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Abstract: PLA is widely used in the field of disposable products for its good transparency, high
strength, high modulus, and good processing performance. However, the crystallization rate and
crystallinity of PLA are weak. In actual production, the PLA products that are typically obtained are
amorphous with poor heat resistance, which greatly limits the application range of PLA products.
Finding an effective nucleating agent to improve the transparency of PLA has been a hot topic in
research. This study found that Cerium fluoride (CeF3) can effectively improve the crystallinity of
PLA/CeF3 (P/F) films. When the content of CeF3 in PLA was 1 wt %, the retention ratio of visible
light transmittance was 82.36%, the crystallinity was 29.8%, and the tensile strength was 59.92 MPa.
Compared to pure PLA, the crystallinity of P/F1 increased by 56% and tensile strength increased by
8.76%. This study provided an alternative scheme that maintained the PLA film’s transparency and
improved the crystallinity of PLA, which significantly expanded the application of PLA.

Keywords: PLA; CeF3; crystallinity; visible light transmittance; transparency

1. Introduction

Polylactic acid (PLA) is a kind of aliphatic thermoplastic polyester and biodegrad-
able biobased polymer [1–10]. In contrast to traditional fossil-based polymers, it is one
of the most promising biobased polymers that plays an important role in the polymer
market [11–16]. It can effectively prevent and alleviate environmental problems such as
“white pollution” [1–4,17]. Moreover, PLA is one of the most suitable candidate materi-
als to replace polystyrene (PS), polyethylene terephthalate (PET), polyethylene (PE) and
polypropylene (PP) [18–23]. Due to its good transparency, high strength, high modulus,
and good processing performance, PLA has broad applications in the field of disposable
products, such as food packaging, tableware, water cup, water bottle, etc.

However, the practical applications of PLA are limited because of its brittleness, poor
toughness, low crystallinity, and fast crystallization speed [24,25]. Some physical proper-
ties, such as the mechanical, heat resistance and barrier properties of PLA, are correlated
to its crystallinity [26]. So far, many studies have been conducted on the crystallization
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behavior of PLA [27–30]. Generally, the crystallinity will be improved by chemical and
physical methods. Chemical methods usually refer to manipulation of the PLA polymer
structure at the molecular level, while physical methods are performed by expanding
the nucleating agent to the crystalline region in the polymer matrix [31,32]. At present,
there are two kinds of nucleating agents: organic nucleating agents and inorganic nu-
cleating agents. Organic nucleators mainly include hydrazide, aliphatic amide, amide,
etc., such as ethylenebisearamide [33], 1,2-hydroxystearamide [34], tmc-328 [35–37] and
N,N′-bis(benzoyl) Diacylhydrazine hexanedioate [38], algal residue nanocellulose, etc. [39].
Inorganic nucleators mainly include montmorillonite, talc powder, mica, calcium carbonate,
carbon nanotubes, graphene, magnesium oxide, etc. [40–45]. In some previous reports,
adding a nucleating agent to PLA can not only increase crystallinity, but also improve its
mechanical properties and thermal stability [44,45].

Due to their large ionic radius and unique electronic structure, rare earth elements
exhibit high coordination number and strong coordination ability, especially with strong
acid elements such as oxygen and sulfur [46]. In this paper, CeF3 as the second phase
was added to polylactic acid by means of coordinated interactions; cerium ions will play
a special role in tuning the crystallinity and modifying the physical properties of PLA.

2. Materials and Methods
2.1. Materials

Poly(lactic acid) (PLA) (PLA, 3001D; MFR, 22 g/10 min; specific gravity, 1.24; melting
point, 173 ◦C; crystallinity, 19%; optical purity, ≥96%; clarity, transparent) was obtained
from Nature Works in pellet form. CeF3 (boiling point, 2300 ◦C; melting point, 1640 ◦C;
molecular weight, 197.1112; purity, 99.9%; specific density, 0.162; granularity, D50 = 1.16
µm) was obtained from the Hunan Institute of Rare Earth Materials.

