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Abstract: Hard-core sandwich plates are widely used in the field of aviation, aerospace, transporta-
tion, and construction thanks to their superior mechanical properties such as sound absorption,
heat insulation, shock absorption, and so on. As an important form, the circular sandwich is very
common in the field of engineering. Thus, theoretical analysis and numerical simulation of bending
and buckling for isotropic circular sandwich plates with a hard core (SP-HC) are conducted in this
study. Firstly, the revised Reissner’s theory was used to derive the bending equations of isotropic
circular SP-HC for the first time. Then, the analytic solutions to bending deformation for circular
and annular sandwich SP-HCs under some loads and boundary conditions were obtained through
the decoupled simplification. Secondly, an analytic solution to bending deformation for a simply
supported annular SP-HC under uniformly distributed bending moment and shear force along the
inner edge was given. Finally, the differential equations of buckling for circular SP-HCs in polar
coordinates were derived to obtain the critical loads of overall instability of SP-HC under simply
supported and fixed-end supported boundary conditions. Meanwhile, the numerical simulations
using Nastran software were conducted to compare with the theoretical analyses using Reissner’s
theory and the derived models in this study. The theoretical and numerical results showed that the
present formula proposed in this study can be suitable to both SP-HC and SP-SC. The efforts can
provide valuable information for safe and stable application of multi-functional composite material
of SP-HC.

Keywords: circular sandwich plates; annular sandwich plates; hard core; Reissner’s theory; bending;
stability; finite element analysis

1. Introduction

The sandwich structure used in engineering generally refers to a composite struc-
ture consisting of two high-strength thin plates and sandwich materials filled between
them [1–4]. The sandwich structure, featuring light mass, high stiffness, and high strength,
has the properties of heat insulation, heat preservation, sound insulation and noise reduc-
tion, shock absorption, and fire prevention [5,6]. In addition, the sandwich structure avoids
large area riveting in the production process, which weakens the stress concentration and
thus greatly enhances the fatigue resistance strength of the structure. Consequently, the
sandwich structure has been considered as an important structural material in aerospace
engineering, and has been widely used in shipbuilding, train manufacturing, building
structures, and other fields in recent years [7].

Many scholars have conducted in-depth studies on the mechanical behavior and
properties of sandwich structures, and proposed many analysis and calculation models.
In terms of linear theory alone, three main theories have been formed [8]. (a) Reissner’s
theory [9], which only considers the antisymmetric deformation of sandwich plates and
is proposed on the basis of the shear correction theory of Reissner sandwich plates. The
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theory treats the sandwich plate as a thin film and ignores its bending stiffness. More-
over, it considers that the stress component parallel to the plate plane in the sandwich is
zero because the sandwich is soft. This theory is relatively simple in solving the overall
bending and stability problems of sandwich plates, and its calculation can basically meet
the requirements of engineering applications. (b) Hoff theory [10], which differs from
Reissner’s theory only in that it is based on the assumption that the sandwich plate is a
thin plate, i.e., the bending resistance and the transverse shear deformation of the plate are
considered. Compared with that of Reissner’s theory, the equation derived from such a
theory has an additional coefficient of bending stiffness Df of the surface board, as well
as a different expression for the shear stiffness C. (c) Prusakov–Du Qinghua theory [11],
a theoretical analysis model considering transverse elastic deformation of the sandwich
proposed by Prusakov and Du Qinghua, who considered that, in practice, sandwich plates
have not only antisymmetric bending deformation and overall instability deformation,
but also symmetric deformation and local forms of instability. Unlike the Hoff theory, this
theory takes into account the symmetric deformation of the sandwich plate. The materials
considered in the above three theories have the following in common: sandwich plates
are isotropic materials, with small deflection bending deformation, and the core of the
sandwich plate is soft, that is, the sandwich only withstands the transverse shear force.
Subsequently, a number of scholars have also studied orthotropic and anisotropic sandwich
plates. Wang Zhenming and Dai Fuling explored the problems in deformation, stability,
and vibration of orthotropic four-sided simply supported multilayered, sandwiched, and
reinforced rectangular flat shells in terms of the shear deformation in the thickness direc-
tion [12]. OT Thomsen put forward an approximate analysis of the local buckling effect of
orthotropic sandwich plates under local loads, did analytical calculations for specific cases,
and compared them with the results of finite element analysis, which showed that the
modularity ratio and the thickness of the bearing surface have a great influence on the local
buckling effect [13]. T.S. Lok and Q.H. Cheng studied the bending and dynamic response
of sandwich plates by equating them to orthotropic thick plates using dynamic equivalence
and other methods [14,15]. Hoff theory and Prusakov–Du Qinghua theory are all classified
as the first-order shear deformation theory. This theory considers that the deformation of
each layer of the sandwich plate varies linearly along the thickness direction, which is not
applicable to the sandwich plate problems with large differences in the stiffness of each
layer, and it is also not applicable to the problems requiring high accuracy of shear stress
between layers. In order to solve problems of such a sandwich plate, it is necessary to use
the higher-order shear theory. B.N. Pandya and T. Kant assumed that the displacement
pattern varies nonlinearly within the plane along the thickness direction of the plate and
the transverse displacement is constant, thus giving a simple equivalent finite element
method for a symmetrical multilayer plate [16]. Sokolinsky et al. investigated the buckling
behavior of sandwich plates under different boundary conditions and boundary loads
based on the higher-order shear theory [17].

