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Abstract: The article discusses the influence of the post-process on the mechanical properties of
elements produced with the use of the mask stereolithography (mSLA) method. Printed samples
were subjected to the following post-process steps: Washing and post-curing, at various times. Then,
static tensile and static bending tests were carried out, as well as Shore D hardness measurements for
the inner and surface part of the sample, as well as profilographometric analysis of the surface. The
post-curing time has been found to strongly affect the tensile and bending strength of printouts, and to
improve their surface quality. Washing has an ambiguous effect on the strength of the printouts, but,
in the end, it was found that extended washing slightly reduces the strength. Washing significantly
affects the quality of the printout surface. A washing time that is too short results in a surface that
strongly resembles the printing process, with high roughness. Increasing the washing time to 10 min
lowers the roughness by one order of magnitude. Post-curing has also been shown to be beneficial for
the cured sample with the application of shielding water. This approach results in an improvement
in the flexural strength of the printouts. In general, the obtained research results indicate that, for
printouts with cross-sectional dimensions of several mm, the optimal washing time is no more than
10 min and the post-curing time is at least 30 min.

Keywords: 3D printing; mask stereolithography; post-process; mechanical properties; hardness;
profilographometry

1. Introduction

Stereolithography (SLA) is historically the first used additive manufacturing (AM)
process [1,2]. This technique is characterized by the smallest number of process parameters.
It guarantees an excellent quality of the print surface compared to other AM techniques. It
consists in hardening the photopolymer in a liquid state, with the use of ultraviolet (UV)
light. The polymerization process consists of twostages. Initially, gelation occurs, which is
the process of creating an infinite molecular network [3,4]. Then, the vitrification process
begins, i.e., a gradual thermoreversible process of the formation of a glassy material [5,6].
The printed “green” element consists of the following two phases: gel and sol. The
printout is anisotropic, due to the additive nature of the process [2,5]. A problem occurs
in reaching the inner areas of the printout, by UV rays, which is necessary to cure the
sol phase. A properly long exposure time leads to polymerization of unlit areas, due to
a chain reaction that is maintained by the large amounts of photoinitiators added to the
resins that are used in SLA technology [5]. Initially, a UV laser light source was used for
curing the polymers. In recent years, however, devices using light electric diodes (LED)
have appeared. Devices of this type use LED matrices to harden the appropriate tracks
in the resin, producing a properly pathed layer. This technique is referred to as mask
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stereolithography (mSLA) [1,2]. This process quantizes the produced object to cuboids,
with sides corresponding to the pixel size and the thickness of the hardened layer [1,2,5].
The mSLA technique is used, among others, for printing biomaterials [7], metamaterials for
mechanical applications [8], and elements for microelectromechanical systems (MEMS) [9].

The mSLA process requires a post-process that must be carried out after printing
is complete, and essentially consists of two steps. First, it is necessary to remove excess
adhering uncured resin from the printout. This stage is called washing. It consists of
vigorously pouring the printout with a liquid (usually 2-propanol) in a closed chamber.
This process is extremely important for maintaining the greatest advantage of SLA prints,
which is good surface quality [1,2]. During the washing process, the sol phase is washed
out from the subsurface areas of the printout. The next process is the final hardening of
the resin, in a process called post-curing. This process is extremely important because it
ensures the final mechanical properties of the resin [1,2]. Post-curing time is a parameter
that is often neglected by resin producers. A poorly chosen post-curing time can also
lead to deformation of the printout. This is due to the shrinkage caused by the resin
crosslinking [10]. After a sufficiently long post-curing exposure time, the stresses that
occurred inside the material should disappear. Due to the dimensional and geometric
limitations during printing, it is the post-curing that significantly affects the final properties
of the manufactured detail [1,5,11].

The post-process significantly affects the mechanical properties of printouts. Washing
removes the sol phase from the subsurface area of the sample. The rinsed voids can lead to
the occurrenceof local stresses during post-curing. This may negatively affect the strength
of the printouts. As the post-curing time increases, polymerization continues deeper inside
the material. The result is a highly cross-linked polymer. Due to the optical permeability
and light absorption by the dye (component of the resin), the samples may show local
heterogeneity, caused by an inhomogeneous curing process intensity [5,11,12]. Both stages
of the post-process—washing and post-curing—are significant, and their impact has not
yet been satisfactorily described in the literature. The first publications have appeared only
recently [11,12]. Analyzing the impact of the post-process on the properties of printouts,
and expanding the knowledge base in this area, is highly purposeful.

