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Abstract: Heat equations can estimate the thermal distribution and phase transformation in real-
time based on the operating conditions and material properties. Such wonderful features have
enabled heat equations in various fields, including laser and electron beam processing. The integral
transform technique (ITT) is a powerful general-purpose semi-analytical/numerical method that
transforms partial differential equations into a coupled system of ordinary differential equations.
Under this category, Fourier and non-Fourier heat equations can be implemented on both equilibrium
and non-equilibrium thermo-dynamical processes, including a wide range of processes such as the
Two-Temperature Model, ultra-fast laser irradiation, and biological processes. This review article
focuses on heat equation models, including Fourier and non-Fourier heat equations. A comparison
between Fourier and non-Fourier heat equations and their generalized solutions have been discussed.
Various components of heat equations and their implementation in multiple processes have been
illustrated. Besides, literature has been collected based on ITT implementation in various materials.
Furthermore, a future outlook has been provided for Fourier and non-Fourier heat equations. It was
found that the Fourier heat equation is simple to use but involves infinite speed heat propagation in
comparison to the non-Fourier heat equation and can be linked with the Two-Temperature Model in
a natural way. On the other hand, the non-Fourier heat equation is complex and involves various
unknowns compared to the Fourier heat equation. Fourier and Non-Fourier heat equations have
proved their reliability in the case of laser–metallic materials, electron beam–biological and –inorganic
materials, laser–semiconducting materials, and laser–graphene material interactions. It has been
identified that the material properties, electron–phonon relaxation time, and Eigen Values play an
essential role in defining the precise results of Fourier and non-Fourier heat equations. In the case
of laser–graphene interaction, a restriction has been identified from ITT. When computations are
carried out for attosecond pulse durations, the laser wavelength approaches the nucleus-first electron
separation distance, resulting in meaningless results.

Keywords: Fourier heat equation; non-Fourier heat equation; integral transform technique; general-
ized solutions; heat equation components; MATHEMATICA software user-defined codes

1. Introduction

Various engineering problems can be modeled using partial differential equations
(PDEs) with initial and boundary conditions. For this purpose, numerical approaches,
including finite element, finite difference, boundary element, and spectral techniques, are
usually applied [1]. The integral transform technique (ITT) is mainly applied to solve linear
system problems [2]. A generalized ITT was recently used to resolve numerous linear
and non-linear models [3]. All methods reduce the PDEs to a set of ordinary differential
equations (ODEs) that can be solved via well-known techniques. For finite difference
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and element techniques, the field variables are considered in a limited number of points;
however, in the boundary elements approach, the number of boundary elements points
is minimal. Furthermore, the spectral technique yields a solution in terms of short series
numbers. Besides, ITT utilizes “Eigen Function” expansion.

The first law of thermodynamics, also known as the law of conservation of energy,
explains that the total energy of an isolated system is constant; energy can be transformed
from one form to another but can be neither created nor destroyed [4]. The second law of
thermodynamics is about the “quality” of energy. It states that as energy is transferred or
transformed, more and more of it is wasted. The second law also states that any isolated
system has a natural tendency to degenerate into a more disordered state [4]. It is worth
mentioning that all valid heat equations, including Fourier and non-Fourier, obey the first
and second laws of thermodynamics.

In this study, the authors have presented the integral transform technique on Fourier
and non-Fourier heat equations. We presented the generalized solutions of both techniques
in laser–material interaction for the experimentalists to perform simulations before carrying
out the actual experiments. We also discussed the various sections of Fourier and non-
Fourier heat equations. To further facilitate the experimentalists in this field, we developed
friendly user-defined software in MATHEMATICA and provided it within the manuscript
for the audience. To the best of the authors’ knowledge, this is the first study that compiles
ITT implementation on Fourier and non-Fourier heat equations along with the user-defined
codes in the field of experimental physics.

In this review paper, ITT is illustrated as a reliable tool for solving heat equations
engineering problems. This technique converts non-linear PDEs to a coupled non-linear
ODEs so that they can be solved numerically. ITT on heat equations has been classified
into (a) Fourier and (b) non-Fourier heat equations. The generalized solutions of Fourier
and non-Fourier heat equations have been derived and discussed. The components of
heat equations have been described in detail. Various applications of ITT have been
illustrated. Besides, user-defined codes have been provided with explanations in the case
of “MATHEMATICA” software programs. After reading this article, one will be able to
implement ITT, for Fourier and non-Fourier, in various engineering applications.

1.1. Generalities in Heat Equation: Fourier Heat Equation Formalism and Its Solution

Consider a body at temperature, T(x,y,z), at the position M(x,y,z), and time (t). The
temperature rises and falls in various body areas, moving from higher to lower tempera-
tures. A small area (∆S) around M(x,y,z) can be considered. The section to be heated (∆Q)
is proportional to (∆t∆S) and normal-derivative

(
∂T
∂n

)
, as:

∆Q = −k(x, y, z)∆t∆S
∂T
∂n

(1)

Here, k(x,y,z) and n are the thermal conductivity and vector perpendicular to the ∆S
and temperature declination orientation, respectively. In terms of thermal conductivity,
it has been assumed that the solid-body probe is functioning isotopically. Here, heat
passing through a surface area per unit time is denoted as “q.” Now, Equation (1) can be
expressed as:

q = −k
∂T
∂n

. (2)

To solve the heat equation, consider a random volume (V) covered by a surface (S)
and perceive the temperature change within the interval time interval (t1–t2). After taking
into account the above-defined explanations, one will obtain the following expression:

Q1 = −
∫ t1

t2

dt
∫

S

∫
k(x, y, z)

∂T
∂n

dS. (3)
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For a given element volume (∆V), the heat within the element is given as:

∆Q2 = [T(x, y, z, t + ∆t)− T(x, y, z, t)]c(x, y, z)ρ(x, y, z)∆V, (4)

where c(x,y,z) and ρ(x, y, z) are specific heat and density, respectively, for an element
volume, it is essential to change from t1 to t2, expressed as:

∆T = T(x, y, z, t2)− T(x, y, z, t1) (5)

Therefore
Q2 =

∫ ∫ ∫
V
[T(x, y, z, t2)− T(x, y, z, t1)]cρdV. (6)

Consequently:

T(x, y, z, t2)− T(x, y, z, t1) =
∫ t2

t1

∂T
∂t

dt. (7)

Now, let us assume that there is a heat source within the solid body. In a unit volume
per time unit, the source causes the heat absorbance or release, denoted by A(x,y,z,t). The
heat absorbance or release resulted from the volume (V) during the time duration (t1, t2) is
given as:

Q3 =
∫ t2

t1

dt
∫ ∫ ∫

V
A(x, y, z, t)dV. (8)

Noticeably, thermal equilibrium is assumed within the volume V, as:

Q2 = Q1 + Q3. (9)

It infers:∫ t1

t2

dt
∫ ∫

V

∫
cρ

∂T
∂t

dV = −
∫ t1

t2

dt
∫ ∫

S
k

∂T
∂n

dS +
∫ t1

t2

dt
∫ ∫ ∫

V
A(x, y, z, t)dV. (10)

By utilizing the Gauss–Ostrogradsky formalism, one must achieve:∫ t1

t2

dt
∫ ∫

V

∫
[cρ

∂T
∂t

dV − div(k · grad T)− A(x, y, z, t)]dV = 0. (11)

Equation (11) describes the thermal-field process that evolved when radiations interact
with a solid. Exact analytical results can be achieved if a series of generalizations concerning
temporal and spatial distributions for a given radiations source and the geometry are
made. If the configurations of the radiation source and the geometry to be irradiated
become more severe, it is very tough to determine an analytical solution and the thermal
distribution, T(x, y, z, t), expression can be evaluated numerically. A three-dimensional
(3D) heat equation is generally expressed as:

ρC
∂T
∂t

=
∂

∂x

(
k

∂T
∂x

)
+

∂

∂y

(
k

∂T
∂y

)
+

∂

∂z

(
k

∂T
∂z

)
+ A(x, y, z, t). (12)

Here, x, y, and z are the universal Cartesian coordinates, T is the temperature, t is
the time, k is the thermal conductivity, C is the material’s specific heat, ρ is the material’s
density, and A(x,y,z,t) is the heat source. Once the solid body is assumed to be consistent
and isotropous, Equation (12) reduces to:

∇2T − 1
γ

∂T
∂t

= −A(x, y, z, t)
k

(13)
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where γ (= k/ρC) is the thermal diffusivity. For the steady-state condition ( ∂T
∂t = 0),

Equation (13) reduces to:

∇2T = −A(x, y, z)
k

, (14)

If no external heating source is applied, Equation (13) becomes:

∇2T =
1
γ

∂T
∂t

. (15)

In the case of stationary and no heating source, one achieves the following term:

∇2T = 0 (16)

Equation (10) has an infinite heat-wave speed, and the formalism is known as the
“Fourier heat” equation.