Scholars at home and abroad have conducted many studies on the stability of sand-
wich structures, as instability of sandwich structures is an important form of structural
failure. Unlike single-layer structures, sandwich structures produce both local buckling
and overall buckling forms under in-plane loading. In the study of local buckling of
sandwich structure plates, Heath [18] assumed the core layer as the elastic support of the
sandwich structure plates and approximated the critical load for buckling of the sandwich
structure plates. Aiello [19] et al. also studied the buckling of sandwich plates using
similar assumptions to Heath and using the first-order shear theory. In terms of overall
buckling research, Hadi [20] et al. investigated the overall buckling of sandwich plates
based on the zig-zag model, and further analyzed the role of relevant parameters on the
overall buckling. All the above researchers only consider the local buckling or overall
buckling of sandwich plates alone, and do not consider the interaction between them. Such
a research idea is applicable to SP-HC. However, for the sandwich plate with a soft core
(SP-SC) to have significant transverse compressibility, the overall and local buckling have
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a certain degree of interaction and may even undergo mutual transformation. Therefore,
Frostig [21] and Sokolinsky [17] analyzed the stability problem of the SP-SC by means of
higher-order shear theory and analyzed their buckling behavior as influenced by boundary
conditions. Dawe [22] and Yuan [23] investigated the local buckling and overall buckling
of the sandwich plate by finite element methods with B-splines. Pandit et al. [24] improved
the zig-zag higher-order theory and used this model to investigate the buckling properties
of sandwich plates.

From the above research analyses, it can be found that the previous studies on the
bending and stability of the sandwich structure mainly focus on the soft-core sandwich
structure, which ignores the in-plane stiffness of the core. With the emergence and devel-
opment of new materials, some hard-core sandwich structures having in-plane bending
stiffness have emerged in engineering applications. Although some scholars have started
to study the bending and stability of hard-core sandwich structures, there is a lack of
theoretical analysis models for solving the bending and stability problems of the circular
SP-HC in engineering. Therefore, we derive the equilibrium equations for bending of
isotropic circular SP-HCs in a polar coordinate system, and give the corresponding ex-
pressions for internal forces and boundary conditions in this paper. For the common load
forms and boundary conditions in engineering, the analytical forms of bending of circular
and annular SP-HCs under various load forms and boundary conditions are given in this
paper. In addition, we derive the critical loads for instability under in-plane loading of the
SP-HC simply supported and fixed-end supported at its periphery. The analytical models
proposed in this study can provide some valuable information and theoretical supports for
analyzing the bending and stability of SP-HC structures.

2. Bending of the Circular SP-HC

There is a circular SP-HC with plate thickness t and core thickness h. The materials
of both plates and cores are isotropic, with modulus of elasticity Ef and Ec, and Poisson’s
ratio µf and µc, respectively, as shown in Figure 1. A more convenient way to solve
the circular plate problem is to use the polar coordinate system. For this purpose, the
basic equation of the SP-HC represented by the rectangular coordinate system, which
was derived by Ma and Deng based on the revisions for the soft sandwich hypothesis of
Reissner’s theory from consideration of influence of transverse shear by first-order shear
deformation theory [25–27], should be transformed into the polar coordinate. In polar
coordinates, the internal force for bending of the circular SP-HC is shown in Equation (1).