The study concerns an attempt to estimate the influence of the time of the two stages
of the post-process, as follows: washing and post-curing, on the mechanical properties of
the obtained printouts, in particular on the strength. The study also attempted to identify
the reasons for the change in printout strength after various post-process variants. For this
purpose, the hardness was measured and the outer surface of the printouts was assessed
with a profilographometer. Then, the correlation of these two physical factors with the
strength results obtained in the static tensile and bending tests was assessed. The obtained
results were analyzed in their entirety.

2. Materials and Methods
2.1. Printing and Postprocessing Procedure

The set of test samples was 3D-printed with the mSLA method using the Anycubic
Photon printer (Shenzhen, China) [13,14]. Rectangular samples (for bending tests and for
hardness testing and profilographometric evaluation) and paddle-shaped samples (for
tensile tests) were printed. The shape and dimensions of the samples are shown in Figure 1.

The printing process was the same for all samples. Graphical scheme of the process
is imaged in Figure 2. The samples were made of 3D printing UV-sensitive resin basic
translucent green resin by Anycubic (Shenzhen, China). The samples were printed at
an exposure time of 8 s for each layer 0.05 mm thick. The lift distance was 5 mm and
the lifting speed was 65 mm/min. The speed of lowering the table is 150 mm/min. The
resin vat temperature and the heatbed were 21–25 ◦C. The entire process was run at
room temperature. The resin was not preheated. This ensured no defects in the sample
resulting from the change in the temperature of the resin. For the tensile samples, the
layers were arranged along the stretch direction. The layers were added along the wider
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side of the sample. For the bending samples, the layers were arranged parallel to the bend
surface at an angle of 90◦. The layers were added along the wider side of the sample.
The samples were printed on supports that were 10 mm high. The tensile specimen
was supported by 69 evenly spaced supports. The bending specimen was supported by
30 supports, also arranged evenly. The supports were arranged in a sequence of 2 on the
outer parts of the lower wall of the sample and 1 in the middle following them. The printing
resulted in “green” printouts with the assumed shape, but the consistency of a tough gel.
Bringing to the final hardness required a post-process. The post-process consisted of the
following two procedures: washing and post-curing. Both procedures were performed on
an Anycubicwash &cure Machine 2.0 (Shenzhen, China) [15,16]. The washing procedure
was carried out with 2-propanol, with the washed printout completely immersed. Washing
time was different for each type of sample and amounted to 5, 10 or 30 min, which was to
assess the effect of washing time on the properties of printouts. The post-curing procedure
was carried under UV rays, with the longitudinal exposition of the printout and its uniform
rotation around the longitudinal axis (theoretically—the entire surface was lit evenly).

As standard, all samples were exposed for 30 min. Only part of the samples previously
washed for 10 min were intentionally exposed for 10 and 60 min, in order to assess the effect
of exposure time on the properties of printouts. One series of samples was deliberately
post-cured by being immersed in a glass container filled with water (1.5 mm glass, 30 mm
water layer on each side). After post-process all samples were left at room temperature for
a minimum of 3 days for acclimatization. They were then subjected to examination tests.

Figure 1. Printed specimens: (a) shape and dimensions, the red arrow shows the direction of the layer growth during
printing, (b) the specimen after printing, (c) the specimens after post-process washing, (d) the specimens after post-curing.
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Figure 2. Graphical scheme of performed mSLA process.
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The manufacturer of the resin (and the printer) does not declare specific recom-
mended washing time and post-curing time values in the technical documentation.It is
recommended to wash briefly, but long enough to wash away any resin dripping from the
sample.Then he recommends a long post-curing exposition. The maximum time of one
exposition cycle is 60 min. Of course, after the end of the cycle, you can theoretically start
another cycle many times. Most likely, according to the resin producer’s assumptions, the
printing person himself must choose the time of the post-process procedures according to
his own experience.

2.2. Examination Methods

The printed and post-processed samples have been put to the static tensile and static
bending tests. The tensile tests were performed using INSTRON 4469 testing machine
(INSTRON-CEAST, Norwood, MA, USA) [17], in accordance with the PN-EN ISO 527
standard, at the movement rate of 5 mm/min. The bending tests were carried out using
ZWICK B2.5/TN1S machine (ZWICK-ROELL, Ulm, Germany) [18], in accordance with the
PN-EN ISO 178 standard, at the rate of 10 mm/min. In each case, the stress obtained at a
sample deflection of 6 mm was assumed as a flexural strength (Rg). Five samples of each
type were subjected to tensile and bending tests.