2.2. Preparation of PLA/CeF3 (P/F) Blends and Films

PLA and CeF3 were dried at 70 ◦C for 4 h in a vacuum oven before further process-
ing. PLA/CeF3 (P/F) blends were prepared by using a torque rheometer (RT01-06/02,
Guangzhou, China) in mass ratios of 100/0, 99.5/0.5, 99/1, 98/2, 97/3, and 96/4; the for-
mulation of P/F mixtures is shown in Table 1. The rotating speed was 60 rpm at 180 ◦C
for 5 min. Then, all the samples were hot-pressed onto 0.1 mm-thick sheets at 180 ◦C with
a pressure of 15 MPa of 2 min, and then, cooled down to room temperature; samples were
cold-pressed again, and the final P/F films were obtained. A schematic illustration of
the preparation of P/F films is shown in Figure 1.

Figure 1. Schematic illustration of the preparation of P/F films.
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Table 1. Formulation of P/F films by mass fraction percentage.

Samples PLA CeF3

P/F0 100 0
P/F0.5 99.5 0.5
P/F1 99 1
P/F2 98 2
P/F3 97 3
P/F4 96 4

2.3. Characterizations

The tensile properties of the P/F films were tested by a universal material testing
machine (Instron 2365, Darmstadt, Germany) at a crosshead speed of 50 mm/min ac-
cording to the ASTM D638-2008 standard. The P/F films were conditioned at room
temperature in a 50% relative humidity-controlled environment for at least 24 h prior
to being tested. At least five runs for each sample were measured, and the results
were averaged. Then, the tensile strength, Young’s modulus and elongation at break
of the samples were obtained. A Fourier transform infrared spectrophotometer (Nicolet
iS 50, Madison, WI, USA) was used to investigate the possible intermolecular interaction
between PLA and CeF3. The average value was obtained from 32 scans in the standard
wave-number range of 500 to 4000 cm−1. A UV-visible-near infrared light spectropho-
tometer (Cary 5000, Santa Clara, CA, USA) was used to characterize the transmittance of
the P/F films in the visible light region. The test wavelength range is 200–800 nm. Field
emission scanning electron microscopy (FESEM) (Apreo S, Waltham, MA, USA) was used
to characterize the cross-section and surface phase morphology of the P/F films. A layer
of platinum was sputter-coated uniformly over all the fractured surfaces before FESEM
observation. X-ray diffraction (Miniflex 600, Akishima-shi, Japan) was used to characterize
the crystallinity of the P/F films. Measurements were performed over the ranges 5–70 ◦C,
with a step of 0.05 ◦C and speed 10 ◦C/min. The thermal and crystallization behaviors
of the PLA/CeF3 blends were studied by differential scanning calorimetry (TGA/DSC 1,
Zurich, Switzerland) under nitrogen atmosphere. The weight of the samples varied from
5.0 to 10.0 mg. The samples were heated from 30 ◦C up to 190 ◦C at 10 ◦C/min (the first heat
scan) and held at 190 ◦C for 3 min to eliminate their previous thermal history. Following
this, the samples were chilled to 30 ◦C at the same rate, and then, heated again from 30 ◦C
up to 190 ◦C at 10 ◦C/min (the second heating scan). The thermal stability of the P/F
films was studied by thermogravimetric analyses. Samples of about 5 mg were placed in
alumina crucibles and were measured in dynamic conditions, in the temperature range
from 30 to 600 ◦C, with a heating rate of 10 ◦C/min, and a 50 mL/min Ar2 flow. Dy-
namic mechanical analysis was performed in a DMA instrument (DMA 1, Mettler Toledo,
Zurich, Switzerland) in the tensile mode, based on the ASTM standard D4092. All samples
were cut from the tensile bar specimens (40 mm × 10 mm × 0.1 mm). The temperature
ranged from −20 to 100 ◦C, with a heating rate of 3 ◦C/min at an oscillating frequency of
1 Hz.