Mr = −(D + Dc)
∂ψr
∂r −

(
Dµ f + Dcµc

)(
1
r ψr +

1
r

∂ψθ
∂θ

)
Mθ = −(D + Dc)

(
1
r ψr +

1
r

∂ψθ
∂θ

)
−
(

Dµ f + Dcµc

)
∂ψr
∂r

Mrθ = −
(

D
1−µ f

2 + Dc
1−µc

2

)(
1
r

∂ψr
∂θ −

1
r ψθ +

∂ψθ
∂r

)
Qr = C

(
∂w
∂r − ψr

)
Qθ = C

(
1
r

∂w
∂θ − ψθ

)
(1)

where

D =
E f (h + t)2t

2
(

1− µ2
f

) (2)

Dc =
Ech3

12(1− µ2
c )

(3)

C =
Ech

2(1 + µc)
= Gch (4)

where D is the combined bending stiffness of the circular sandwich plate; Dc and C are
the bending stiffness and shear stiffness of the core layer, respectively; µf and µc are the
Poisson’s ratios of the plate and core layer, respectively; Gc is the shear modulus of the core
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layer; Mr, Mθ , and Mrθ are the bending moment and torque in polar coordinates; Qr and
Qθ are the transverse shear forces in polar coordinates; w is the deflection; and ψr and ψθ

are the turning angles.
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The deflection w and the turning angle ψr, ψθ can be expressed by the functions ω and
f as follows:

ψr =
∂ω

∂r
+

1
r

∂ f
∂θ

(5)

ψθ =
1
r

∂ω

∂θ
− ∂ f

∂r
(6)

After coordinate transformation, the basic equation for bending of SP-HCs after
decoupling in polar coordinates can be obtained as follows:

w = ω− D+Dc
C ∇2ω[

D
2

(
1− µ f

)
+ Dc

2 (1− µc)
]
∇2 f − C f = 0

(D + Dc)∇2∇2ω = q

(7)

where ∇2 is the Laplace operator in polar coordinates, ∇2 = ∂2

∂r2 +
1
r

∂
∂r +

1
r2

∂2

∂θ2 .
Axisymmetric bending of circular plates is relatively common in practical engineering

applications. A circular sandwich plate of radius a is subjected to an axisymmetric trans-
verse load q, with boundary restraints simply supported or fixed-end supported at the
periphery. At this point, the basic equation is as follows:

1
r

d
dr

{r
d
dr

[
1
r

d
dr

(r
dω

dr
)]} =

q
D + Dc

(8)

If the transverse load q is not a function of the radius r, the above equation can be
obtained by repeating the integration of r:

ω =
qr4

64(D + Dc)
+

1
4

Ar2(ln r− 1) +
1
4

Br2 + E ln r + F (9)

Then, the Laplace operator of ω is

∇2ω =
qr2

4(D + Dc)
+ Alnr + B (10)
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Then, the deflection of the circular plate can be obtained as

w = ω− D+Dc
C ∇2ω = qr4

64(D+Dc)
− qr2

4C + 1
4 Ar2(ln r− 1)+

1
4 Br2 +

(
E− D+Dc

C A
)

ln r + F− D+Dc
C B

(11)

where the four integration constants, A, B, E and F, are unknown quantities. Only when
these four integration constants are obtained, can the deflection formula of each point of
a circular sandwich plate be determined, so as to determine the internal force and stress
magnitude of each point of this circular plate. These four integration constants can be
derived from the boundary conditions at the center and edges of the circular plate.

2.1. Axisymmetric Bending of Circular and Non-Porous SP-HC

There is a circular and non-porous SP-HC with radius a, plate thickness t, and core
thickness h. The elastic moduli of the plate and core are E and Ec, respectively, and the
Poisson’s ratios are µf and µc, respectively. The different boundary constraints and load
conditions are given in Figure 2.
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Figure 2. Boundary constraints and loading conditions for circular and non-porous SP-HC. (a) Simply
supported at the periphery and uniformly distributed bending moment under boundary action;
(b) simply supported at the periphery, subjected to transverse uniform load; (c) fixed-end supported at
the periphery, subjected to transverse uniform load; (d) simply supported at the periphery, subjected
to local transverse uniform load; (e) fixed-end supported at the periphery, subject to local transverse
uniform load; (f) simply supported at the periphery, subject to central concentrated force; (g) fixed-
end supported at the periphery, subject to central concentrated force; (h) the top view of the circular
sandwich plate simply supported at its periphery; and (i) the top view of the circular sandwich plate
fixed-end supported at its periphery.
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2.1.1. The Boundary of the Circular Sandwich Plate Simply Supported at Its Periphery
Subjected to the Uniformly Distributed Bending Moment

As shown in Figure 2a, when the periphery of the circular sandwich plate is subjected
to the uniformly distributed bending moment M0 without uniform load in the transverse
direction, the deflection formula is

w =
M0
(
a2 − r2)