Separate set of samples (one of each type) was first subjected to profilographometric
analysis using the MICRO PROF optical profilographometer by FRT (BergischGladbach,
Germany) [19]. Then, they were subjected to Shore D hardness measurements using a
SAUTER hardness tester (SAUTER, Wutoschingen, Germany) [20]. Hardness of outer
surfaces of the samples was determined as average value after three measurements from
one side and three from the opposite side. In order to measure the hardness in the inner
area of a sample (central part of a cross-section), each sample was broken into two parts
and the fracture surface was ground with abrasive paper (grain size in sequence: 600, 1000,
1600, 2000). Each time, the result was the average from six measurements in central line of
the sample (equally between two outer surfaces).

Table 1 summarizes and describes all the sample types used in the study.

Table 1. Designations and descriptions of the samples used within the study.

Specimen Type Designation Description (Post-Process Procedures Time)

M5U30 Specimen after 5 min washing and 30 min post-curing

M10U30 Specimen after 10 min washing and 30 min post-curing

M30U30 Specimen after 30 min washing and 30 min post-curing

M10U10 Specimen after 10 min washing and 10 min post-curing

M10U60 Specimen after 10 min washing and 60 min post-curing

M10U30-wet Specimen after 10 min washing and 30 min post-curing, the
samples were post-cured in a glass container with water.

3. Results and Discussion

Tables 2 and 3 summarize the results of the static tensile and bending tests.
Figures 3 and 4 show the results of the tensile and bending tests, compiled depending

on the washing time and the post-curing time.
Table 4 summarizes the results of the Shore hardness measurements (method D) of

the produced samples. Figure 5 shows the hardness results compared to the washing time
and to the post-curing time.

The obtained tensile and bending results (Figures 3a and 4a) show clear the influence
of the post-curing time on the strength of the samples. A significant increase in strength
(especially tensile) at the longest exposure—by 38% in comparison to the shortest time—
corresponds to an increase in the hardness (Figure 5a)—the increase is, respectively, 2.4%. It
may result from the specific character of the resin curing process, which is both exothermic
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and thermally activated [3,21]. With a shorter exposure time, the energy supplied to the
sample will not be able to heat the sample sufficiently to activate the polymerization in
deeper areas, which exacerbates the energy shortage from the cross-linking reactions [22,23].
The final increase in the strain of the samples at Rm, for a longer exposure time, is correlated
with the increase in Rm (it is, respectively, 16% and 38%). This indicates an increase in the
deformation capacity of the sample, mainly in the elastic range (this probably resulted
from simple curing process progress for longer UV exposure). The effect of the washing
time on the tensile and flexural strength (Figures 3b and 4b) is slightly different. The tensile
strength decreases with the increasing washing time, by 14%, and the flexural strength does
not change at the end. In both the cases, the size of the variations are small. The decreased
strength after a prolonged washing time may be due to the presence of more voids after
sol removal from the subsurface area of the specimen, which may lead to a greater local
stress concentration [24,25]. On the other hand, the reasons for the heterogeneity of Rm and
Rg changes result from the different hardness in the inner and outer areas of the samples.
The greater hardness of the outer walls and the lower hardness of the inner region of the
sample that was post-cured with water shielding (wet) are observed in Figure 5c. The
increase in the variation in the hardness between the subsurface areas and the areas inside
the samples, caused by the post-curing time and by wet post-curing, may explain the larger
increases in Rg as compared to the increases in Rm. In the case of bending, the main loaded
areas are the near-surface areas of the cross-section, and, in the case of stretching, the entire
cross-section works evenly [26,27].

Post-curing in the water shielding had a particularly pronounced effect on the flexural
strength of the printouts. This is probably related to the limitation of UV light access to
the sample, and thus worse post-hardening of the internal areas. A worse cure means less
hardness, by 3.5% (Figure 5c), which probably translates into increased plasticity of the
material in the central part of the sample. This may hinder the development of the initiated
failure cracks (overcoming plasticity through the crack is energy-consuming), especially
caused by shear [28], and ultimately translates into an increase in flexural strength, by 38%.

Table 2. The results of static tensile tests of the produced printouts.

