

SP demand (mg) 0.25 2.22 0.61 

ANFIS-PSO, ANFIS-ACO and ANFIS-DEO as hybrid algorithms were used for the 
first time. Each algorithm has parameters that can be changed to achieve the desired re-
sults. The parameters for PSO algorithm are population size, iterations, inertia weight, 
damping ratio, personal and global learning coefficient. The ACO algorithm parameters 
are population size, iterations, sample size, intensification factor and deviation-distance 
ratio. The DEO algorithm parameters are size, iterations, lower bound of scaling factor, 
upper bound of scaling factor and crossover probability. These parameters should also be 
determined in hybrid algorithms. The hybrid models were several times run for different 
parameters and tuned to achieve the best performance. Tables 6–8 provide the optimal 
settings for each algorithm that resulted from many experiments. 

Table 6. Parameter characteristics used for PSO. 

FIS clusters Population size Iterations Inertia Weight Damping Ratio 
Learning Coefficient 

Personal Global 
10 240 150 1 0.99 1 2 

Table 7. Parameter characteristics used for ACO. 

FIS Clusters Population Size Iterations Sample Size Intensification Factor Deviation-Distance Ratio 
10 240 150 480 0.5 1 

Table 8. Parameter characteristics used for DEO. 

FIS clusters Population size Iterations 
Lower Bound of 
Scaling Factor 

Upper Bound of 
Scaling Factor Crossover Probability 

10 240 150 0.2 0.8 0.1 

5. Discussion of Results 
ANFIS was integrated with three metaheuristic algorithms, including PSO, ACO and 

DEO, to calculate the amount of required superplasticizer in concrete. The ANFIS param-
eters were constant in all three states. Cluster account has chosen 10% of data for training 
(70% of the input data) and testing (30% of the input data). The results show that all three 
hybrid neural networks are reliable. However, Figure 10 and Table 9 show that the ANFIS-
DEO algorithm has slightly overtrained. After performing several experiments that com-
bined different input states as well as various states of neural network algorithm param-
eters, the best results were selected for each algorithm as follows: 

As shown in Table 9, the performance parameters in the testing phase for ANFIS-
PSO model are RMSE = 0.0633, r = 0.9387 and R2 = 0.9871, for ANFIS-ACO are RMSE = 
0.0864, r = 0.9073 and R2 = 0.8231, and for ANFIS-DEO are RMSE = 0.3717, r = 0.9362 and 
R2 = 0.8765. In the training phase, these parameters for ANFIS-PSO were RMSE = 0.0529, 
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r = 0.9935 and R2 = 0.8811 while ANFIS-ACO provided RMSE = 0.0854, r = 0.9787 and R2 = 
0.9579, and ANFIS-DEO obtained RMSE = 0.0638, r = 0.9556 and R2 = 0.9132. 

Table 9. The calculated accuracy criteria for the performance of the  implemented models. 

Ensemble Model 
Network Result 

Training Phase Testing Phase 
RMSE r R2 RMSE r R2 

ANFIS-PSO 0.0529 0.9935 0.8811 0.0633 0.9387 0.9871 
ANFIS-ACO 0.0854 0.9787 0.9579 0.0864 0.9073 0.8231 
ANFIS-DEO 0.0638 0.9556 0.9132 0.3717 0.9362 0.8765 

Given that the best result for RMSE is the lowest one, and for r, the best positive 
correlation coefficient is 1.0, the numbers closer to 1.0 are; therefore, better results. Con-
sidering all the conditions stated above, it is clear that the ANFIS-PSO algorithm performs 
better than the other two algorithms in the testing phase, as shown in Figure 10. 

  
(a) (b) 

 
(c) 

Figure 10. Comparison of evaluation parameters: (a) RMSE, (b) Pearson correlation coefficient, (c) determination coeffi-
cient. 

Figure 11 shows comparable slope lines of both training and testing phases of em-
ployed algorithms. According to Figure 11a, ANFIS-PSO and ANFIS-ACO algorithms 
produced very good results and performed better in the training phase. By observing the 
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slope of the lines in Figure 11b, it is clear that ANFIS-PSO and ANFIS-ACO algorithms 
are able to find a better relationship between the input and output data and also provide 
appropriate results in the testing phase. 

(a) 

(b) 

Figure 11. Comparison of regression lines: (a) Testing phase, (b) training phase. 

The calculated regression equations for each algorithm are shown in Table 10, and 
the corresponding graphs are indicated in Figures 12–14. In both training and testing 
phases, the ANFIS-PSO algorithm performs better than ANFIS-ACO and ANFIS-DEO. 
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(a) (b) 

Figure 12. Scatter plot of the SP demand prediction for ANFIS-PSO: (a) Testing phase (b) Training phase. 