2
[

D
(

1 + µ f

)
+ Dc(1 + µc)

] (12)

2.1.2. Circular Sandwich Plate Subjected to Transverse Uniform Load

(1) Simply supported circular sandwich plate
As shown in Figure 2b, when the circular sandwich plate simply supported at its

periphery is subjected to the uniformly distributed load of pressure q, the deflection
formula is

w =
q

64(D + Dc)

(
a2 − r2

)(5 + υ

1 + υ
a2 − r2

)
+

q
4C

(
a2 − r2

)
(13)

where υ is the overall equivalent Poisson’s ratio of the sandwich plate, υ =
Dµ f +Dcµc

D+Dc
.

(2) Fixed-end supported circular sandwich plate
As shown in Figure 2c, when the circular sandwich plate fixed-end supported at

its periphery is subjected to the uniformly distributed load of pressure q, the deflection
formula is

w =
q

64(D + Dc)

(
a2 − r2

)2
+

q
4C

(
a2 − r2

)
(14)

2.1.3. Circular Sandwich Plate Subjected to a Uniform Load in a Circle of Radius b

(1) Simply supported circular sandwich plate
As shown in Figure 2d, when the sandwich plate simply supported at its periphery is

subjected to the uniformly distributed load of strength q in a circle of radius b, the deflection
formula is

w1 = qr4

64(D+Dc)
− qb2r2

8(D+Dc)

[
ln a

b +
1

1+υ −
1−υ

4(1+υ)
b2

a2

]
+ qb2

16(D+Dc)

[
3+υ
1+υ a2 − b2 ln a

b −
7+3υ

4(1+υ)
b2
]
− q

4C
(
r2 − b2 − 2b2 ln a

b
)

r ≤ b

w2 = qb2r2

8(D+Dc)

[
ln r

a −
3+υ

2(1+υ)
+ 1−υ

4(1+υ)
b2

a2

]
+ qb4

16(D+Dc)
ln r

b

+ qb2

16(D+Dc)

[
3+υ
1+υ a2 − 1−υ

2(1+υ)
b2
]
− qb2

2C ln r
a b ≤ r ≤ a

(15)

(2) Fixed-end supported circular sandwich plate
As shown in Figure 2e, when the sandwich plate fixed-end supported at its periphery

is subjected to the uniformly distributed load of strength q in a circle of radius b, the
deflection formula is

w1 = qr4

64(D+Dc)
− qb2r2

32(D+Dc)

(
4 ln a

b +
b2

a2

)
+ qb2

16(D+Dc)

[
a2 − b2( 3

4 + ln a
b
)]

+ qb2

4C + qb2

2C ln a
b −

qr2

4C r ≤ b

w2 = qb2r2

8(D+Dc)

(
ln r

a −
1
2 −

b2

4a2

)
+ qb4

16(D+Dc)
ln r

a

+ qb2

16(D+Dc)

(
a2 + b2

2

)
− qb2

2C ln r
a b ≤ r ≤ a

(16)

2.1.4. Circular Sandwich Plate Subjected to Central Concentration Force

(1) Simply supported circular sandwich plate
As shown in Figure 2f, when the center of the sandwich plate simply supported at its
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periphery is subjected to the concentrated load P, the deflection formula is

w =
P

16π(D + Dc)

[
3 + υ

1 + υ

(
a2 − r2

)
+ 2r2 ln

r
a

]
− P

2πC
ln

r
a

(17)

(2) Fixed-end supported circular sandwich plate
As shown in Figure 2g, when the center of the sandwich plate fixed-end supported at

its periphery is subjected to the concentrated load P, the deflection formula is

w =
P

16π(D + Dc)

[
a2 − r2 + 2r2 ln

r
a

]
− P

2πC
ln

r
a

(18)

For the analytical solution of the bending deformation of the circular SP-HC given in
this paper, if the bending stiffness of the core layer of the sandwich plate is neglected, i.e.,
if Dc = 0 is set in the equation, the same deflection expression as that of the circular SP-SC
in [2] is obtained. For the circular SP-HC, the bending stiffness Dc of the core layer will
make its deflection smaller than that of the circular SP-SC under the same conditions, so
the circular SP-HC has a higher load capacity compared with the circular SP-SC.

2.2. Axisymmetric Bending of the Annular SP-HC

If the circular sandwich plate has a circular hole at the center of the circle, it becomes
an annular plate with two concentric circles at the boundary.