∇2T = 0 (17)

In the current study, a cylinder has been considered. It is the reason why the authors
used cylindrical coordinates. Equation (12) in terms of cylindrical coordinates (r,z,φ) can be
written as:

∂2T(r, z, φ, t)
∂r2 +

1
r

∂T(r, z, φ, t)
∂r

+
∂2T(r, z, φ, t)

∂z2 +
1
r2

∂2T(r, z, φ, t)
∂φ2 − 1

γ

∂T(r, z, φ, t)
∂t

= −A(r, z, φ, t)
k

. (18)

The boundary conditions are:

K
∂T(r, z, φ, t)

∂r

∣∣∣∣
r=b

+ hT(b, z, φ, t) = 0. (19)

K
∂T(r, z, φ, t)

∂r

∣∣∣∣
z=0

+ hT(r, 0, φ, t) = 0. (20)

K
∂T(r, z, φ, t)

∂r

∣∣∣∣
z=a

+ hT(r, a, φ, t) = 0. (21)

Furthermore, the periodic boundary condition is:

T(r, 0, z, t) = T(r, 2π, z, t). (22)

After supposing that laser beam is emitting a beam in the transversal electromagnetic
mode (TEMmn), the thermal distribution variation T(r, z, ϕ, t) can be determined as [5]:

T(r, φ, z, t) = ∑
m,n

∞
∑

i=1

∞
∑

l=0

∞
∑

j=1
f̂2l
(
µil , λj, l

)
g
(
µil , λj, t

)
Kr(µil , r)Kφ(2l, φ)Kz

(
λj, z

)
+ ∑

m,n

∞
∑

i=1

∞
∑

l=0

∞
∑

j=1
f̂2l−1

(
µil , λj, l

)
g
(
µil , λj, t

)
Kr(µil , r)Kφ(2l − 1, φ)Kz

(
λj, z

) (23)

Equation (23) is the solution based on the boundary conditions given in Equations
(19)–(22). Furthermore:

∧
f 2l
(
µil , λj, l

)
=

1
kπCilCj

∫ a

0
αse−αszKz

(
λj, z

)
dz
∫ b

0

∫ 2π

0
Imn(r, φ)rKr(µil , r)Kφ(2l, φ)drdφ. (24)

∧
f 2l−1

(
µil , λj, l

)
=

1
kπCilCj

∫ a

0
αse−αszKz

(
λj, z

)
dz
∫ b

0

∫ 2π

0
Imn(r, φ)rKr(µil , r)Kφ(2l − 1, φ)drdφ. (25)

Here,
∧
f 2l
(
µil , λj, l

)
and

∧
f 2l−1

(
µil , λj, l

)
are the source terms of the solution. The term

“A(r, z, φ, t)” is the laser beam interaction with the material defined in correspondence
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with the Lambert–Beer law. It can be identified in the final solution of the heat equation

given by
∧
f 2l
(
µil , λj, l

)
and

∧
f 2l−1

(
µil , λj, l

)
source terms of the solution. We also have:

Imn(x, y) = I0mn

{
Hm

(√
2x

w

)
Hn

(√
2x

w

)
exp
[
−
(

x2 + y2

w2

)]}2

. (26)

g
(
µil , λj, t

)
=

1(
µ2

il + λ2
j

)[
1− e−β2

ijl t −
(

1− e−β2
ijl(t−t0)

)
h(t− t0)

] (27)

β2
il j = γ

(
µ2

il + λ2
j

)
. (28)

Here, g
(
µil , λj, t

)
and β2

il j are the part of the temporal part of the solution given by
direct and inverse Laplace transform. Furthermore, h(t − t0), t0, and as are the Heaviside
function, laser–material interaction time, and linear absorption coefficient. Besides, Kr(mil,r),
Kϕ(2l,ϕ), Kϕ(2l−1,ϕ) and Kz(λj,z) can be recognized as the “Eigen Functions” for the Eigen
Values mil, 2l, 2l−1 and λj. Therefore:

Kr(mil,r) = J(milr). (29)

Kϕ(2l,ϕ) = cos(lϕ). (30)

Kϕ(2l−1,ϕ) = sin(lϕ). (31)

Kz(λj,z) = cos(λjz) + (h/kλj)sin(λjz). (32)

Besides, J is the zeroth-order Bessel function, and Cil and Cj are the normalizing coeffi-
cients. It is worthy of mentioning that Eigen Values are dependent on the boundary conditions.

1.2. Non-Fourier Heat Equation Formalism and Its Solution

Consider the general form of the non-Fourier transform heat equation for laser–solid
interaction. Keeping the standardized notation, the heat source term is expressed as:

A(x, y, z, t) =
{

αI0e−αx; 0 ≤ t ≤ τ
0; t< 0 and t >τ

(33)

Here, the Cartesian coordinates have been considered as a sample in parallelepiped
shape is irradiated with a laser beam. The following equation shows the non-Fourier
heat equation:

∂2T
∂x2 +

∂2T
∂y2 +

∂2T
∂z2 −

1
γ

∂T
∂t
− τ0

γ

∂2T
∂t2 = −A(x, y, z, t)

K
(1 + τ0δ(t)). (34)

Here, γ is the thermal diffusivity, and K is the thermal conductivity. After implement-
ing ITT, one will obtain the following expression [5]:

µ2
i T̂ + β2

l T̂ + λ2
j T̂ +

1
γ

∂T̂
∂t

+
τ0

γ

∂2T̂
∂t2 =

Â(x, y, z, t)
K

(1 + τ0δ(t)). (35)

ITT is interpreted as a powerful general-purpose semi-analytical/numerical method.
The method transforms partial differential equation models to a coupled system of ordinary
differential equations. The implementation of this technique can be identified in-detail
from Refs. [6,7]. Here, one should note that a, b and c are the length, width, and height of
the substrate, with:

f
(
µi, βl , λj, t

)
=
∫ a

0

∫ b

0

∫ c

0
K̂x(µi, x)K̂y(βl , y)K̂Z

(
λj, z

) Â(x, y, z, t)
K

(1 + τ0δ(t)). (36)
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Here, f
(
µi, βl , λj, t

)
and K̂x(µi, x) are the source terms of a solution, K̂x(µi, x), K̂y(βl , y)

and K̂Z
(
λj, z

)
are the “Eigen Functions.” The first “Eigen Function (K̂x(µi, x),) is calculated as:

K̂x(µi, x) =
1
ci

Kx(µi, x). (37)

Furthermore, in the case of the ITT, we have the following expression [5]:

∂2K̂x

∂x2 + λK̂x = 0. (38)

The boundary conditions along with the x-axis are given as:[
k
(

∂K̂x

∂x

)
− hK̂x

]
x=0

= 0. (39)

[
k
(

∂K̂x

∂x

)
+ hK̂x

]
x=a

= 0. (40)

The “Eigen Function” can be defined as [5]:

K̂x(µi, x) =
1
Ci

(
cos(µix) +

h
kµi

sin(µix)
)

. (41)

where Ci is the normalizing constant, calculated as [5]:

Ci =
∫ a

0
K̂2

x(µi, x)dx. (42)

The expression for “Eigen Values”(µi) is given as [5]:

2 cot(µia) =
µik
h
− h

kµi
. (43)

Note that:
η2

il j =
1

γ2 − 4
(

µ2
i + β2

l + λ2
j

)τ0

γ
. (44)

It is worthy to mention that the other two “Eigen Values” have also been calculated in
the same manner. The temporal part of the generalized solution is obtained via direct and
inverse Laplace transform and is expressed as [5]:

g
(
µi, βl , λj, t

)
= e(

− 1 − γ ηil j
2τ0

)tC1 + e(
− 1+ γηil j

2τ0
)tC2

−
(

4 τ0 A
γ K

(
ηil j − µ2

i e(
− 1 − γηil j

2τ0
)t

τ0Unit Step [t]− β2
l e(

− 1 −γηil j
2τ0

)t
τ0Unit Step [t]

− λ2
j e(

− 1− γηil j
2τ0

)t
τ0Unit Step [t] + µ2

i e(
− 1+ γηil j

2τ0
)t

τ0Unit Step [t]

+ β2
l e(

− 1+ γηil j
2τ0

)t
τ0Unit Step [t]

+ λ2
j e(

− 1+ γηil j
2τ0

)t
τ0Unit Step [t]

)
)η−1

il j

((
− 1

γ + ηil j

)(
1
γ + ηil j

))−1
.

(45)

The unknown constants, C1 and C2, in the above solution, can be assessed using
supplementary boundary conditions, as:

T(x, y, z, 0) = 0 ⇒ C1 + C2 = − 4τ0 A

γK
(

η2
il j −

1
γ2

) . (46)
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T(∞, y, z, t) = 0 ⇒ C1 = −C2e
γηil j t

τ0 . (47)

One will obtain:
C2 =

−4τ0 A

γK

(
1− e

γηil j t
τ0

)(
η2

il j −
1

γ2

) (48)

C1 =
4τ0 Ae

γηil j t
τ0

γK

(
1− e

γηil j t
τ0

)(
η2

il j −
1

γ2

) (49)

Note that the boundary conditions provided in the Fourier section (Equations (19)–(22))
also imply in the non-Fourier section taking into consideration Cartesian Coordinates.
Besides, Equations (39) and (40) are the boundary conditions along the x-axis during
irradiation. The same type of boundary conditions applies for y- and z-axes. Furthermore,
Equations (46) and (47) are the supplementary boundary conditions. It is worth mentioning
that T represents the temperature variation, not the absolute temperature. The current
study focuses on ITT’s implementation in the non-Fourier heat equation, also known as
the Cattaneo–Vernotte equation. The current study’s authors made the first attempt to link
the ITT with the non-Fourier heat equation, as presented in Ref. [8].

Fourier and non-Fourier heat equations are valid for equilibrium and non-equilibrium
thermodynamics. However, in non-equilibrium thermodynamics, one can implement these
solutions for the femtosecond time domain [9]. Besides these techniques, there are various
other frameworks, including extended irreversible thermodynamics, generic thermody-
namics, internal variables, and rational extended thermodynamics. Jou et al. [10] presented
a new formulation of non-equilibrium thermodynamics, known as extended irreversible
thermodynamics, which has fueled increasing attention. Evolution equations for these
fluxes were obtained starting from a hypothesis and using methods similar to classical
irreversible thermodynamics. These equations were reduced to the classical constitutive
laws in the limit of slow phenomena. Still, they may also be applied to fast phenomena,
such as second sound in solids, ultrasound propagation, or generalized hydrodynamics. In
contrast with the classical theory, extended thermodynamics lead to hyperbolic equations
with finite propagation speeds for thermal and viscous signals. The results of the macro-
scopic theory were confirmed by the kinetic theory of gases and non-equilibrium statistical
mechanics. The presented theory is particularly useful for studying the thermodynamics of
non-equilibrium steady states and systems with long relaxation times, such as viscoelastic
media or systems at low temperatures. There is no difficulty in formulating the theory
in the relativistic context. Szucs et al. [11] simultaneously applied the methodology of
non-equilibrium thermodynamics with internal variables (NET-IV) and the framework
of general equation for the non-equilibrium reversible–irreversible coupling (GENERIC).
They demonstrated that, in heat conduction theories, entropy current multipliers could
be interpreted as relaxed state variables. Fourier’s law and its various extensions–the
Maxwell–Cattaneo–Vernotte, Guyer–Krumhansl, Jeffreys type, Ginzburg–Landau (Allen–
Cahn) type, and ballistic-diffusive–heat conduction equations were derived in both for-
mulations. They proved that the results might pave the way for microscopic/multiscale
understanding of beyond-Fourier heat conduction and open new ways for numerical simu-
lations of heat-conduction problems. Kovacs et al. [12] discussed two different theories:
the kinetic-theory-based rational extended thermodynamics (RET) and non-equilibrium
thermodynamics with internal variables (NET-IV). It was shown how NET-IV structure
is related to RET and how the compatibility between them can be acquired. In another
study by Van and Kovacs [13], a comparison of thermodynamic and variational techniques
was presented. They found that the second law alone can effectively construct evolution
equations for both dissipative and non-dissipative processes.
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Furthermore, Jou [14] considered a few conceptual questions on extended thermody-
namics to contribute to a higher contact between rational extended thermodynamics and
extended irreversible thermodynamics. Both theories take several fluxes as independent
variables. Still, they differ in the formalism dealing with the exploitation of the second
principle (rational thermodynamics in the first one and classical irreversible thermodynam-
ics in the second one). Rational extended thermodynamics is more restricted in the range
of systems to be analyzed, but it is able to obtain a wider number of restrictions and deeper
specifications from the second law. By contrast, extended irreversible thermodynamics
is more phenomenological, its mathematical formalism is more elementary, but it may
deal with a wider diversity of systems, although with less detail. Further comparison and
dialogue between both branches of extended thermodynamics would be useful for a fuller
deployment and deepening. Besides these two approaches, one should also consider the
Hamiltonian approach, formalisms with internal variables, and microscopic approaches
based on kinetic theory or non-equilibrium ensemble formalisms [15].

Besides several advantages, the accuracy of the classical heat conduction model,
known as Fourier’s law, is highly questioned, dealing with the micro-/nano-systems and
biological tissues. In other words, the results obtained from the classical equations deviate
from the available experimental data. It means that the continuum heat diffusion equation
is insufficient and inappropriate for modeling heat transport in these cases. Consequently,
the development of novel models to improve the results of the classical equation while
being less computationally expensive and more simple to use is always a topic of interest.
There are several techniques for modeling non-Fourier heat conduction. The dual-phase-
lag (DPL) model as an accurate modified constitutive equation replacing the Fourier law to
simulate the heat transport in special cases such as micro/nanoscales, ultra-fast laser-pulsed
processes, living tissues, and carbon nanotube has been trendy [16].

1.3. Comparison between Fourier and Non-Fourier Heat Equations

The second law of thermodynamics is a valuable and universal tool to derive the
generalizations of Fourier’s law. In many cases, only linear relations are considered between
the thermodynamic fluxes and forces, i.e., the conduction coefficients are independent of the
temperature. Kovacs and Rogolino [17] investigated a non-linearity in which the thermal
conductivity depends on the temperature linearly. Additionally, that assumption was
extended to the relaxation time, which appears in the hyperbolic generalization of Fourier’s
law, namely, the Maxwell–Cattaneo–Vernotte (MCV) equation. Although such non-linearity
in the Fourier heat equation is well-known, its extension onto the MCV equation is rarely
applied. Since these non-linearities have significance from an experimental point of view,
an efficient way is needed to solve partial differential equations. Table 1 summarizes a
comparison between Fourier and Non-Fourier heat equations.

Table 1. Comparison between Fourier and non-Fourier heat equations.

Fourier Heat Equation References Non-Fourier Heat Equation References

• This equation is simple to use but involves infinite
heat propagation in comparison to the
non-Fourier heat equation.

