
materials

Article

Polymer Nanocomposites with High Energy Density
Utilizing Oriented Nanosheets and
High-Dielectric-Constant Nanoparticles

Yushu Li, Yao Zhou , Sang Cheng, Jun Hu, Jinliang He and Qi Li *

����������
�������

Citation: Li, Y.; Zhou, Y.; Cheng, S.;

Hu, J.; He, J.; Li, Q. Polymer

Nanocomposites with High Energy

Density Utilizing Oriented

Nanosheets and

High-Dielectric-Constant

Nanoparticles. Materials 2021, 14,

4780. https://doi.org/10.3390/

ma14174780

Academic Editor:

Arunas Ramanavicius

Received: 13 July 2021

Accepted: 20 August 2021

Published: 24 August 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

State Key Lab of Power Systems, Department of Electrical Engineering, Tsinghua University,
Beijing 100084, China; liyushu16@mails.tsinghua.edu.cn (Y.L.); zhouyao6811@163.com (Y.Z.);
chengs1995@126.com (S.C.); hjun@tsinghua.edu.cn (J.H.); hejl@tsinghua.edu.cn (J.H.)
* Correspondence: qili1020@tsinghua.edu.cn

Abstract: The development of high-energy-density electrostatic capacitors is critical to address-
ing the growing electricity need. Currently, the widely studied dielectric materials are polymer
nanocomposites incorporated with high-dielectric-constant nanoparticles. However, the introduction
of high-dielectric-constant nanoparticles can cause local electric field distortion and high leakage
current, which limits the improvement in energy density. In this work, on the basis of conventional
polymer nanocomposites containing high-dielectric-constant nanoparticles, oriented boron nitride
nanosheets (BNNSs) are introduced as an extra filler phase. By changing the volume ratios of bar-
ium titanate (BT) and BNNSs, the dielectric property of polymer nanocomposites is adjusted, and
thus the capacitive energy storage performance is optimized. Experimental results prove that the
oriented BNNSs can suppress the propagation of charge carriers and decrease the conduction loss.
Using poly(vinylidene fluoride-co-hexafluoropropylene) (P(VDF-HFP)) as the polymer matrix, the
P(VDF-HFP)/BNNS/BT nanocomposite has a higher discharged energy density compared with the
conventional nanocomposite with the freely dispersed BT nanoparticles.

Keywords: discharged energy density; charge–discharge efficiency; electric breakdown; ferroelectric
films; dielectric losses

1. Introduction

Dielectric capacitors are widely used as energy storage and conversion devices in
electrical systems and advanced electronics, such as power inverters, medical defibrillators,
pulse forming networks, hybrid electric vehicles, and portable electronics [1–4]. Among
the various categories of dielectric capacitors, polymer film capacitors based on organic
dielectric polymer films are preferred due to the advantages of graceful failure mechanism,
light weight, processing flexibility, low cost, high breakdown strength, and simple inte-
grated assembly process [5,6]. However, the relatively low energy density remains a major
challenge and impedes the further application of polymer capacitors. For instance, the
energy density of the state-of-the-art polymer dielectrics, biaxially oriented polypropylenes
(BOPPs), is only 1~2 J/cm3, an order of magnitude lower than that of electrochemical
capacitors (20–30 J/cm3) [7].

In practical applications, the repetition rate of charge–discharge cycles must be in-
creased in order to compensate for the low energy density of polymer film capacitors,
which would lead to accelerated heating, fast aging, and decreased reliability. Due to the
low thermal conductivity of polymers, the internal temperature of the capacitors would rise
rapidly, resulting in thermal runaway eventually [8,9]. Therefore, it is of great significance
to improve the energy density of polymer dielectrics to secure the stability and to reduce
the volume and cost of the capacitors.

Under the external electric field, the stored energy density in dielectrics can be ex-
pressed as U =

∫
EdD, where U is the energy density, E is the applied electric field, and D is
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the electrical displacement. In a linear dielectric material, D increases monotonically with
increased external electric field E and dielectric constant ε of the dielectric, indicating that
elevation of both ε and breakdown strength (Eb) can lead to higher energy density. Polymer
dielectrics generally have high Eb, but the relatively low ε limits their energy density. For
example, although the breakdown strength of BOPP films is as high as ~700 MV/m, the
low dielectric constant of ~2.2 restricts the energy density to only ~5 J/cm3 [10].