Specimen Type Tensile Strength Rm, MPa Deformation at Rm,%

M5U30 25.0(2.5) 5.8(0.7)

M10U30 22.4(2.6) 6.5(0.7)

M30U30 21.6(2.1) 4.0(0.3)

M10U10 21.2(3.2) 5.1(0.2)

M10U60 29.2(0.9) 5.9(0.6)

M10U30-wet 22.0(2.2) 6.2(0.9)

Table 3. The results of static bending tests of the produced printouts.

Specimen Type Flexural Strength Rg, MPa

M5U30 60.6(0.7)

M10U30 49.6(4.6)

M30U30 60.7(0.7)

M10U10 51.3(2.6)

M10U60 71.1(2.8)

M10U30-wet 68.5(1.2)
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Table 4. Summary of hardness test (Shore method, type D) results for the produced printouts.

Specimen Type
Hardness (Shore D Units)

Outer Walls Central Line of the Cross-Section

M5U30 87.0(0.4) 82.5(0.8)

M10U30 85.2(0.2) 83.1(0.5)

M30U30 88.0(0.4) 85.7(0.4)

M10U10 86.1(0.5) 85.6(0.6)

M10U60 88.2(0.4) 84.0(0.4)

M10U30-wet 88.2(0.4) 82.7(0.6)

Figure 3. Tensile strength of printed samples, depending on the following: (a) post-curing exposition
time, (b) post-process washing time, (c) post-process approach—post-curing in water shielding.
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Figure 4. Flexural strength of printed samples, depending on the following: (a) post-curing exposition
time, (b) post-process washing time, (c) post-process approach—post-curing in water shielding.

The obtained hardness results indicate that both washing and post-curing do not have
a decisive influence on the hardness of the resins. Both washing and post-curing cause a
decrease in hardness (respectively, by 2% and 1%) first and, over a longer period of time,
an increase (respectively, by 3.3% and 3.5%) in hardness in the area of the outer walls of the
samples. The inner area of the samples shows strongly stochastic hardness changes. The
observed results may result from the washing of excess resin from the printout (a process
that is not very repeatable for different samples), which causes the absorbed energy to
be used during the post-curing process, to cure a smaller amount of resin, which locally
increases the specific density of this energy and increases the intensity of the process [3,4].
As a result, the effective degree of resin polymerization is greater, which translates into
a greater hardness of the material. Most noticeable (and in line with expectations) is the
increase in the hardness after wet post-curing. This fact is probably due to the lower oxygen
content in the water than in the air. Oxygen slows down the polymerization process of the
resin [29]. The limitation of its access has a major impact, as the results show—even greater
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than the limitation of UV rays to the sample, caused by the absorption by the layers of glass
(container wall) and water. The wet post-cured samples show a simultaneous increase in
the hardness of the walls (by 3.5%) and a decrease in the hardness of the inner area (by
0.5%). This is translated into the flexural strength, as described above, and as evidenced
by the results in Figure 4c (38% increase in Rg). This is confirmed by the aforementioned
softening of a part of the sample cross-section, due to the reduced exposure of UV rays,
resulting in incomplete curing of the resin.

Figure 5. Shore D hardness of printed samples, depending on the following: (a) post-curing exposi-
tion time, (b) post-process washing time, (c) post-process approach—post-curing in water shielding.

Figure 6 shows digital images of the surface of the samples, taken on an optical
profilographometer. The most representative surface profile is also shown for each image.
The profile selection was automatic, carried out by the profilographometer software, for
the best averaging of the measured surface parameters. The obtained surface images
indicate that for a short time of washing (M5U30), we obtain the height of the profile
(roughness) reaching the level of 1000 microns. This is a relatively huge value, and the
shape of the profile indicates a large flattening, without finer serration. The profile is
largely influenced by an excess of resin that is not removed during washing. A slight
increase in the washing time (M10U30) causes a dramatic change in the surface and profile
image. The large flat areas disappear, and serration appears, but with a much smaller
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depth—not exceeding 80 microns (basic height 50–70 microns). A serration of a width close
to 50 microns (M10U10, M5U30) may result from the mapping of the print paths. In the case
of the remaining samples (with longer washing times), the regularity of the serration is lost
and the surface profile is most likely influenced by other factors, such as inhomogeneous
washing out of the resin during washing, or inhomogeneous shrinkage of the resin in the
subsurface area during post-curing. For the extended washing time (M30U30), we also
observe a decrease in the density of the “teeth”—but their depth even increases. This is
most likely due to the extrusion of uncured resin from the subsurface layers that comes
out of the surface as spherical drops—this is visible in the image. For the M10U10 sample,
we observe a significant washing effect on the profile height—it is a maximum of just
over 30 microns, which is a much lower value than for the M5U30 sample, with half the
washing time. At the same time, it can be observed that the extension of the exposure time
in the post-curing (sample M10U30) reduces the profile height—perhaps it is related to the
shrinkage of the resin during cross-linking. Further irradiation (sample M10U60) no longer
leads to a reduction in the profile, but causes a reduction in the density of the “teeth”, this
effect is also most likely due to the shrinkage of the resin crosslinking. However, there is
a certain sequence of large flattenings, clearly separated by grooves approximately every
2 mm. It is possible that this is a representation of the sequence of the printing process after
successfully curing (60 min of exposure) and shrinking all the residual resin. Introducing
the sample into the water during the post-curing process (M10U30-wet) does not result
in a significant change in the profile height or the overall surface image, but it causes
unevenness (waviness) of the surface height on a larger scale—the image shows quite a
significant difference in the profile height between the central area of the sample and the
areas closer to the top and bottom edges.