[18]
• This equation is complex and involves various

unknowns in comparison to the Fourier
heat equation.

[19]

• It can be applied to both finite and infinite mediums;
however, it yields excellent results with a
finite medium.

[20]

• It can deal with both finite and infinite mediums, but
in the current scenario, the non-Fourier heat equation
works well in the finite medium. However, it
depends on the user’s choice to implement the
non-Fourier heat equation in finite and infinite
mediums. On the other hand, one should recognize
that ITT works well on the finite target only.

[21]

• It does not involve electron–phonon relaxation time. [22]

• It takes into account the electron–phonon
relaxation time.

[22]

• To achieve an optimum solution, experimental data
are always needed for normalizing coefficients.

[23]

• The Fourier heat equation cannot be naturally linked
with the Two-Temperature Model. [8,9] • The non-Fourier heat equation can be linked with the

Two-Temperature Model more efficiently. [8,9]

• Fourier and non-Fourier heat equations can follow equilibrium and non-equilibrium thermodynamics models for ultra-short laser heating.

• The classical heat conduction model’s accuracy is highly questioned, dealing with the micro-/nano-systems and biological tissues. In simple words, the results
obtained from the classical equations deviate from the available experimental data. It means that the continuum heat diffusion equation is insufficient and
inappropriate for modeling heat transport in these cases.
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1.4. Results for Fourier and Non-Fourier Heat Equations via MATHEMATICA Software

In this section, the graphical results achieved via user-defined codes in “MATHEMAT-
ICA” software are provided. The sued-defined codes have been provided in Appendix A.
The laser beam heats a sample in laser–target interaction, thus providing heat to the system
(heat input). In the non-Fourier heat equation and Fourier equation, the heat transfer
coefficient is the only parameter that provides heat output from the system, thus following
the principle of the first law of thermodynamics. It is why the heat transfer coefficient
has been considered in the non-Fourier heat equation, as mentioned in Appendix A. It is
necessary to respect the law of conservation of energy. The parameters have been chosen
based on the formalism provided for Fourier and non-Fourier heat equations with “SI”
units. All the parameters are close to the experimental results [24].

Figure 1 shows the flow chart used to simulate in “MATHEMATICA” software for the
Fourier heat equation. For each step, the codes are defined in Appendix A.1.
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The above-defined flow chart was used to simulate the Fourier heat equation, and
the result is shown in Figure 2. From this figure, it can be analyzed that the laser–material
interaction lasts for 3 s, and after this time, the material starts cooling, which causes a
sudden declination in temperature.

Figure 3 shows the flow chart used to carry out the simulation in “MATHEMAT-
ICA” software for the non-Fourier heat equation. For each step, the codes are defined
in Appendix A.2.

Figure 4 shows the results after following the steps defined in Figure 3 when 500 s laser-
material interaction time was selected. After material interaction, the thermal distribution
intensity falls linearly, resulting in material cooling.
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2. Various Applications of Integral Transform Technique (ITT): Fourier and
Non-Fourier

In this section, efforts have been made to compile the processes in which ITT has
been explored.

2.1. Metallic Materials

Metallic material is a category of materials that contain elemental metals and com-
pounds and alloys [25,26]. There are 86 metals with different characteristic features among
the 118 elements in the periodic table, and only a small fraction of these metals has engi-
neering significance [27,28]. Over time, new processes for producing various materials with
qualities superior to those of natural materials have been discovered [29,30]. Scientists are
working to fully comprehend the links between the structural parts of materials and their
qualities [31,32]. Changes in the relative proportions of the micro-constituents can produce
drastic changes in terms of quality [33,34]. Phases are distinguished by their distinct crystal
forms, compositions, and properties [35].

Metallic materials have been used for various applications. Currently, laser cladding
is usually applied in various industrial applications. For this purpose, Oane et al. [36] de-
veloped a model in which the phase transition from solid to liquid formation is considered
with an absorption coefficient that can highlight the liquid generation during heating. A
semi-analytical model was proposed, which considered the melt pool a sphere and solved
the heat equation in spherical coordinates. They identified that an increase in the laser
scanning speed does not affect the thermal distribution profile significantly. Besides, the
simulation results were found in good agreement with the experimental analyses with
a 7–15% mean deviation [37]. El-Adawi et al. [38] used ITT for laser–two layers interaction.
The thermal distribution was estimated within the thin film and the substrate via math-
ematical formalism. Furthermore, the front surface temperature was also attained. The
simulations were carried for the laser to (a) aluminum–glass, (b) silver–glass, (c) copper–
glass, and (d) gold–glass interactions. It was found that the amount of absorbed power
determined the crucial time necessary to begin melting. The studied profiles were no
longer linear functions of the thermal characteristics of the two-layer system’s materials.
The computed values for the crucial time determined whether or not a single laser pulse
can cause the damage. The temperature profiles in the case of silver thin film deposited on
glass substrate at: (I) t = 5 ns; (II) t = 69.6 ns, and the aluminum thin film deposited on glass
substrate at two different exposure times: (I) t = 8.5 ns; (II) t = 67.26 ns, and copper thin
film deposited on glass substrate at exposure time t = 23.04 µs are shown in Figure 5a,b.
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times: (I) t = 8.5 ns; (II) t = 67.26 ns, and (c) copper thin film deposited on glass substrate at exposure time t = 23.04 µs [38];
with permission from Elsevier.

A thermal interaction model for laser–metal was developed by Oane et al. [39]. The
formalism’s primary purpose was to calculate the thermal distribution of electrons and
phonons. In laser beam–metal interaction, the Fourier heat equation was solved to provide
three-dimensional temperature fields, surface temperature, and steady-state quantum ef-
fects temperature. ITT was used to solve the Fourier heat equation. Experimental results for
iron irradiation with an Nd: YAG laser beam (=355 nm wavelength) were used to validate
the model. The model was able to estimate results with an accuracy of 20% deviation.
Nicarel et al. [40] provided an analytical model for ultrafast thermal processes during
femtosecond laser pulse–solid contact. An easy but powerful mathematical formalism
was provided to analyze electron temperature’s spatial and temporal profiles under the
irradiation with a single Gaussian femtoseconds laser pulse. A gold target was treated with
1015 W/cm2 laser pulses to demonstrate the model’s reliability. The simulations revealed
that the electron temperature rises rapidly to saturation in the first 50 fs and that the heat
does not travel far beyond the incident laser beam’s focal point. However, when moving
from the top surface to the middle of the Au target, the thermal field diminishes by four
orders of magnitude. After 1 ps of interaction time, the temperatures of electrons and
phonons achieve equilibrium. After 200 fs, when the maximum penetration depth of 7 m
is reached, the temperature rises to its highest point. Figure 6a–c show the normalized
electron thermal field in arbitrary units on the surface of an Au target versus time and
distance at a distance of 4 µm with respect to the sample surface, inside the Au target, and
at a depth of 4 µm versus time (from 0 to 1 ps), respectively.
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Serban et al. [41] employed a novel approach based on the Fourier heat equation to
characterize the laser–metal thermal interaction. The 3D thermal field, surface temperature,
and steady-state quantum effects of laser irradiation of metals were measured. An ITT
was applied to the Anisimov and Nolte models for this purpose. The laser–gold thin film
interaction was the subject of the simulations. The model was able to estimate outcomes
with an accuracy of 10−2 K temperature after comparing with experimental data. In
laser–metallic thin film interaction, Oane et al. [42] proposed an analytical technique for
estimating thermal fields. A simplified model was presented for this purpose, which
included the “global” heat equation. The major goal of this model was to take into account
an absorption coefficient that was near to the real one. ITT was used to solve the heat
equation for TEM01–silicon copper thin films. The findings revealed that (a) the thin-
film absorption coefficient determines the thermal field, and (b) the length of the contact
influences thermal distributions.