Among the polymer dielectrics, ferroelectric polymers are promising dielectric materi-
als for energy storage applications, benefiting from the combination of relatively high ε
and high Eb [11]. To further improve the energy density of ferroelectric polymers, exten-
sive studies have been carried out to further increase ε by adding high-dielectric-constant
nanofillers [12], such as barium titanate (BaTiO3), barium strontium titanate (BaxSr1−xTiO3),
and lead zirconate titanate (Pb(Zr,Ti)O3) [13–15]. However, since nanofillers usually have
high dielectric constant and high conductivity, the introduction of nanofillers will cause lo-
cal electric field distortion of the nanocomposites and increase leakage current and loss [16].
As a result, the introduction of high-dielectric-constant nanofillers cannot significantly
increase the discharged energy density. Alternatively, various highly insulated nanofillers,
such as boron nitride (BN) [17,18], silicon oxide (SiO2) [10], and alumina (Al2O3) [19], have
been used to improve Eb. These nanofillers serve as barriers in nanocomposites to prolong
the transport path of charge carriers and effectively inhibit the growth of electrical trees,
thus increasing the breakdown strength [20–22].

In this study, we demonstrate a ternary nanocomposite composed of high-dielectric-
constant BaTiO3 (BT) nanoparticle and oriented two-dimensional boron nitride nanosheet
(2D-BNNS), which alleviates the drawbacks of free dispersed BT nanoparticles, retains the
excellent insulating property of BNNSs, and realizes the simultaneously enhanced ε and Eb.
Furthermore, the BNNS is oriented by a doctor blade to better impede the charge carrier
transport [23], which is advantageous in comparison to the randomly dispersed fashion [24],
implying that the same effectiveness in suppressing energy loss can be achieved at a lower
filler content. The dielectric constant, breakdown strength, and discharged energy density
of the resultant nanocomposites can be adjustable by simply tuning the content and ratio of
BT and BNNS. It was found that the nanocomposites with the optimal content of nanofillers
discharged an energy density as high as 13.0 J/cm3 with the charge–discharge efficiency of
72% under an electrical field of 547 MV/m.

2. Materials and Methods
2.1. Materials

P(VDF-HFP) copolymer was obtained from PolyK Technologies. BT nanoparticles
with an average diameter of about 50 nm and hexagonal boron nitride (h-BN) powder
with an average diameter of about 10 µm were purchased from Sigma-Aldrich. N,N-
Dimethylformamide (DMF) was supplied by Aladdin Co., Shanghai, China.

2.2. Exfoliation of BNNSs

BNNSs were obtained by an ultrasound-assisted peeling method [17]. The exfoliation
process of h-BN powder was similar to our previous work. First, 2 g of h-BN powder was
dispersed in a 300 mL of DMF solution. Then, the mixed solution was tip-sonicated (700 W,
amplitude 70%) for 24 h. The obtained solution was centrifuged at 1000 rpm for 40 min.
The supernatant was subsequently centrifuged at 10,000 rpm for another 40 min, and the
sediment was collected. Finally, the sediment was dried at 70 ◦C for 24 h in a vacuum oven,
and then BNNSs were obtained.

2.3. Fabrication of P(VDF-HFP)/BNNS/BT Nanocomposites

Five hundred milligrams of P(VDF-HFP) (90/10) powder was dissolved in 10 mL DMF
and stirred for 12 h. A solution of 50 mg/mL was prepared. BNNSs were evenly dispersed
in DMF to obtain a solution of 4 mg/mL. The above solution was sonicated for about 1 h
by tip-type sonication (700 W, amplitude 60%). The resultant solution was poured into
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P(VDF-HFP) solution, followed by stirring vigorously for 12 h. BT nanoparticles were then
added, and the mixture was sonicated (700 W, amplitude 60%) for 30 min. The sonicated
mixture was cast onto the glass sheet by an ink scraper to align the BNNSs in a horizontal
direction. It was dried in a blast oven at 40 ◦C for 6 h and then in a vacuum oven at 40 ◦C
for 12 h. Finally, after heating at 200 ◦C for 5 min, the film was immediately quenched
in cold water in order to increase the nonpolar γ-phase in the polymer matrix and then
peeled off from the glass plate. Finally, the films were dried at 40 ◦C in vacuum overnight.
The typical thickness of the P(VDF-HFP)/BNNS/BT nanocomposites was around 15 µm.