  

(a) (b) 

Figure 13. Scatter plot of the SP demand prediction for ANFIS-ACO: (a) Testing phase, (b) training phase. 

  

(a) (b) 

Figure 14. Scatter plot of the SP demand prediction for ANFIS-DEO: (a) Testing phase, (b) training phase. 
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Table 10. The calculated regression equation of the implemented models. 

Ensemble Model 
Network Result 

Training Phase Testing Phase 
Regression Equation Regression Equation 

ANFIS-PSO y = 1.0414x − 0.0133 y = 1.0571x − 0.033 
ANFIS-ACO y = 1.0224x − 0.0174 y = 1.1189x − 0.0434 
ANFIS-DEO y = 1.0282x + 0.0073 y = 1.8328x − 0.2297 

By comparing Figures 15–17, the better capability of the ANFIS-PSO model for pre-
dicting each of the measured values of the test samples can be observed, which is more 
accurate than other models. 

  
(a) (b) 

Figure 15. Comparison of outputs and targets for ANFIS-PSO: (a) Testing phase, (b) training phase. 

  
(a) (b) 

Figure 16. Comparison of outputs and targets for ANFIS-ACO: (a) Testing phase, (b) training phase. 
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(a) (b) 

Figure 17. Comparison of outputs and targets for ANFIS-DEO: (a) Testing phase, (b) training phase. 

According to Table 11, error numbers indicate the accuracy of the results in which 
the smaller value implies the accurate process. The standard deviation value directly il-
lustrates the behavior of the results in accordance with the mean value, where the smaller 
the standard deviation number, the closer the results are to the mean value. Therefore, the 
ANFIS-PSO algorithm performs better in both the testing and training phases. 

Table 11. The calculated  errors of the implemented models. 

Ensemble Model 
Network Result 

Training Phase Testing Phase 
Errors Mean Standard Deviation Errors Mean Standard Deviation 

ANFIS-PSO 0.0033 0.0543 0.0092 0.0669 
ANFIS-ACO −0.0027 0.0878 0.0169 0.0905 
ANFIS-DEO 0.0228 0.0613 0.1916 0.3405 

Figure 18 shows the error diagrams with corresponding envelop for all hybrid algo-
rithms. It can be seen that the ANFIS-PSO has a smaller error interval, indicating the least 
error mean of this model. 
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(c) 

Figure 18. Error histograms for: (a) ANFIS-PSO, (b) ANFIS-ACO and (c) ANFIS-DEO algorithms. 

As discussed comprehensively, ANFIS can be considered as a reliable predictive 
method to be integrated with other metaheuristics algorithms, like previous studies 
[28,43,44] which have used hybrid algorithms to solve non-linear relationships between 
input and output variables. 

6. Conclusions 

Self-consolidating concrete (SCC) requires a higher dosage of cement compared to 
normal concrete, which is a controversial issue from an environmental point of view. In 
order to solve this problem, researchers studied different natural and synthetic powders 
as partial replacements. The remaining workability of SCC is an important factor to 
achieve a sustainable mix design, which is directly related to superplasticizer (SP) content 
in the SCC mix. SP demand is an optimum value of a dosage, which is derived from non-
destructive tests. This study was aimed to investigate the application of artificial intelli-
gence algorithms to overcome the difficulties in the prediction of SP demand through non-
destructive tests including J-ring, U-box, V-funnel, 3 min slump and T50. To this end,  
ANFIS was integrated with three metaheuristic algorithms, namely PSO, ACO and DEO. 
The most important results can be summarized as follows: 
• The developed hybrid algorithms were trained by the collected dataset and, finally, 

the SP demand values were predicted for specified SCC mixes. In terms of perfor-
mance parameters, all hybrid algorithms obtained promising results. 

• Compared to other proposed algorithms, ANFIS-PSO represented the best evalua-
tion criteria including RMSE = 0.0633, r = 0.9387 and R2 = 0.9871 in the testing phase 
and RMSE = 0.0529, r = 0.9935 and R2 = 0.8811 in the training phase. Prediction errors 
were also in an acceptable range where the ANFIS-PSO indicated the lowest ones. 
Additionally, test and train results of all three algorithms were presented in an anal-
ogous regression diagram for a better understanding of the accuracy and eligibility 
of each technique. 