Buca et al. [19] calculated the electron temperature fluctuation in metals due to
the interaction of femtosecond laser pulses with metals. The classical Anisimov’s Two-
Temperature Model was extended using the 3D telegraph Zhukovsky equation. The
computational plots of electron thermal fields during the initial laser pulse interaction with
a gold surface were deduced using this innovative approach. The interaction between the
laser pulse and the metal sample during the initial picoseconds is governed by relaxation
times and coupling factors over electron thermal conductivities. The higher the electron
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temperature, the lower the thermal conductivities. In contrast, the lower the electron
temperature, the shorter the relaxation time. Figure 7a,b show the spatial–temporal dis-
tribution of the electrons’ thermal field generated by one laser pulse on an Au surface,
when t = 100 fs and τ = 1 ps versus time (1 ps), and influence of g/K value on temperature
intensity at g = 1.05 × 1016 W/m3K, K = 315 W/mK, and laser pulse duration of 100 fs.
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Pelin et al. [43] implemented the ITT to solve Fourier and non-Fourier heat equations
for the laser–nano-copper-particles interaction. The computations were carried out for
1, 2, and 4 particles-clusters. In comparison to the bulk material in pure form, placing
groups or clusters of nano-particles-clusters on top of a layer exposed to irradiation results
in a perceptible increase in temperature. Oane et al. [9] presented a new technique by
combining the Two-Temperature Model with the Fourier heat equation to estimate the
thermal distributions in electrons and phonons. The model was validated in the case of
laser–gold, –copper, –silver, and –aluminum interactions. They determined that electron–
phonon relaxation time plays a critical role in determining the precision of a given solution.
In another study by Oane et al. [44], a semi-analytical model was presented for thermal
fields induced in a small cylindrical sample made of tungsten. The model was validated
with the experimental results for the tungsten irradiation by an electron beam with an
energy of 6 MeV and average power of 62 W from a linear accelerator. The sample had
diameter = 10 mm and length = 10 cm. The model predicted results with a mean absolute
deviation of 10%.

2.2. Organic and Inorganic Materials

In modern chemistry, organic materials are described as carbon-based substances ini-
tially produced from living organisms but today include lab-synthesized counterparts [45].
The majority of them are made up of a few lightweight components, such as hydrogen,
carbon, nitrogen, and oxygen [46]. Wood, feathers, leather, and synthetic materials are
examples of organic materials [47]. Despite their diversity, they share some common quali-
ties. For instance, prolonged exposure to light or other forms of radiation causes fading,
yellowing, or embrittlement in many organic materials, which is caused by the breakdown
of the covalent bonding structure shared by many carbon-containing molecules [48]. On
the other hand, chemical substances that do not contain carbon are inorganic materials [49].
However, inorganic materials include elementary carbon and carbon compounds such as
nitrogen, oxygen, and silicon [50].

Several pieces of research have been carried out on the ITT implementation in organic
and inorganic materials. Using a hyperbolic heat conduction model, Vedavarz et al. [51]
theoretically studied the transient temperature distributions in laser-irradiated materials.
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For temperature distributions, exact and limited mathematical solutions were generated,
and significant factors are found. To account for the thermal wave’s finite speed, hyper-
bolic non-Fourier models were devised. The study considered laser surface interactions
between two types of materials: (a) biological materials and (b) inorganic solids. They
discovered that finite speed effects were substantial in short-pulse, where the laser input
time is comparable to the material’s thermal characteristic time. Consequently, the resulting
temperature variations were significantly different from those predicted by traditional
infinite speed Fourier predictions. The ratio of thermal characteristic length to laser beam
width was shown to be the most important parameter. Local temperature maxima or
hot spots were detected at the beginning of the irradiation time with values > 0.2 in the
range between 0.1 and 3, corresponding to different applications. The dual-phase lag
(DPL) bio-heat transport equation was solved analytically by Kumar and Srivastava [52]
using a finite-ITT (FITT). Three problems were formulated to show the applicability of
the developed formalisms: (a) time-independent boundary conditions (persistent surface
temperature), (b) time-dependent boundary conditions (sinusoidal surface heating), and
(c) biological tissue irradiated with short-pulses. FITT-based analytical solutions of Fourier
and non-Fourier heat conduction equations were linked with numerical solutions to cal-
culate the thermal distribution. Thermal distribution intensity predicted by DPL was
in between those achieved using the Fourier and hyperbolic heat conduction equations.
When a comparison was made between DPL and Fourier heat models, the hyperbolic heat
model generated more obvious wave characters in the anticipated temperature profiles.
Talaee et al. [53] used separation of variables and Duhamel integral techniques to solve the
three-dimensional hyperbolic heat conduction equation in a cubic media with rectangular
cross-section under a pulsed heat flow on the top side. With both steady and pulsed
fluxes, the closed-form solution of both Fourier and non-Fourier profiles was introduced.
A model was created to simulate the interaction of a cubical tissue with a brief laser pulse.
The Fourier and Non-Fourier temperature profiles showed a significant difference in the
results. The findings can be used to treat biological tissues with lasers. To examine thermal
damage in biological tissues, Zhou et al. [54] developed a thermal wave model of bioheat
transmission and a seven-flux model for light propagation, and a rate process equation
for tissue damage. They discovered that the thermal damage calculated using the thermal
wave bioheat model differed significantly from that calculated using the traditional bioheat
model. The assessment of thermal damage to biological tissue may not be reliable if the
bioheat non-Fourier effect is not taken into account.

Brasoveanu et al. [55,56] devised a mathematical model to represent the thermal
distribution based on the Cattaneo–Vernote formalism’s heat equation, solved by ITT in
finite domains. The model was used to calculate the relaxation time, the hottest point,
and the peak thermal distribution intensity. Experiments were carried out to record
the temperature distribution in granular starch exposed to ionizing radiation to validate
the created model. The accelerated electrons irradiated corn starch with a mean energy
of 5.5 MeV (=435 s). A temperature sensor was inserted within the starch sample to record
the temperature during and after the irradiation. The relaxation time was discovered to
play a crucial influence in the cooling of the irradiated sample. The hottest spot was found
at a depth of 14 mm in the sample (100 mm total depth). Figure 8 shows the temperature
distribution in corn and starch after irradiation.
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2.3. Semiconducting Materials

A semiconductor is a type of crystalline substance that is in between a conductor and
an insulator in terms of electrical conductivity [57]. Semiconductors are usually used to
produce diodes, transistors, and integrated circuits, among other electronic devices [58].
Such devices have found widespread use because of their compactness, reliability, power
efficiency, and low cost [59]. They have been used in power devices, optical sensors,
and light emitters, including solid-state lasers, as discrete components [60]. They can
handle a wide range of current and voltage, and, more importantly, they can be easily
integrated into complicated yet easily manufactured microelectronic circuits [61]. They
serve communications, signal processing, computing, and control applications in both
consumer and industrial markets and will continue to be used in the foreseeable future [62].