2.4. Characterization

Fourier transform infrared (FT-IR) spectroscopy was performed on a Thermo Scientific
Nicolet iS10 spectrometer at 4 cm−1 resolution in the attenuated total reflectance (ATR)
mode. X-ray diffraction (XRD) analysis was conducted on a D/max-2500/PC with Cu Kα
radiation (λ = 0.154 nm). The scanning range was 5–80◦, and scanning rate was 2◦/min.
Scanning electron microscopy (SEM) images of all samples were obtained with a Hitachi
SU8010 field emission microscope. Atomic force microscopy (AFM) images of all samples
were obtained with a Bruker Dimension Icon atomic force microscope in tapping mode.
Leakage current density was measured under an electric field (100 MV/m) provided by a
Hewlett Packard 4140B Picoammeter/voltage source. Dielectric constant and dissipation
factor were measured on a Novocontrol Concept 80 dielectric spectroscopy meter at room
temperature. Dielectric breakdown strength measurements were collected with a TREK
610C amplifier. The DC voltage ramp was 500 V/s, and the limit current was 5 mA.
In this study, the experiment data of dielectric breakdown strength measurements were
analyzed by two-parameter Weibull statistics, P(E) = 1 − exp(−(E/α)β), where α is the
scale parameter denoting the electric field strength, for which there is a 63% probability of
breakdown (Weibull breakdown strength), and β is the shape parameter representing the
scatter of data. High-field P-E loops were collected by a ferroelectric test system (PolyK
Technologies), where the samples were subjected to a triangular unipolar wave with a
frequency of 10 Hz. Gold electrodes of about 60 nm thickness were sputtered on both sides
of the polymer films for electrical measurements. For the breakdown strength, leakage
current, D-E loop, and dielectric spectrum, the diameters of gold electrodes were 2.6, 3, 3,
and 20 mm, respectively.

3. Results and Discussion
3.1. Structure and Morphology Characterization

The BNNSs were obtained by an ultrasound-assisted peeling method, and the typical
AFM image of the individual freestanding BNNS shows a distinct 2D lamella structure.
From Figure 1a,b, the typical BNNS has a lateral size of 1–2 µm and a thickness of 3–4 nm.
The thinner thickness of the BNNS guarantees higher breakdown strength, and the larger
lateral size of the BNNS extends the charge carrier channel and reduces the charge mobility.
The BT and BNNSs were randomly dispersed on the P(VDF-HFP) matrix by solution
blending. To make BNNSs perform better in improving the insulating properties, the shear
force of the doctor blade was used to align the BNNSs in the nanocomposite in the film
direction. Figure 1c shows the cross-sectional SEM images of the ternary nanocomposite
films. No heavy agglomeration of BT nanofillers was seen, and most BNNSs were oriented
in the film direction.
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indicates that the P(VDF-HFP) polymer is mainly of a nonpolar phase, which is favorable 
for dipolar switching and thus reduced hysteresis loss. Table 1 summarizes that the mean 
size of crystallite for (020)α and (110)α of pure P(VDF-HFP) and the nanocomposites. 
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Figure 1. (a) AFM image of BNNSs and section analysis along the red line showing the sheet thickness. SEM images of (b)
BNNSs and (c) cross-sectional SEM image of the ternary nanocomposite films containing 6 vol.% BNNS and 3 vol.% BT. The
location of some BT nanoparticles in SEM images is circled in red.

Figure 2a illustrates the FT-IR spectra of pure P(VDF-HFP), P(VDF-HFP)/BT binary
nanocomposites, and P(VDF-HFP)/BNNS/BT ternary nanocomposites. The absorption
bands at 428 and 550 cm−1 correspond to metal–oxygen vibrations and the stretching
vibrations in the TiO6 octahedra, respectively, of BT [25]. The signal peak at 818 cm−1

belongs to BNNS. The absorption bands at 796, 763, 614, 532, 490, and 410 cm−1 belong to
the α-phase in P(VDF-HFP), while those at 840 and 511 cm−1 are ascribed to the β-phase.
The absorption band at 834 cm−1 belongs to the γ-phase in P(VDF-HFP) [26]. It is found
that the incorporation of nanofillers may not influence the crystal phase of P(VDF-HFP),
and no detectable chemical interaction between the nanoparticles and polymer matrix is
observed. Figure 2b shows that the XRD patterns of the BNNS, BT, pure P(VDF-HFP),
P(VDF-HFP)/BNNS, P(VDF-HFP)/BT, and P(VDF-HFP)/BNNS/BT, where the peaks at
18.3 and 19.9◦ are ascribed to (020)α and (110)α faces, respectively [27,28]. The result
indicates that the P(VDF-HFP) polymer is mainly of a nonpolar phase, which is favorable
for dipolar switching and thus reduced hysteresis loss. Table 1 summarizes that the mean
size of crystallite for (020)α and (110)α of pure P(VDF-HFP) and the nanocomposites.
Results indicate that the incorporation of BNNS and BT decreases the crystallite size of the
polymer and thereby reduces the hysteresis loss.
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the crystalline phase of the polymer matrix. At low frequency, the dielectric relaxation is 
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BNNS, BT, pure P(VDF-HFP), P(VDF-HFP)/BNNS, P(VDF-HFP)/BT, and P(VDF-HFP)/BNNS/BT.
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Table 1. The mean size of crystallite for (020) and (110) faces of pure P(VDF-HFP) and the nanocom-
posites, from the XRD results.