2.2.1. Annular Plates with Uniformly Distributed Bending Moment M1 and M2 at the Inner
and Outer Edges, Respectively

As shown in Figure 3a, when uniformly distributed bending moments M1 and M2 act
on the inner and outer boundaries of the annular plate, and the outer boundary is a simply
supported edge, the deflection formula is

w = M1b2−M2a2

2(a2−b2)[D(1+µ f )+Dc(1+µc)]

(
r2 − a2)

+ a2b2(M1−M2)

(a2−b2)[D(1−µ f )+Dc(1−µc)]
ln r

a

(19)
Materials 2021, 14, x FOR PEER REVIEW 8 of 14 
 

 

 
Figure 3. Boundary constraint conditions and loading conditions for annular SP-HC: (a) uniformly 
distributed bending moments M1 and M2 acting on the outer boundary simply supported, inner and 
outer boundaries, respectively; (b) simply supported at the outer boundary and uniform shear force 
Q0 acting along the inner edge; (c) simply supported at the outer boundary and fixed-end supported 
at the inner edge; (d) force diagram of the circular plate simply supported at the outer boundary 
and fixed-end supported at the inner edge. 

2.2.2. Annular Plates with Uniform Shear Force Q0 Acting along the Inner Edge 
As shown in Figure 3b, when the inner edge of the annular plate is subjected to a 

uniformly distributed shear force Q0 and the outer boundary is a simply supported edge, 
the deflection formula is 

( ) ( ) ( ) ( )

( ) ( )

2 2 2 2
0 0

2 2 2 2

2 2
0 0

2 2

3 1ln ln ln ln
4 2 1 2 1

3ln ln
4 2 1

c c

c

Q br Q br a a a b a rw
D D b b D D b aa b a b

Q a b Q bb a r
D D b C aa b

υ υ
υ υ

υ
υ

 + += − − − + + + + −− −  

 +− + + + +−    

(20)

2.2.3. Annular Plates with Fixed-End Support at the Inner Edge 
As shown in Figure 3c, the center part of the annular plate r = b is regarded as a rigid 

body, so that the inner edge of the annular plate forms a fixed-end supported boundary 
condition. The concentrated load P acts at the center of the circle, and the outer edge of 
the annular plate is a simply supported edge. At this time, the force of the annular plate 
is shown in Figure 3d, and its deflection can be obtained by superposing the expressions 
of bending moment and shear force shown in Equation (21) into Equations (19) and (20). 

( )
( ) ( )

2 2

1 2 22

2

2

0

1 1 2 1 ln
4 1 1

0

2

P a a aM
bb ba

b
M

PQ
b

υ υ
π υ υ

π

  
= − − + +        + + − 

 
=

= −
 

(21)

2.3. Analysis of Examples 
2.3.1. Bending of Circular SP-HC 

There is a circular sandwich plate with a radius of a = 150 mm, subjected to a trans-
verse uniform load q = 1.0 MPa. The thickness of upper and lower plates t = 1 mm, modu-
lus of elasticity Ef = 68 GPa, thickness of cores h = 15 mm, and Poisson’s ratio between 
plates and cores μf = μc = 0.3. A comparison of the maximum deflection of the plates under 
different conditions of elastic modulus of the core layer is shown in Tables 1 and 2. 

M 1M 1 M 2

a

b

M 2

Q0Q0

b
a

b
a

P

Q0Q0

M 1M 1

(a) (b)

(c) (d)

Figure 3. Boundary constraint conditions and loading conditions for annular SP-HC: (a) uniformly
distributed bending moments M1 and M2 acting on the outer boundary simply supported, inner and
outer boundaries, respectively; (b) simply supported at the outer boundary and uniform shear force
Q0 acting along the inner edge; (c) simply supported at the outer boundary and fixed-end supported
at the inner edge; (d) force diagram of the circular plate simply supported at the outer boundary and
fixed-end supported at the inner edge.
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2.2.2. Annular Plates with Uniform Shear Force Q0 Acting along the Inner Edge

As shown in Figure 3b, when the inner edge of the annular plate is subjected to a
uniformly distributed shear force Q0 and the outer boundary is a simply supported edge,
the deflection formula is

w = − Q0br2

4(D+Dc)

[
ln r

b −
a2

a2−b2 ln a
b −

3+υ
2(1+υ)

]
+ Q0b

2(D+Dc)
1+υ
1−υ

a2b2

(a2−b2)
ln a

b ln r
a

− Q0a2b
4(D+Dc)

[
b2

a2−b2 ln a
b +

3+υ
2(1+υ)

]
+ Q0b

C ln r
a

(20)

2.2.3. Annular Plates with Fixed-End Support at the Inner Edge

As shown in Figure 3c, the center part of the annular plate r = b is regarded as a rigid
body, so that the inner edge of the annular plate forms a fixed-end supported boundary
condition. The concentrated load P acts at the center of the circle, and the outer edge of
the annular plate is a simply supported edge. At this time, the force of the annular plate is
shown in Figure 3d, and its deflection can be obtained by superposing the expressions of
bending moment and shear force shown in Equation (21) into Equations (19) and (20).