The ITT technique has also been explored in the semiconducting materials field.
Mahdy et al. [63] identified the impact of three propagated waves: (a) elastic wave, (b)
plasma wave, and (c) thermal waves using the hyperbolic generalized two-temperature
theory. During the photothermal theory, the governing equations were investigated. They
measured the effects of an external magnetic field and a laser pulse. The heat conductiv-
ity of semiconductor materials was examined. When the photothermal theory and the
thermo-elasticity theory were connected, three different photo-thermo-elasticity models
were developed. The principal equations were solved using the ITT in two-dimensional
deformation. ITT was demonstrated using the double Fourier and Laplace transforms with
appropriate conditions. The complete solutions were obtained numerically by inverting the
double transforms with various thermal-elastic-mechanical-plasma boundary conditions.
The photo-thermo-elasticity theory was used to compare three different models under an
external magnetic field with variable thermal conductivity in the case of silicon material.
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Thermal memories with a negative thermal conductivity parameter constant, the effect
of a magnetic field, and laser pulses in hyperbolic two temperatures were discovered to
have a greater impact on the wave propagation of the primary fields. Figure 9 [63] shows
the impact of three different cases according to the two-temperature parameter for the
main physical fields against the horizontal distance. All numerical results in this category
are made under the effect of the magnetic field and the laser pulses in the generalized
Green and Lindsay (GL) model. The solid line curves in this category express the first case
when the temperature (T) and angle (φ) are equal and when the heat supply is absent,
which can be named the One-Temperature (OT) Model. The dotted lines curves refer to
the Classical Two-Temperature Model (CTT), which is taken when the heat supply is also
absent. The dashed lines curves show the general model, which is named the Hyperbolic
Two-Temperature (HTT) Model. A clear significant effects in this figure are observed
according to the three different cases of the hyperbolic two-temperature theory.
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In another investigation by Mahdy et al. [64], the elastic semiconductor medium was
irradiated with laser pulses. With the temporal fractional heat order, the laser pulses
created vibrations in the medium’s inner structure. The effect of Hall current was ob-
served when a strong external magnetic field was applied. In the case of silicon crystal
material, the interaction between the strong magnetic field and the microstructure of the
elastic medium was investigated. In the photothermal transport process, photo-excited
electrons formed micro-temperature states. In the case of a semiconductor elastic rod,
one-dimensional deformation was employed to describe the overlapping process between
elastic-magneto-plasma-thermal distribution waves. In the field of microelements, the
governing equations were solved utilizing the Laplace integral transform domain. Some
external loads were applied to the medium’s outer free surface to achieve the physical quan-
tities under examination. The experiment revealed that variations in laser pulse strength,
fractional parameter, and Hall current significantly impacted physical quantities. When
the propagated waves curves became similar with the increase in distance, all physical
quantities reached equilibrium.

To simulate picosecond and femtosecond laser–silicon interactions, Xu and Wang [65]
devised a lattice Boltzmann method (LBT). The LBT was used to calculate temperature
fields compared to those derived using the parabolic heat conduction equation (PHCE) and
the hyperbolic heat conduction equation (HHCE). Although the HHCE solved the PHCE’s
infinite thermal propagation speed, it was unable to be applied to length scales comparable
to the mean free path of energy carriers due to the failure of continuum techniques under
severe non-equilibrium conditions. The LBT, which considers both impacts, might be used
on both short and long-time scales. According to the LBT results, the speed of a thermal
wave at the ballistic limit is equal to the speed of sound rather than the figure predicted by
the HHCE, which is only true at the diffuse limit. It was further proved that utilizing the
temperature gradient to calculate heat flow produces unreasonable results near the thermal
wave front, whereas the LBM has no such drawback.

2.4. Graphene Material

A one-atom-thick layer of carbon atoms organized in a hexagonal lattice is known as
“graphene” [66]. It is the building block of graphite, but graphene is a fascinating substance
in and of itself, with a slew of astounding features that have earned it the moniker “wonder
material” on numerous occasions [67]. With one-atom thickness, graphene is the thinnest
material known to man and is roughly 200 times stronger than steel [68] at the same
thickness scale. Furthermore, graphene is a good conductor of heat and electricity and has
remarkable light absorption properties [69].

Scientists are working on ITT implementation in the case of graphene material. For
this purpose, ITT was combined with the Anisimov–Nolte Two Temperature Model and
the Cattaneo–Vernotte equation by Oane et al. [70]. For laser flash (TEM00)–graphene
interaction, they used ITT to develop straightforward formulas for electron and phonon
temperatures. Longitudinal optical phonons, transverse optical phonons, out-of-plane
acoustic phonons, longitudinal acoustic phonons, transverse acoustic phonons, and out-of-
plane optical phonons were all able to generate 3D thermal fields using the model. With
a 15% variation, the simulated results were in good accord with the literature [71]. Buca
et al. [72] proposed a Multiple-Temperature model to explain a single sheet of graphene
irradiation with a flash laser. The Fourier heat equations based on quantum principles,
including heat operators, were solved using Zhukovsky’s mathematical technique. Con-
cerning traditional mathematics, simple solutions were inferred. Simple equations for
electron and phonon temperatures were established in the case of flash laser treatment
of a single layer of graphene. The findings were in good accord with those described
in [73,74]. Figure 10a shows the phonon’s temperature, based upon the current model,
for the transverse optical (TO) phonons branch. It can be observed that where the laser
beam intensity is zero, the temperature distribution is zero. This shows the perfect cou-
pling between Zhukovsky’s formalism and Multiple-Temperature Model (MTM). However,
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thermal effects can be clearly observed beyond the laser beam spot size (=1 µm), as a very
short laser–graphene interaction time has been chosen (of ps order). The same phenomena
can be analyzed in-case of Figure 10b,c related to longitudinal optical phonons (LO) and
longitudinal acoustic phonons (LA) braches, respectively. As the simulation time has been
increased, from ps to ns, the heat-wave finds enough time to transfer from the irradiated
spot to the rest of the target. This result has been presented in Figure 10d in the case of
transverse acoustic phonons (TA) branch.
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However, the model presented a few drawbacks, such as:

• The duration of the irradiation time/pulse should be greater than 1 fs. When sim-
ulations are for attosecond pulse durations, the laser wavelength approaches the
nucleus-first electron separation distance, resulting in meaningless results.

• The target size is limited to a range of 20–100 nm. The Fourier law collapses when the
particle size is less than 20 nm, and reliable results are impossible to obtain.

• The model was restricted to single-layer graphene alone. The study of multilayer
graphene becomes complicated to calculate since the absorption law and heat-transfer
coefficients must be evaluated in real-time for each layer, necessitating the use of
quantum-field theory in solid-state treatment.

Chan et al. [75] used the Fourier transformation approach to determine the orientation
of hexagonal graphene domains on a Cu substrate. They devised a hexagon function to
characterize hexagonal graphene’s diffraction pattern. In the frequency domain, hexagonal
graphene domains produced on Cu (111) had an average orientation value of around 3◦.
The optical and electrical properties of a large-area graphene film (2 cm2) were tested
for transparent conducting electrode applications. The findings showed that graphene
produced on Cu (111) outperformed graphene developed on polycrystalline Cu.
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3. Criticism on Dual-Phase-Lag (DPL) Heat Conduction and
Guyer-Rumhansl Equations

The DPL and also the Guyer-Krumhansl equations are criticized from several different
points of view. Negative temperatures Rukolaine [76,77] obtained an analytical solution for
the DPL equation assuming a Gaussian initial condition. According to these calculations,
the solutions present an unphysical behavior of temperature history, and it goes into the
negative domain. Zhukovsky [78,79] achieved a similar conclusion for the GK equation.
Wang et al. [80] tested the Thermo mass and DPL among other different heat conduction
models by calculating Taitel’s problem [81]. Inconsistent, unphysical behavior is shown,
and the temperature achieves the negative domain again. It is an old problem, also
mentioned several times for the Maxwell-Cattaneo-Vernotte equation.

Time shift paradox: the delayed form of the DPL model directly contradicts the require-
ment of the homogeneity of time. One can transform the equation to a single-phase-lag
equation by shifting the zero point of t, the starting point of the time measurement. The
proper mathematical representation of non-relativistic time considering all expected prop-
erties is a one-dimensional affine space, and with that model cannot have two relaxation
times; only their difference plays a role [82].

Mathematical question: in the literature, the DPL-type constitutive equations are ana-
lyzed to prove the uniqueness and well-posedness of a process driven by such a constitutive
equation. It is found by Fabrizio et al. [83–85] that there are mathematical conditions be-
yond the physical ones to obtain an exponentially stable equilibrium solution for the DPL
equation. Such a condition requires a negative time delay (called a retarded effect) between
the heat flux and temperature gradient. It is important because Tzou in Ref. [86] directly
interprets both cases with the cause–effect concept, i.e., the quantity with the higher re-
laxation time is the effect caused by the other one. As Fabrizio states [83], the DPL model
can be rewritten with the time delay difference, leading to a single-phase-lag model, but
the temperature gradient has a relaxation time < 0. The opposite case is mathematically
ill-posed, which enlightens the validity of the Maxwell–Cattaneo–Vernotte (MCV) equation
but excludes equations based on arbitrary Taylor series expansion. Quintanilla et al. [87,88]
obtain the same conclusion regarding the relaxation times and the ill-posedness. However,
exponential stability seems to be a too-strict requirement, and the asymptotic stability of
homogeneous equilibrium is satisfied only with non-negative coefficients. The condition of
asymptotic stability is also reasonable from a physical point of view [89–91].