Filler D(020)α D(110)α

0 vol.% BNNS + 0 vol.% BT 17.37 17.61
6 vol.% BNNS + 0 vol.% BT 16.26 16.88

6 vol.% BNNS + 1.5 vol.% BT 15.48 16.86
6 vol.% BNNS + 3 vol.% BT 15.44 16.57

6 vol.% BNNS + 4.4 vol.% BT 15.23 16.48
6 vol.% BNNS + 5.9 vol.% BT 14.87 16.40
6 vol.% BNNS + 7.5 vol.% BT 14.73 15.38
6 vol.% BNNS + 9 vol.% BT 14.53 15.12

3.2. Electrical Performance of the Nanocomposites

In order to simultaneously improve the electrical breakdown strength and dielectric
constant of P(VDF-HFP), a library of ternary nanocomposites with fixed content of BNNSs
and varied content of BT were prepared. The frequency-dependent dielectric constant
is shown in Figure 3. As the BT content gradually increased to 9 vol.%, the dielectric
constant of the binary nanocomposites increased from 10.6 to 17.9 (Figure 3a) at 1 kHz
due to the higher dielectric constant of BT relative to pure P(VDF-HFP) (~3000 vs. ~12).
The frequency-dependent dissipation factor of the binary and ternary nanocomposites are
shown in Figure 4. The dissipation factor of the binary nanocomposites increased slightly
with respect to the pure polymer, e.g., the dissipation factor of the binary nanocomposites
with 9 vol.% BT is 0.049 at 1 kHz, lower than that of pure P(VDF-HFP), 0.039. To achieve
simultaneously high dielectric constant and low dielectric loss, the oriented BNNSs with
superior insulation performance were incorporated into the nanocomposites with randomly
dispersed BT particles. With the introduction of the oriented BNNSs, the dissipation factor
of the ternary nanocomposites substantially decreased, and dielectric constant of the P
remained relatively high. For example, the dissipation factor of the ternary nanocomposites
with 6 vol.% BNNSs and 9.8 vol.% BT was only 0.040 at 1 kHz, 18% lower than that of
the binary nanocomposites. Moreover, the ternary nanocomposites still exhibited a higher
dielectric constant than pure P(VDF-HFP). At high frequency, the dielectric relaxation is
called αa-relaxation, which is related to segmental molecular motions in the amorphous of
the polymer matrix. At intermediate frequency, the relaxation peak is called αc-relaxation,
which is associated with the molecular motion in the crystalline phase of the polymer
matrix. At low frequency, the dielectric relaxation is related to the charge migration of
the polymer matrix. Interestingly, after doping with horizontally oriented BNNSs, the
relaxation peak of charge migration of nanocomposites was significantly suppressed, even
lower than that of pure P(VDF-HFP), showing that the horizontally oriented BNNSs may
block charge migration and reduce ion conduction loss.
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The dissipation factor only represents the dielectric loss under low electric fields, but
the capacitor films usually operate under high electric fields. Figure 5a shows the leakage
currents of pure P(VDF-HFP), binary nanocomposites, and ternary nanocomposites under
an electric field of 100 MV/m. It is clear that the introduction of BT resulted in a significant
increase of leakage current in the binary nanocomposites; i.e., the leakage current density
increased from 4.6 × 10−7 A/cm2 for pure P(VDF-HFP) to 8.1 × 10−6 A/cm2 for the
binary nanocomposites, which is nearly one order of magnitude higher. Conversely, the
introduction of oriented BNNSs could effectively suppress the leakage current. The leakage
current of the ternary nanocomposites (i.e., 7.3 × 10−8 A/cm2) is two orders of magnitude
lower than that of the binary nanocomposites. It is also even much lower than that of the
pure P(VDF-HFP). Therefore, the oriented BNNSs not only suppress the dielectric loss
under low electric fields but also reduce the leakage current under high electric fields in
P(VDF-HFP) nanocomposites.
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P(VDF-HFP)/BNNS/BT nanocomposites as a function of BT content and (c) P(VDF-HFP)/BNNS nanocomposites as a 
function of BNNS content. 
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Figure 5. (a) Leakage current density of P(VDF-HFP), P(VDF-HFP)/BT, and P(VDF-HFP)/BNNS/BT nanocomposites
under the electric field of 100 MV/m. The characteristic breakdown strength and shape parameter of (b) P(VDF-HFP)/BT
and P(VDF-HFP)/BNNS/BT nanocomposites as a function of BT content and (c) P(VDF-HFP)/BNNS nanocomposites as a
function of BNNS content.