• It was found that metaheuristic algorithms, especially the PSO technique, are able to 
cover the prediction problems of non-linear data. In general, the best performance of 
hybrid models was obtained for ANFIS-PSO, ANFIS-ACO and ANFIS-DEO, respec-
tively. In addition, it seems that ANFIS can be a good base for other metaheuristic 
optimization algorithms such as genetic algorithm, firefly and bee colony. 

  

0

0.05

0.1

0.15

0.2

0.25

0

0.5

1

1.5

2

2.5

-0.063 -0.011 -0.008 0.085 0.187 0.268 0.990

M
ea

n

Fr
eq

ue
nc

y

Errors



Materials 2021, 14, 4885 21 of 22 
 

 

Author Contributions: Conceptualization, M.R., Y.F. and L.W.; methodology, M.M. and P.M.; soft-
ware, P.M. and M.M.; validation, M.R., Y.F. and L.W.; formal analysis, P.M.; investigation, M.M.; 
resources, Y.F.; data curation, P.M.; writing—original draft preparation, P.M. and M.M.; writing—
review and editing, M.M. and M.R.; visualization, L.W.; supervision, M.R. and Y.F.; project admin-
istration, P.M.; funding acquisition, M.M. and M.R. All authors have read and agreed to the pub-
lished version of the manuscript. 

Funding: This research received no external funding. 

Data Availability Statement: Data sharing is not applicable to this article. 

Conflicts of Interest: The authors declare no conflict of interest. 

References 
1. Dehwah, H. Mechanical properties of self-compacting concrete incorporating quarry dust powder, silica fume or fly ash. Constr. 

Build. Mater. 2012, 26, 547–551. 
2. Choudhary, R.; Gupta, R.; Nagar, R.; Jain, A. Mechanical and abrasion resistance performance of silica fume, marble slurry 

powder, and fly ash amalgamated high strength self-consolidating concrete. Constr. Build. Mater. 2021, 269, 121282. 
3. Xu, D.-S.; Huang, M.; Zhou, Y. One-dimensional compression behavior of calcareous sand and marine clay mixtures. Int. J. 

Geomech. 2020, 20, 04020137. 
4. Xu, D.; Liu, Q.; Qin, Y.; Chen, B. Analytical approach for crack identification of glass fiber reinforced polymer–sea sand concrete 

composite structures based on strain dissipations. Struct. Health Monit. 2020, 1475921720974290. 
5. Abedini, M.; Zhang, C. Dynamic performance of concrete columns retrofitted with FRP using segment pressure technique. 

Compos. Struct. 2021, 260, 113473. 
6. Hossain, K.M.A. Volcanic ash and pumice as cement additives: Pozzolanic, alkali-silica reaction and autoclave expansion char-

acteristics. Cem. Concr. Res. 2005, 35, 1141–1144. 
7. Aydin, A.; Gül, R. Influence of volcanic originated natural materials as additives on the setting time and some mechanical 

properties of concrete. Constr. Build. Mater. 2007, 21, 1277–1281. 
8. Ye, M.; Jiang, J.; Chen, H.M.; Zhou, H.Y.; Song, D.D. Seismic behavior of an innovative hybrid beam-column connection for 

precast concrete structures. Eng. Struct. 2021, 227, 111436. 
9. Zhang, C.; Gholipour, G.; Mousavi, A.A. State-of-the-art review on responses of RC structures subjected to lateral impact loads. 

Arch. Comput. Methods Eng. 2020, 28, 1–31. 
10. Bınıci, H.; Durgun, M.Y.; Rızaoğlu, T.; Koluçolak, M. Investigation of durability properties of concrete pipes incorporating blast 

furnace slag and ground basaltic pumice as fine aggregates. Sci. Iran. 2012, 19, 366–372. 
11. Granata, M.F. Pumice powder as filler of self-compacting concrete. Constr. Build. Mater. 2015, 96, 581–590. 
12. Ju, Y.; Shen, T.; Wang, D. Bonding behavior between reactive powder concrete and normal strength concrete. Constr. Build. 

Mater. 2020, 242, 118024. 
13. Sun, L.; Yang, Z.; Jin, Q.; Yan, W. Effect of Axial Compression Ratio on Seismic Behavior of GFRP Reinforced Concrete Columns. 