3. Results and Discussion
3.1. Mechanical Properties

As shown in Figure 2a, with the increase in CeF3 content, the tensile strength and
elongation at break of the P/F films increased at first and then decreased. When the content
of CeF3 was 1 wt %, the tensile strength of the P/F1 film was the highest, reaching from
55.09 to 59.92 MPa, which was 8.76% higher than that of pure PLA. When the content
of CeF3 was 2 wt %, the elongation at break of the P/F2 film was the highest, reaching
2.53%, which was 78% higher than that of pure PLA. The tensile stress–strain curves of P/F
films are shown in Figure 2b. When the content of CeF3 was 2 wt %, the overall effect of
strengthening and toughening was better. This showed that CeF3 improved the ductibility
ability of P/F film in the range of 0.5% to 2%.
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Figure 2. (a) Mechanical properties and (b) tensile stress–strain curves of P/F films.

3.2. Fourier Transform Infrared Spectrophotometer (FTIR)

The characteristic absorption peak of PLA included: −CH3 asymmetric stretching
vibration peaks observed at 3000 and 1460 cm−1; symmetrical stretching vibration peaks
were observed at 1380 cm−1. The stretching vibration peak of −C=O was observed at
1750 cm−1. −CH stretching and bending vibration peaks were observed at 2950 and
1360 cm−1, respectively. The stretching vibration peaks of −C−O−C− were 1260, 1180
and 1080 cm−1 [47–49].

As shown in Figure 3, compared with pure PLA (P/F0), the spectral peak of P/F4
had several new characteristic peaks in the range of 500~700 cm−1. For example, these
characteristic peaks (532, 543, 571, 578 and 598 cm−1) of P/F4 represent the coordination
interactions that exist between cerium and oxygen atoms in PLA. In addition, new char-
acteristic peaks also appeared in 673 and 693 cm−1. These two peaks were assigned to
the vibration modes from the Ce-O band.

In general, the main characteristic peaks of PLA were retained, which proved that
CeF3 does not change the main structure of PLA, but had a certain coordination effect and
coupling relationship. The coordination effect and coupling relationship were conducive
to enhancing the mechanical properties of PLA, which was also verified by the mechanical
property test results in Figure 2.
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Figure 3. Infrared spectra of CeF3, P/F0 and P/F4 films. (a) Wavenumber range 500–4000 cm−1;
(b) Wavenumber range 500–730 cm−1.

3.3. UV–Vis Transmittance

In order to study the effect of CeF3 on the visible light transmittance of P/F films,
the UV–vis spectral transmittance of P/F films was measured. The calculation formula of
visible light transmittance is the following relationship (Equation (1)):

Tv % =
Tw760 % + Tw390 %

2
(1)

where Tv % is the average visible light transmittance, Tw760 % is the visible light transmit-
tance at 760 nm, and Tw390 % is the visible light transmittance at 390 nm.

Figure 4 shows that the visible light transmittance of P/F films decreased slightly with
the increase in the addition of CeF3 and the specific data, as shown in Table 2.

Figure 4. UV-vis transmittance of P/F films.

Table 2. Transmittance of P/F films in visible light with different amount of CeF3.

Sample Visible Light Transmittance/%

P/F0 78.97
P/F0.5 72.19
P/F1 65.04
P/F2 52.58
P/F3 50.71
P/F4 42.62
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When the content of CeF3 in PLA was 1 wt %, the visible light transmittance retention
ratio of the P/F1 film was 82.36%. Pure PLA film and P/F1 film samples are shown in
Figure 5.

Figure 5. Pure PLA film (a) and P/F1 film (b) samples.

3.4. Morphological Properties

Figure 6 shows the cross-section and surface morphology of P/F films. The FESEM
images show that CeF3 were well dispersed in the P/F films, and there were few cavities
in the brittle cross-section, which indicated that the interface between CeF3 and PLA
was good. This may be due to the formation of various coordination modes between
cerium and oxygen in the hydroxyl and carboxyl groups of PLA, and the formation of
layered, network polymers or infinite chain structure, which improved the compatibility of
different components. It also indicated that the addition of CeF3 could tune the strength
and toughness of PLA, which was consistent with the test results of mechanical properties.