Second law: Fabrizio and co-workers also checked thermodynamical restriction. It
was tested by using Clausius–Duhem inequality on cyclic histories. The conditions of
exponential stability for the DPL equation turned out to be too strict [84]. On the other
hand, the experimental pieces of evidence mostly show that this difference is negative.
In the work of Liu and Chen [92], the DPL equation is fitted to experimental results, and
in heterogeneous materials, there is a similar situation [93,94]. It draws attention to the
practical aspects, which are emphasized further in the next section.

4. Future Outlook

Fourier and Non-Fourier heat equations’ solutions using the integral transform tech-
nique (ITT) have proved their viability in the interactions of laser–various materials. In the
authors’ opinion, there are various domains where these equations can be still explored, as:

• Fourier and non-Fourier heat equations can be linked with Two- and Multi-Temperature
Models to estimate the thermal distributions within the sample. The Two-Temperature
Model can yield thermal distribution in electrons and phonons, while the Multi-
Temperature Model can give thermal distributions in longitudinal optical phonons,
transverse optical phonons, out-of-plane acoustic phonons, longitudinal acoustic
phonons, transverse acoustic phonons, and out-of-plane optical phonons.

• These heat equations have not been explored in the case of laser–ceramic interaction.
Ceramics are porous materials having voids and pores of various dimensions [95].
Furthermore, ceramics behave as insulators and present complex rheological proper-
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ties [96]. Hence, there is a need to modify the Fourier and non-Fourier heat equations
by taking into considerations all the aspects explained above. It will open a new area
for laser–ceramic interaction heat equations’ solution using ITT. Furthermore, it is a
long-lasting task to understand heat conduction phenomena beyond Fourier. Besides
the low-temperature experiments on extremely pure crystals, it has been turned out
recently that heterogeneous materials with macro-scale size can also show thermal
effects that the Fourier equation cannot model. It is known as over-diffusive propaga-
tion, different from low-temperature observations, and is found in numerous samples
made from metal foam, rocks, and composites. The measured temperature history
is similar to what Fourier’s law predicts, but the usual evaluation cannot provide
reliable thermal parameters. Feher et al. [97] reported experiments on several rock
types, each having multiple samples with different thicknesses. They showed that
the size-dependent thermal behavior could occur for both Fourier and non-Fourier
situations. Moreover, based on the experimental data, they found an empirical relation
between the Fourier and non-Fourier parameters, which could be helpful in later
experiments to develop a more robust and reliable evaluation procedure.

• Another domain is to develop a solution for laser–metal matrix composites (MMCs)
interaction [98]. MMCs are the composition of metals and ceramics mixed to achieve
a combination of metallic and ceramic properties [99]. In this area, no Fourier and
non-Fourier models are dealing with laser–MMCs interaction [100]. From the authors’
point of view, this problem can be solved by separately solving the heat equations for
metals and ceramics. Following, “superposition” must be implemented based on the
percentage of metals and ceramics within MMCs to attain the final solution.

• For the automation of Fourier and non-Fourier heat equations, these equations can
be linked with artificial neural networking (ANN). A series of computations can be
carried out based on inputs and corresponding outputs [101]. These values can be
used to train ANN and further used to estimate output based on desired inputs [102].
Recently, Mahmood et al. used the same approach to link ANN with analytical
modeling for process automation [103].

• This method has been explored for laser–metal, Two-Temperature Model for laser–
metal interaction, ultra-short laser–material interaction, and electron beam–organic
and –inorganic interaction. However, there are various applications that have not
been studied in detail. For instance, the laser–graphene interaction, laser–ceramic
reinforced metal matrix interaction, laser–nanoparticles interaction and laser–ceramic
interaction are a few subjects of interest in the near future.

The authors believe that the Fourier and non-Fearer heat equations will exponentially
gain attention from scientists and researchers after exploring the areas mentioned above.

5. Conclusions

Fourier and non-Fourier heat equations can estimate the thermal distribution and
phase transformation based on the provided operating conditions. For this purpose, this
review article discusses the heat equations, including Fourier and non-Fourier heat equa-
tions. An evaluation is presented between Fourier and non-Fourier heat equations. Besides,
their generalized solutions have been presented. Various components of heat equations
and their implementation in the various processes have been illustrated. For solving these
equations, “MATHEMATICA” software codes have been provided for the scientific com-
munity. Furthermore, various applications of Fourier and non-Fourier techniques have
been provided. Based on the current study, the following conclusions have been deduced:

• The Fourier heat equation is simple to use but involves infinite heat propagation
compared to the non-Fourier heat equation. It can be applied to both finite and infinite
mediums; however, it yields excellent results with a finite medium. It does not involve
electron–phonon relaxation time. The Fourier heat equation cannot be linked with the
Two-Temperature Model in a natural way.
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• The non-Fourier heat equation is complex and involves various unknowns in compar-
ison to the Fourier heat equation. It can deal with both finite and infinite mediums,
but in the current scenario, the non-Fourier heat equation works well in the finite
medium. However, it depends on the user’s choice to implement the non-Fourier heat
equation in finite and infinite mediums. On the other hand, one should recognize that
ITT works well only on the finite target. It takes into account the electron–phonon
relaxation time. To achieve an optimum solution, experimental data are always needed
for normalizing coefficients. The non-Fourier heat equation can be linked with the
Two-Temperature Model in a more efficient way.

• Fourier and non-Fourier heat equations can follow equilibrium and non-equilibrium
thermodynamics models for ultra-short laser heating. The classical heat conduction
model’s accuracy is highly questioned, dealing with the micro-/nano-systems and
biological tissues. In simple words, the results obtained from the classical equations
deviate from the available experimental data. It means that the continuum heat
diffusion equation is insufficient and inappropriate for modeling heat transport in
these cases.

• Fourier and Non-Fourier heat equations have proved their reliability in the case of
laser–metallic materials, electron beam–biological and –inorganic materials, laser–
semiconducting materials, and laser–graphene material interactions. The presented
simulation results showed a strong correspondence with experimental results. It is
worth mentioning that the accuracy and transient behavior determine the accuracy of
Fourier and non-Fourier heat equations. Especially in the case of biological systems,
the Fourier model is not necessarily far from the measurements, but the transient
behavior could be significantly different, and therefore the prediction is questionable.

• Through the literature survey and the authors’ research experience, it has been identi-
fied that the material properties play an essential role in defining the precise results of
Fourier and non-Fourier heat equations.

• In the case of laser–graphene interaction, there is a certain restriction of the integral
transform technique. The duration of the irradiation time/pulse should be greater
than 1 fs. When computations are for attosecond pulse durations, the laser wavelength
approaches the nucleus-first electron separation distance, resulting in meaningless
results. The study of multilayer graphene becomes complicated to calculate since the
absorption law and heat-transfer coefficients must be evaluated in real-time for each
layer, necessitating the use of quantum-field theory in solid-state treatment.
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Appendix A.

Appendix A.1. Fourier Heat Equation

For the Fourier illustration, laser–solid cylinder interaction has been considered. The
user-defined codes utilized in “MATHEMATICA” software have been compiled in Table A1.

Table A1. Fourier heat equation with “MATHEMATICA” software user-defined codes with an illustration.

Sr. No. MATHEMATICA Syntax Explanation

01. a = 4; Cylinder diameter.

02. b = 10; Cylinder length.

03. w = 4; Laser beam waist.

04. α = 0.00005; Laser beam linear absorption coefficient.

05. h = 0.02; Material’s emissivity.