Int. J. Struct. Stab. Dyn. 2020, 20, 2040004. 
14. Abedini, M.; Zhang, C. Dynamic vulnerability assessment and damage prediction of RC columns subjected to severe impulsive 

loading. Struct. Eng. Mech. 2021, 77, 441–461. 
15. Huang, H.; Huang, M.; Zhang, W.; Yang, S. Experimental study of predamaged columns strengthened by HPFL and BSP under 

combined load cases. Struct. Infrastruct. Eng. 2020, 17, 1–18. 
16. Boukendakdji, O.; Kadri, E.-H.; Kenai, S. Effects of granulated blast furnace slag and superplasticizer type on the fresh proper-

ties and compressive strength of self-compacting concrete. Cem. Concr. Compos. 2012, 34, 583–590. 
17. Siddique, R. Self-Compacting Concrete: Materials, Properties and Applications; Woodhead Publishing: Cambridge, UK, 2019. 
18. Ardalan, R.B.; Joshaghani, A.; Hooton, R.D. Workability retention and compressive strength of self-compacting concrete incor-

porating pumice powder and silica fume. Constr. Build. Mater. 2017, 134, 116–122. 
19. Shariati, M.; Rafie, S.; Zandi, Y.; Fooladvand, R.; Gharehaghaj, B.; Mehrabi, P.; Shariat, A.; Trung, N.T.; Salih, M.N.; Poi-Ngian, 

S. Experimental investigation on the effect of cementitious materials on fresh and mechanical properties of self-consolidating 
concrete. Adv. Concr. Constr. 2019, 8, 225–237. 

20. Noori Hoshyar, A.; Rashidi, M.; Liyanapathirana, R.; Samali, B. Algorithm development for the non-destructive testing of struc-
tural damage. Appl. Sci. 2019, 9, 2810. 

21. Yu, Y.; Rashidi, M.; Samali, B.; Yousefi, A.M.; Wang, W. Multi-Image-Feature-Based Hierarchical Concrete Crack Identification 
Framework Using Optimized SVM Multi-Classifiers and D–S Fusion Algorithm for Bridge. Struct. Remote Sens. 2021, 13, 240. 

22. Hosseini, R.; Rashidi, M.; Bulajić, B.Đ.; Arani, K.K. Multi-Objective Optimization of Three Different SMA-LRBs for Seismic 
Protection of a Benchmark Highway Bridge. against Real and Synthetic Ground Motions. Appl. Sci. 2020, 10, 4076. 

23. Mohammadi, M.; Kafi, M.A.; Kheyroddin, A.; Ronagh, H. Performance of innovative composite buckling-restrained fuse for 
concentrically braced frames under cyclic loading. Steel Compos. Struct. Int. J. 2020, 36, 163–177. 

24. Zhu, L.; Zhang, C.; Guan, X.; Uy, B.; Sun, L.; Wang, B. The multi-axial strength performance of composited structural BCW 
members subjected to shear forces. Steel Compos. Struct. 2018, 27, 75–87. 



Materials 2021, 14, 4885 22 of 22 
 

 

25. Uysal, M.; Tanyildizi, H. Predicting the core compressive strength of self-compacting concrete (SCC) mixtures with mineral 
additives using artificial neural network. Constr. Build. Mater. 2011, 25, 4105–4111. 

26. Asteris, P.G; Kolovos, K.G.; Douvika, M.G.; Roinos, K. Prediction of self-compacting concrete strength using artificial neural 
networks. Eur. J. Environ. Civ. Eng. 2016, 20, s102–s122. 

27. Nguyen, T.T.; Pham Duy, H.; Pham Thanh, T.; Vu, H.H. Compressive Strength Evaluation of Fiber-Reinforced High.-Strength 
Self-Compacting Concrete with Artificial Intelligence. Adv. Civ. Eng. 2020, 2020, 3012139. 

28. Golafshani, E.M.; Behnood, A.; Arashpour, M. Predicting the compressive strength of normal and High.-Performance Concretes 
using ANN and ANFIS hybridized with Grey Wolf Optimizer. Constr. Build. Mater. 2020, 232, 117266. 

29. Douma, O.B.; Boukhatem, B.; Ghrici, M.; Tagnit-Hamou, A. Prediction of properties of self-compacting concrete containing fly 
ash using artificial neural network. Neural Comput. Appl. 2017, 28, 707–718. 

30. Elemam, W.E.; Abdelraheem, A.H.; Mahdy, M.G.; Tahwia, A.M. Optimizing fresh properties and compressive strength of self-
consolidating concrete. Constr. Build. Mater. 2020, 249, 118781. 

31. Azimi-Pour, M.; Eskandari-Naddaf, H.; Pakzad, A. Linear and non-linear SVM prediction for fresh properties and compressive 
strength of high volume fly ash self-compacting concrete. Constr. Build. Mater. 2020, 230, 117021. 

32. Vakhshouri, B.; Nejadi, S. Prediction of compressive strength of self-compacting concrete by ANFIS models. Neurocomputing 
2018, 280, 13–22. 