Figure 6. (a) Cross-section and (b) surface morphology of P/F2 films.

3.5. X-ray Diffraction (XRD)

In order to analyze the effect of CeF3 on the crystal structure of PLA, the annealed P/F
films were analyzed by XRD. Figure 7 shows the XRD patterns of P/F films annealed for 2 h
at 110 ◦C. There was a diffuse hump peak of P/F0 without annealing between 5 and 25 ◦C,
indicating that the P/F0 was in the amorphous state. When P/F0 was annealed for 2 h, only
a weak crystallization peak appeared. However, when PLA was added to CeF3, an obvious
crystallization peak appeared. With the increase in CeF3 content, the crystallization peak
intensity increased first and then decreased slightly, which proved that a certain amount of
CeF3 was helpful to promote the crystallization of PLA.
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Figure 7. XRD patterns of P/F films annealed for 2 h at 110 ◦C.

3.6. Differential Scanning Calorimetry (DSC)

DSC analysis was carried out to investigate the melting and crystallization behaviors
of the P/F films. The DSC second heating curves of P/F films are shown in Figure 8, which
displayed three main transitions successively: a glass transition, a cold crystallization
exotherm, and a melting endotherm. The measured values of the phase transition param-
eters are summarized in Table 3. With the increase in CeF3 content, the glass transition
temperature (Tg) of PLA hardly changed, suggesting that CeF3 did not change the glass
transition temperature of PLA. However, the addition of CeF3 significantly decreased
the cold crystallization temperature (Tcc) of PLA. When the CeF3 content increased from
0.5 wt % to 4 wt %, the Tcc of P/F films decreased from 116.25 to 103.99 ◦C gradually
and the ∆Hc gradually decreased from 10.97 to 1.87 J/g, indicating the addition of CeF3
could accelerate the crystallization of PLA. The degree of crystallization of the sample
was evaluated from the heat evolved during crystallization by the following relationship
(Equation (2)):

Xc % =
∆Hm − ∆Hc

WPLA × ∆H0
m
× 100 % (2)

where Xc % is the degree of crystallinity of the samples, ∆Hm is the heat of fusion of
the PLA in the blend, ∆Hc is the enthalpy of cold crystallization of the PLA in the blend,
∆H0

m∆ is the heat of fusion for 100% crystalline PLA (93.1 J/g) [34], and WPLA is the weight
fraction of PLA in the blend.

Figure 8. DSC second heating curves of P/F films.
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Table 3. The phase transition parameters of P/F films.

Sample Tcc (◦C) ∆Hc (J/g) Tm (◦C) ∆Hc (J/g) Xc (%)

P/F0 116.25 10.97 172.92 28.70 19.0
P/F1 103.99 1.87 173.21 29.62 29.8
P/F2 109.44 4.25 172.16 26.92 27.2
P/F4 109.21 1.41 171.79 26.19 26.6

When the content of CeF3 in PLA was 1 wt %, the crystallinity was 29.8%, which
was 56% higher than that of pure PLA. Other P/F films’ crystallinity is shown in Table 3.
The crystallization ability increased likely because of the coordination interaction between
PLA and CeF3 or heterogeneous nucleation in PLA, which might result in the ordered
segmental arrangement of PLA chains. A schematic diagram of the interaction between
CeF3 and PLA is shown in Figure 9.

Figure 9. Schematic diagram of the interaction between CeF3 and PLA.

3.7. Thermogravimetric Analyses (TGA)

The thermal stability of PLA is critical, as this property is considered as the limiting
factor for processing as well as for end-use applications [50]. Figure 10 shows the TGA
thermograms of the P/F films, and Table 4 presents a summary of thermal performance,
i.e., the initial, 5% mass loss, maximum mass loss and final residue at 500 ◦C. The mass
was barely lost before 100 ◦C, proving that the moisture in PLA was removed by drying
before further processing. The TGA curve was a flat period before 250 ◦C, then dropped at
280–380 ◦C suddenly, and then, tended to be stable. It was a typical one-step degradation
reaction [51]. After 500 ◦C, P/F almost decomposed completely.