M1 = P
4π
[
(1+υ) a2

b2 +1−υ
] [(1− υ)

(
a2

b2 − 1
)
+ 2(1 + υ) a2

b2 ln a
b

]
M2 = 0
Q0 = − P

2πb

(21)

2.3. Analysis of Examples
2.3.1. Bending of Circular SP-HC

There is a circular sandwich plate with a radius of a = 150 mm, subjected to a transverse
uniform load q = 1.0 MPa. The thickness of upper and lower plates t = 1 mm, modulus of
elasticity Ef = 68 GPa, thickness of cores h = 15 mm, and Poisson’s ratio between plates and
cores µf = µc = 0.3. A comparison of the maximum deflection of the plates under different
conditions of elastic modulus of the core layer is shown in Tables 1 and 2.

Table 1. Maximum deflection of the circular sandwich plate simply supported at its periphery with
different modulus of elasticity of the core layer.

Ec/Ef Hc/mm Re/mm Na/mm Hc-Na Re-Na Hc-Re

1/1 1.068 3.385 1.069 −0.09% 68.41% −216.95%
1/2 1.633 3.399 1.634 −0.06% 51.93% −108.15%
1/5 2.410 3.439 2.407 0.12% 30.01% −42.70%
1/10 2.899 3.506 2.891 0.28% 17.54% −20.94%
1/50 3.902 4.044 3.858 1.13% 4.60% −3.64%

1/100 4.643 4.716 4.556 1.87% 3.39% −1.57%
1/1000 16.806 16.814 15.932 5.20% 5.24% −0.04%

Note: “Hc” is the analytical solution of the hard core by the proposed equations in this study; “Re” is the analytical
solution based on Reissner’s theory; “Na” is the numerical solution by Nastran software; “Hc-Na” is the error of
the analytical solution of the hard core by the proposed equations in this study relative to the numerical solution
of Nastran; “Re-Na” is the error of the analytical solution of the hard core based on Reissner’s theory relative
to the numerical solution of Nastran; and “Hc-Re” is the error of the analytical solution of the hard core by the
proposed equations in this study relative to the analytical solution of Reissner.

According to the above calculation results, when Ec/Ef is less than 1/50, the analytical
solutions calculated by the proposed formula in this study, the analytical solution based on
Reissner’s theory, and the numerical solution of Nastran software tend to be consistent.
Therefore, the core layer can be treated as a soft core when Ec/Ef is less than 1/50, and
the bending formula derived in this study for hard cores can be precisely suitable for a
circular sandwich plate with soft cores. When Ec/Ef is greater than 1/50, the error increases
significantly. The core layer must be treated as a hard core, so it also shows that the
analytical solution for the circular SP-HCs derived in this paper is necessary, because the



Materials 2021, 14, 4741 9 of 14

previous bending formula for SP-SC is not suitable for SP-HC, while the present formula
proposed in this study can be suitable to SP-HC and SP-SC.

Table 2. Maximum deflection of the circular sandwich plate fixed-end supported at its periphery
with different modulus of elasticity of the core layer.

Ec/Ef Hc/mm Re/mm Na/mm Hc-Na Re-Na Hc-Re

1/1 0.272 0.840 0.274 −0.74% 67.38% −208.8%
1/2 0.421 0.854 0.423 −0.48% 50.47% −102.9%
1/5 0.642 0.894 0.642 0 28.19% −39.25%
1/10 0.812 0.961 0.808 0.49% 15.92% −18.35%
1/50 1.464 1.499 1.425 2.67% 4.94% −2.39%

1/100 2.153 2.171 2.070 3.86% 4.65% −0.84%
1/1000 15.163 15.182 14.226 6.18% 6.30% −0.12%

For the above calculation example, the elastic modulus Ec = 6.8 GPa of the core layer
is taken, and the analytical and numerical solutions of the maximum deflection of bending
for the circular SP-HC under different loads and boundary constraints are calculated, as
shown in Table 3. The distribution cloud chart of bending deformation of the circular
SP-HC under each condition is shown in Figure 4a–e, respectively.