There is a correlation between the obtained results of Rm and Rg and the imaged
state of the surface. The washing effect on Rg may be due to a lower negative effect of the
extracted droplets and a greater positive effect of the evening of the main base of the profile
(see Figure 6, M30U30). The washing effect on Rm, in turn, is counter-proportional—most
likely diluting and removing too much uncured resin creates notch-like voids, which make
the sample vulnerable to fast cracking during tensile loading. Longer post-curing has a
positive effect on Rg, but especially on Rm—this is due to lowering the depth of the “teeth”
(smaller notches) with prolonged exposure (compare M10U10 and M10U30/M10U60 in
Figure 6). With wet post-curing, the profile is smoother and has no droplets (see M30U30
and M30U30-wet in Figure 6), clearly having a positive effect on Rg, but not having a
significant effect on Rm. Probably, Rm depends mainly on the presence and depth of the
notches, and these characteristics (number and depth of the “teeth”) are not significantly
changed for wet post-curing in comparison with the “dry” process.
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Figure 6. Digital images of the surface sections of individual sample types, made on an optical profilographometer, and
representative profiles for each image. The red arrow indicates the direction of layer growth in the sample, which is also the
direction of the profile.

4. Conclusions

The samples that were produced by mask stereolithography were assessed for the effect
of the post-process, divided into washing and post-curing, on mechanical properties and
surface quality. The obtained results allowed us to draw the conclusions presented below.
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(1) The following for the post-curing:

• Post-curing time has a negative effect on the tensile strength and bending strength
of the printouts.

• Extending the post-curing time affects the heterogeneity of the produced printout.
The hardness of the outer areas increases more than the area inside the printout.
This does not have a negative effect on the strength, but contributes to a greater
increase in the bending strength than in the tensile strength.

• Post-curing improves the surface quality of the printouts. The improvement
effect is visible up to a post-curing time of 30 min. Above this time, signifi-
cant changes are no longer visible, but a large-scale sequencing of the surface
relief appears.

(2) The following for the washing:

• The obtained results indicate an ambiguous effect of washing on the strength of
printouts. Finally, however, it should be said that prolonged washing slightly
reduces the strength of the printed materials.

• Longer washing times contribute to harder prints.
• Washing significantly affects the quality of the printout surface. A washing time

that is too short results in a surface that closely follows the sequencing charac-
teristic of the printing process, with a roughness of several hundred microns.
Increasing the washing time to 10 min lowers the roughness by one order of
magnitude. Further increasing the washing time no longer has a positive effect
on the surface relief of the printouts.

(3) The following for post-curing with water shielding:

• Post-curing through the water layer causes a significant increase in hardness in
the outer areas of the printouts, not affecting the hardness obtained in the inner
areas. This translates into a higher flexural strength obtained by the samples
post-cured through the water shielding.

• The use of a water layer during post-curing does not affect the surface quality of
the printout.

(4) The general conclusions are as follows:

• The obtained mechanical test results and surface quality evaluation indicates
that, for printouts with cross-sectional dimensions of several mm, the optimal
post-process washing time is not more than 10 min, and the post-curing time is a
minimum of 30 min.

• The hardness results show that, already, at a depth of approx. 2 mm in relation
to the outer surface, the hardness of the cured resin is clearly lower than its
hardness on the printout surface. This differentiation progresses with post-
curing time. This indicates that, from the point of view of mechanical properties,
it is expedient to limit the thickness of the printed sections as much as possible,
e.g., to design elements with unfilled cores.
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