Table 4. TGA data of P/F films.

Samples T5% Weight Loss (◦C) Tmax Weight Loss (◦C) Reside at 500 ◦C (%)

P/F0 315.7 354.1 0.54
P/F1 318.5 357.6 1.53
P/F2 330.8 364.2 2.17
P/F4 308.4 355.7 4.52
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Figure 10. TGA (a) and DTG (b) of P/F films.

The initial thermal stability of the P/F film was like that of pure PLA. The TGA data of
the P/F films are shown in Table 4. When the amount of CeF3 was 2 wt %, the initial degra-
dation temperature of P/F2 films was 330.8 ◦C, and the maximum degradation temperature
was 364.2 ◦C, which was 15.1 and 10.1 ◦C higher than that of pure PLA, respectively. When
the amount of CeF3 was more than 2%, the initial decomposition temperature of the P/F1
film was lower than that of pure PLA, but the maximum degradation temperature was still
higher than that of pure PLA. This was likely due to the effect of CeF3 on the interaction
between PLA chains. When at a lower temperature, the movement ability of PLA molecular
chains was limited and the effect of CeF3 on the interaction between PLA molecular chains
was dominant. With the temperature increase, the movement ability of PLA molecular
chains intensified, and the heterogeneous CeF3 particles promoted the crystallization of
PLA. Consequently, the DSC test results were confirmed, resulting in the improvement
of the maximum degradation temperature of PLA. In general, CeF3 was beneficial to
improving the thermal stability of PLA.

3.8. Dynamic Mechanical Analysis (DMA)

DMA was used to analyze the miscibility and modulus changes of the P/F films.
Figure 11a,b show the dependence of loss factor (tan δ) on the temperature for PLA
mixtures with different contents of CeF3. Only one tan δ peak was observed for P/F films,
while pure PLA had a Tg of 65 ◦C. Figure 11a,b show that the incorporation of CeF3 resulted
in a small change in the glass transition temperature of PLA. The tan δ peaks of all the P/F
films (near 65 ◦C) were between that of pure PLA. As shown in Figure 11b, the storage
modulus (E′) of pure P/F films gradually decreased with the increasing CeF3 component,
and the storage modulus (E′) of the P/F2 films was 1000 MPa, which was 63.6% lower than
that of pure PLA. This suggested that P/F films showed a lower storage modulus than
pure PLA from −20 to 60 ◦C, which showed that CeF3 had increased the flexibility of PLA,
which was consistent with the test results of mechanical properties.
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Figure 11. P/F film of (a) tan δ (b) storage modulus change diagram.

4. Conclusions

In this paper, P/F films were prepared, and the effects of different amounts of CeF3 on
mechanical properties, visible light transmittance, thermal stability and crystallinity were
studied. The results are as follows: The tensile strength and elongation at break of the P/F
films increased first and then decreased with the increase in CeF3 content. The tensile
strength of P/F1 was 59.92 MPa and the elongation at break of P/F2 was 2.53%, which was
8.76% and 78% higher than that of pure PLA, respectively. UV-vis transmittance analysis
showed that CeF3 had little effect on the transparency of P/F films. When the content of
CeF3 in PLA was 1 wt %, the visible light transmittance retention ratio of the P/F0 film was
82.36%. DSC analysis showed that CeF3 promoted the crystallization of PLA; compared to
pure PLA, the crystallinity of P/F1 increased by 56%. TG analysis showed that the initial
degradation temperature of the P/F2 films was 330.8 ◦C, and the maximum degradation
temperature was 364.2 ◦C, which was 15.1 and 10.1 ◦C higher than that of pure PLA,
respectively. DMA analysis showed that the addition of CeF3 could reduce the storage
modulus of P/F effectively; the storage modulus (E′) of the P/F2 films was 1000 MPa,
which was 63.6% lower than that of pure PLA, indicating that CeF3 had a toughening effect
on the PLA film. As a result, CeF3 can improve the performance of PLA without affecting
transparency, which had a potential application value in the field of food packaging.
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