Table 3. Maximum deflection of bending for circular SP-HCs under different loads and boundary constraints.

Boundary Conditions Load Form and Size Analytic Solution of
wmax/mm

Numerical Solution
of wmax/mm Error

Simply supported boundary uniformly distributed bending
moment M0 = 570 N·m 0.423 0.423 0

Simply supported boundary Uniform load q = 0.5 MPa 1.449 1.446 0.21%
Fixed-end supported boundary Uniform load q = 0.5 MPa 0.406 0.404 0.49%

Simply supported boundary Local uniform load qb = 4.5 MPa 3.263 3.239 0.74%
Fixed-end supported boundary Local uniform load qb = 4.5 MPa 1.292 1.280 0.93%
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moment M0 = 570 N.m; (b) simply supported boundary, uniform load q = 0.5 MPa; (c) fixed-end
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2.3.2. Bending of Annular SP-HC

Consider an annular SP-HC (circular SP-HC with a hole in the center) with radius
a = 200 mm; thickness of the upper and lower panels t = 1 mm, modulus of elasticity
Ef = 68 GPa; thickness of the core layer h = 15 mm, modulus of elasticity Ec = 6.8 GPa; and
Poisson’s ratio of the panels and core layer µf = µc = 0.3. The ratio of the radius a of the
annular plate to the radius b of the circular hole is denoted by k. With the variation of
k value, the maximum deflections of the simply supported annular sandwich plate with
uniformly distributed bending moment M1 = 400 N.m acting at the inner edge and the
simply supported annular sandwich plate with uniform shear force Q0 = 5000 N acting at
the inner edge are calculated as shown in Table 4.

Table 4. Maximum deflection of bending of annular SP-HCs simply supported on the outer boundary with a hole in the
center under different k values.

k Value

Analytical Solution
of wmax When the

Inner Edge Is
Subjected to the

Uniformly
Distributed

Bending Moment
M1 = 400 N·m/mm

Numerical
Solution of wmax
When the Inner

Edge Is Subjected
to the Uniformly

Distributed
Bending Moment
M1 = 400 N·m/mm

Error/%

Analytical Solution
of wmax When the

Inner Edge Is
Subjected to the
Uniform Shear

Force
Q0 = 5000 N/mm

Numerical
Solution of wmax
When the Inner

Edge Is Subjected
to the Uniform

Shear Force
Q0 = 5000 N/mm

Error/%

1.25 −1.115 −1.107 0.72 0.543 0.542 0.18
1.5 −0.87 −0.882 1.36 0.689 0.689 0
2 −0.585 −0.577 1.39 0.671 0.67 0.15
3 −0.328 −0.324 1.23 0.491 0.491 0
4 −0.214 −0.218 1.83 0.365 0.364 0.27
5 −0.152 −0.153 0.65 0.285 0.284 0.35

From the above analyses, it can be seen that the numerical solution of annular SP-HCs
calculated by the finite element software Nastran is very close to the analytical solution
derived in this paper, with an error of less than 2%, regardless of the boundary conditions
and load forms. This indicates that the analytical solution derived in this paper can be used
for the bending analysis of the circular and annular SP-HCs in engineering.

3. Analysis of the Overall Stability of Circular SP-HC

The structure should not only ensure sufficient strength and stiffness, but also ensure
sufficient stability. The classical linear buckling theory is generally used in the current
engineering analysis of structural stability. The most common failure mode of composite
sandwich structures when subjected to compression, torsion, shear, and bending loads is
instability. Therefore, it is significant to analyze the stability of the sandwich structure. With
regard to circular SP-HC, by considering the derivation of the equilibrium equation for
the in-plane load action and using a method similar to the bending problem for sandwich
plates, the buckling differential equation for SP-HC in polar coordinates can be obtained
as follows

(D + Dc)∇2∇2ω−
[

Nθ

(
1
r

∂

∂r
+

1
r2

∂2

∂θ2

)
+ Nr

∂2

∂r2 + 2Nrθ

(
1
r

∂2

∂r∂θ
− 1

r2
∂

∂θ

)](
ω− D + Dc

C
∇2ω

)
= 0 (22)

where Nr, Nθ , and Nrθ are the in-plane load in the r direction, in-plane load in the θ direction,
and in-plane shear load in polar coordinates, respectively.