33. Dao, D.V.; Trinh, S.H.; Ly, H.-B.; Pham, B.T. Prediction of compressive strength of geopolymer concrete using entirely steel slag 
aggregates: Novel hybrid artificial intelligence approaches. Appl. Sci. 2019, 9, 1113. 

34. Zhang, C.; Ou, J. Modeling and dynamical performance of the electromagnetic mass driver system for structural vibration con-
trol. Eng. Struct. 2015, 82, 93–103. 

35. Huang, H.; Guo, M.; Zhang, W.; Zeng, J.; Yang, K.; Bai, H. Numerical investigation on the bearing capacity of RC columns 
strengthened by HPFL-BSP under combined loadings. J. Build. Eng. 2021, 39, 102266. 

36. Sun, L.; Li, C.; Zhang, C.; Su, Z.; Chen, C. Early monitoring of rebar corrosion evolution based on FBG sensor. Int. J. Struct. Stab. 
Dyn. 2018, 18, 1840001. 

37. Eberhart, R.; Kennedy, J. Particle swarm optimization. In Proceedings of the IEEE International Conference on Neural Net-
works, Perth, Australia, 27 November–1 December 1995. 

38. Shariati, M.; Mafipour, M.S.; Mehrabi, P.; Ahmadi, M.; Wakil, K.; Trung, N.T.; Toghroli, A. Prediction of concrete strength in 
presence of furnace slag and fly ash using Hybrid. ANN-GA (Artificial Neural Network-Genetic Algorithm). Smart Struct. Syst. 
2020, 25, 183. 

39. Armaghani, D.J.; Hasanipanah, M.; Bakhshandeh Amnieh, H.; Tien Bui, D..; Mehrabi, P.; Khorami, M. Development of a novel 
hybrid intelligent model for solving engineering problems using GS-GMDH algorithm. Eng. Comput. 2019, 36, 1–13. 

40. Chen, F.-X.; Zhong, Y.-C.; Gao, X.-Y.; Jin, Z.-Q.; Wang, E.-D.; Zhu, F.-P.; Shao, X.-X.; He, X.-Y. Non-uniform model of relationship 
between surface strain and rust expansion force of reinforced concrete. Sci. Rep. 2021, 11, 1–9. 

41. Alam, Z.; Zhang, C.; Samali, B. Influence of seismic incident angle on response uncertainty and structural performance of tall 
asymmetric structure. Struct. Des. Tall Spec. Build. 2020, 29, e1750. 

42. Zhang, C.; Mousavi, A.A. Blast loads induced responses of RC structural members: State-of-the-art review. Compos. B Eng. 2020, 
195, 108066. 

43. Mehrabi, P.; Honarbari, S.; Rafiei, S.; Jahandari, S.; Bidgoli, M.A. Seismic response prediction of FRC rectangular columns using 
intelligent fuzzy-based hybrid metaheuristic techniques. J. Ambient Intell. Humaniz. Comput. 2021, 1–19, doi:10.1007/s12652-020-
02776-4. 

44. Yuan, Z.; Wang, L.-N.; Ji, X. Prediction of concrete compressive strength: Research on hybrid models genetic based algorithms 
and ANFIS. Adv. Eng. Softw. 2014, 67, 156–163. 

45. Alam, Z.; Zhang, C.; Samali, B. The role of viscoelastic damping on retrofitting seismic performance of asymmetric reinforced 
concrete structures. Earthq. Eng. Eng. Vib. 2020, 19, 223–237. 

46. Li, C.; Sun, L.; Xu, Z.; Wu, X.; Liang, T.; Shi, W. Experimental Investigation and Error Analysis of High. Precision FBG Displace-
ment Sensor for Structural Health Monitoring. Int. J. Struct. Stab. Dyn. 2020, 20, 2040011. 

47. Sarir, P.; Chen, J.; Asteris, P.G.; Armaghani, D.J.; Tahir, M.M. Developing GEP tree-based, neuro-swarm, and whale optimiza-
tion models for evaluation of bearing capacity of concrete-filled steel tube columns. Eng. Comput. 2021, 37, 1–19. 

48. Shobeiri, V. The optimal design of structures using ACO and EFG. Eng. Comput. 2016, 32, 645–653. 
49. Storn, R.; Price, K. Differential evolution–a simple and efficient heuristic for global optimization over continuous spaces. J. Glob. 

Optim. 1997, 11, 341–359. 
50. Prasad, B.R.; Eskandari, H.; Reddy, B.V. Prediction of compressive strength of SCC and HPC with high volume fly ash using 

ANN. Constr. Build. Mater. 2009, 23, 117–128. 