Apart from high dielectric constant and low conduction loss, high electrical break-
down strength of polymer dielectrics is highly desired to pursue high energy density. The
electrical breakdown strength of the binary nanocomposites and the ternary nanocom-
posites as a function of BT content are summarized in Figure 5b. It is evident that the
introduction of BT led to significantly reduced breakdown strength from 450 MV/m for
pure P(VDF-HFP) to 301 MV/m for the binary nanocomposites with 9 vol.% BT, indicating
a reduction of about 33%. The decreased breakdown strength in the binary nanocomposites
is associated with the higher electrical conductivity of BT and large distinction in dielectric
constant between BT and P(VDF-HFP) matrix, making BT act as defects in the nanocom-
posites. Moreover, the poor compatibility between BT nanoparticles and P(VDF-HFP)
matrix leads to loose-bounded interfaces. So, more voids and flaws are introduced at
the interfaces, and thus the breakdown strength is reduced. To improve the breakdown
strength, BNNSs were oriented perpendicular to the electric field direction to impede the
charge transport and breakdown pathway. It can be seen that the incorporation of oriented
BNNSs dramatically promoted the breakdown strength of nanocomposites (Figure 5c).
For example, the breakdown strength of the ternary nanocomposites with 6 vol.% BNNS
and 5.9 vol.% reached 493 MV/m, 47% higher than that of the binary nanocomposites,
~336 MV/m. Additionally, the ternary nanocomposites exhibited higher β values than
the binary nanocomposites, indicating less scatter of breakdown strength for the ternary
nanocomposites. The variation in breakdown strength coincides well with the variation
in the leakage current, showing that the suppressed leakage current is responsible for the
increased breakdown strength.

3.3. Energy Storage Performance of the Nanocomposites

The energy storage properties of the nanocomposites are characterized by charge–
discharge efficiency (η) and discharged energy density (Ue). It was seen that the ternary
nanocomposites showed significantly promoted maximum Ue compared to pure P(VDF-
HFP) due to simultaneously enhanced ε and Eb (Figure 6a). η of the ternary nanocomposites
remained relatively high at various loads of BT nanoparticles since the insulating networks
formed by oriented BNNSs would act as charge barriers and lead to lower conduction loss
(Figure 6b). In comparison, although the polarization of the binary nanocomposites was
enhanced, little changes could be found in Ue compared to pure P(VDF-HFP) due to the
higher energy loss of the binary nanocomposites (Figure 6c). The optimal composition
with a maximum Ue was determined as the ternary nanocomposite incorporated with
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6 vol.% BNNS and 3 vol.% BT. Owing to the high efficiency induced by the incorporation
of oriented BNNSs, the ternary nanocomposites delivered a maximum Ue of 13 J/cm3,
57% and 89% higher than pure P(VDF-HFP) and the binary nanocomposites with the same
content of BT, respectively.
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Figure 6. (a) Discharged energy density of the ternary nanocomposites with 6 vol.% BNNSs and various content of BT.
(b) Charge–discharge efficiency of the ternary nanocomposites with 6 vol.% BNNSs and various content of BT. (c) Discharged
energy density and charge–discharge efficiency of pure P(VDF-HFP), binary nanocomposites, and ternary nanocomposites
under different electric fields.

4. Conclusions

In summary, this work shows that the incorporation of oriented BNNSs in P(VDF-
HFP) nanocomposites leads to an enhancement in both charge–discharge efficiency and
discharged energy density. By changing the volume ratio of BT and BNNS, the dielectric
properties of nanocomposites can be continuously adjusted and optimized. The best
energy storage properties of the P(VDF-HFP)/BNNS/BT ternary nanocomposites were
rationalized experimentally. The concept proposed in this paper can be applied to other
ferroelectric nanocomposites to optimize capacitive performance.
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