3.1. Stability of Circular Sandwich Plate under Uniform Pressure

A circular SP-HC with radius a under a uniform pressure p is shown in Figure 5.
Assuming that the boundary is simply supported or fixed-end supported at the periphery,
the plate will deform axisymmetrically in the case of instability. According to the analysis
of the plane stress problem, the internal forces Nr = Nθ = −p and Nrθ = 0 in the
mid-plane can be obtained. By substituting the internal forces into Equation (22), the
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buckling differential equation of the circular sandwich plate under axisymmetric condition
can be obtained as

(D + Dc)∇2∇2ω + p
(

1
r

d
dr

+
d2

dr2

)(
ω− D + Dc

C
∇2ω

)
= 0 (23)
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Thus, the critical pressure of the circular sandwich plate fixed-end supported at its
periphery can be obtained as

pcr =
14.68(D + Dc)C

Ca2 + 14.68(D + Dc)
(24)

The critical pressure of the circular sandwich plate simply supported at its periphery is

pcr =
4.2(D + Dc)C

Ca2 + 4.2(D + Dc)
(25)

3.2. Analysis of Example

There is a circular SP-HC subjected to a uniform pressure p in the radius direction
with radius a = 150 mm, thickness of both upper and lower panels t = 1 mm and modulus
of elasticity Ef = 68 GPa; thickness of the core layer h = 15 mm and modulus of elasticity
Ec= 6.8 GPa; and Poisson’s ratio of both plates and core layers µf = µc = 0.3. The stability
analysis was performed on this plate to calculate the critical load for its instability, as shown
in Table 5. The numerical calculation results of the finite element software Nastran are
given in Table 5 and Figure 6.

Table 5. Critical loads for instability of circular SP-HCs under different constraints.

Boundary Conditions Analytical Solution Numerical Solution Error

Fixed-end supported at the periphery 6.44 × 106 N 6.48 × 106 N 0.62%
Simply supported at the periphery 2.07 × 106 N 2.07 × 106 N 0

By comparative analysis above, the theoretical solutions of the destabilizing critical
load of circular SP-HCs under different constraints are in good agreement with the finite
element solution, and the relative error does not exceed 1%. This indicates that the the-
oretical model of stability analysis of circular SP-HCs given in this paper can provide a
theoretical basis for the stability analysis of such plate in engineering.
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Figure 6. The first-order buckling mode shapes of circular SP-HCs: (a) fixed-end supported at the
periphery; (b) simply supported at the periphery.

4. Conclusions

In this paper, the theoretical and finite element analyses of the bending and stability
of circular and annular SP-HCs under different boundary conditions and load forms were
conducted for the first time, and the following conclusions can be drawn:

(1) Based on the revisions for Reissner’s sandwich plate theory, the bending equilibrium
equations for isotropic circular SP-HC in the polar coordinate system are derived,
and the basic set of equations is decoupled and simplified to derive the analytical
solutions for the bending deformation of circular and annular sandwich plates under
common loads and boundary conditions.

(2) If the bending stiffness of the core layer can be neglected, i.e., if Dc = 0 is set in the
equation, the analytical solution of bending deformation of the circular SP-HC derived
in this paper can obtain the same deflection expression as that of the circular SP-SC.
Theoretical and numerical calculations for some examples show that the theoretical
solution proposed in this paper, the theoretical solution of SP-SC, and the finite
element solution tend to be in good agreement when the elastic modulus of the core
becomes smaller, i.e., the core becomes soft. Therefore, the theory of circular SP-HC
derived in this paper can also be used for the calculation of circular SP-SCs, which
boasts a wider range of applicability.

(3) The analytical solutions of the bending deformation of the annular SP-HC simply
supported at its periphery under two forms of loadings (uniform bending moment
and uniform shear force acting along the inner edge) are derived. Then, the variation
of the inner edge deflection (maximum deflection) with the value of k (the ratio of the
outer radius to the inner radius of the annular plate) is discussed in conjunction with
the finite element analysis. The results show that the analytical solution and the finite
element solution have good agreement. The inner edge deflection increases with
the decrease in k value (i.e., the size of central hole increases) under the uniformly
distributed bending moment load. Under the uniformly distributed shear load,
the inner edge deflection increases initially and then decreases with the decrease
in k value.

(4) The buckling differential equation of the SP-HC in polar coordinates and the solutions
of the critical loads for the overall instability of the SP-HC under simply supported and
fixed-end supported boundary conditions are derived. Some calculation examples
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show that the critical loads derived in this paper are in good agreement with the finite
element analysis results.
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