06. c = 0.356; Material’s specific heat.

07. k = 0.018; Thermal conductivity.

08. ρ = 5.27 ∗
(
10−3); Material’s density.

09. γ = k
c ∗ ρ; Thermal diffusivity.

10. in = 10; Laser beam intensity.

11. t0 = 3; Laser–material exposure time.

12. vbessel = {0.0018,0.4,0.7,1,1.3,1.6,1.9,2.2,2.5,2.8}; Eigen Values along the cylinder radius.

13. vcos = {0.0029,0.8,1.6,2.4,3.2,4,4.8,5.6,6.2,7}; Eigen Values perpendicular to the cylinder radius.

14.

wc1 = Table[1/4(Part[vcos,j])ˆ3(2h(Part[vcos,j]) +
2ahˆ2(Part[vcos,j]) + 2a(Part[vcos,j])ˆ3 −
2h(Part[vcos,j])Cos[2a(Part[vcos,j])] −
hˆ2Sin[2a(Part[vcos,j])] +
(Part[vcos,j])ˆ2Sin[2a(Part[vcos,j])]),{j,10}];
mih = Table[BesselJ[0,(Part[vbessel,i]) * 10]ˆ2,{i,10}];
wm = Table[N[Part[mih,i]],{i,10}];
poc = Table[((2 * (Part[vbessel,i])ˆ2)ˆ−1) * ((b * h)ˆ2 + (b *
Part[vbessel,i])ˆ2),{i,10}];
wc2 = Table[Part[poc,i] * Part[wm,i],{i,10}];

“wc1 to wc2” are the normalizing coefficients
perpendicular and along the cylinder radius.

15.

int = Table[BesselJ[0,(Part[vbessel,i]) * y] * y *
Exp[−yˆ2/(wˆ2)],{i,10}];
op = Table[FunctionInterpolation[Part[int,i], {y, 0,
10}],{i,10}];
ps = Table[Integrate [Part[op,i][y], {y, 0, 10}],{i,10}];

Components of laser beam–material interaction along
the cylinder radius.

16.
noi = Table[(Cos[Part[vcos, j] ∗ x]

+(h/(Part[vcos, j]))
∗Sin[Part[vcos, j] ∗ x])
∗Exp[−α ∗ x], {j, 10}];

Components of laser beam–material interaction
perpendicular to the cylinder radius.

17.

zz1 = Chop[Integrate[Part[noi,1],{x,0,4}]];
zz2 = Chop[Integrate[Part[noi,2],{x,0,4}]];
zz3 = Chop[Integrate[Part[noi,3],{x,0,4}]];
zz4 = Chop[Integrate[Part[noi,4],{x,0,4}]];
zz5 = Chop[Integrate[Part[noi,5],{x,0,4}]];
zz6 = Chop[Integrate[Part[noi,6],{x,0,4}]];
zz7 = Chop[Integrate[Part[noi,7],{x,0,4}]];
zz8 = Chop[Integrate[Part[noi,8],{x,0,4}]];
zz9 = Chop[Integrate[Part[noi,9],{x,0,4}]];
zz10 = Chop[Integrate[Part[noi,10],{x,0,4}]];
zz = {zz1, zz2, zz3, zz4, zz5, zz6, zz7, zz8, zz9, zz10};

Divide the laser beam–material interaction into several
steps and limits the integral’s final value. Without
“chop”, the integral will result in a very high value.
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Table A1. Cont.

Sr. No. MATHEMATICA Syntax Explanation

18.

b4 = Table[g *
(Part[vcos,j]ˆ2+Part[vbessel,i]ˆ2),{i,10},{j,10}];
ft10 = Table[(1 - Exp[ −(Part[b4,i,j]) * t]) − (1 − Exp[
−(Part[b4,i,j]) * (t − t0) * UnitStep[t − t0]]),{i,10},{j,10}];
pr4 = Table[(Part[vcos,j]ˆ2+Part[vbessel,i]ˆ2)ˆ
−1,{i,10},{j,10}];
timpul = Table[Part[pr4,i,j] * Part[ft10,i,j],{i,10},{j,10}];

Calculates the temporal solution; t is the
computational time.

19. radial = Table[BesselJ[0, (Part[vbessel, i]) ∗ r], {i, 10}]; The spatial component of the thermal field along
cylinder radius.

20.

hai = Table
[(

Part[wc1, j]−1
)
∗
(

Part[wc2, i]−1
)

∗Part[radial, i] ∗ Part[timpul, i, j]
∗Part[zz, j] ∗ Part[ps, i] ∗α
∗in/k, {i, 10}, {j, 10}];

Compiles the normalizing coefficient, radial
component, temporal component, Lambert–Beer law,
material absorption coefficient, laser beam intensity,
and thermal conductivity.

21. snoopy = Sum[Part[hai, i, j], {i, 10}, {j, 10}];
Sums up every provided input and generates the final
solution; i and j are the number of steps used in
simulations.

22.
j = Plot3D[%,{r,0,5},{t,0,5},AxesLabel-
>{“r[m]”,”t[s]”,”dT[a.u.]”},AxesStyle->Directive[20]]
Show[j,Shading->False]

Plot and gives 3D results.

The Eigen Values named “vbessel and vcos” were calculated using Equations (A1)
and (A2), respectively, as [104].

2 cot
(
λja
)
=

λjk
h
− h

λjk
. (A1)

µi j
′
o(µib) + hjo(µib) = 0. (A2)

Here, k is the thermal conductivity, h is the heat transfer coefficient, λj is the Eigenvalue,
j′o is the Bessel function of zero-order derivative and jo is the Bessel function of zero-order.
These equations were written in “MATHEMATICA” software and a technique was applied
to calculate Eigen Values, as shown in Table A2.

Table A2. User-defined code in “MATHEMATICA” software with illustration utilized to calculate the Eigen Values based
on Equations (A1) and (A2).

Step No. MATHEMATICA Syntax Explanation

01. Plot[2 ∗ Cot[j ∗ a]− j ∗ k/h + h/(j ∗ k), {j, 0, 10}] It will give a plot between the Eigen Function (Equation (A1)) and
the first 10 Eigen Values along the cylinder radius.

02. Figure A1

The plot is achieved from step 1. Using Figure A1, one can observe
that the function value is repeating itself after a certain interval
along the j-axis. The Eigen Values have been calculated against
these j-values.

03. FindRoot[2 ∗ Cot[ j ∗ 4]−j ∗ k/h + h/(j ∗ k) == 0, {j, 1}]
Each value of the j-axis has to be inserted manually in the defined
syntax “{j,1}” to calculate the corresponding Eigen Value. Here, “1”
is the first Eigen Value along the x-axis utilized from Figure A1.

04. Plot[x ∗ Bessel J[ 0, b ∗ x]+h ∗ Bessel J[0, b ∗ x] , {x, 0, 10}] It will result in a plot between the Eigen Function (Equation (A2))
and the first 10 Eigen Values perpendicular to the cylinder radius.

05. Figure A2

It is the result of step 4. From Figure A2, one can observe that the
function value is repeating itself after a certain interval along the
x-axis. The Eigen Values have been calculated against these
x-values.

06. FindRoot[−x * BesselJ[0,10 * x]+h * BesselJ[0,10 * x]==0,{x,0.5}]
Each value of the x-axis has to be inserted manually in the defined
syntax “{x,0.5}” to calculate the corresponding Eigen Value. Here,
“0.5” is the first Eigen Value along the x-axis utilized from Figure A2.

The authors identified that 10 Eigen Values along the radius and 10 Eigen Values perpendicular to the radius of the cylinder, resulting in a total of 100
values, are enough to achieve an answer with a precision of 0.01 K.
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A.2. Non-Fourier Heat Equation

For the non-Fourier case, electron beam–starch cylinder interaction has been discussed.
The user-defined codes with illustrations for “MATHEMATICA” software have been
collected in Table A3.

Table A3. Non-Fourier heat equation “MATHEMATICA” software user-defined codes with an explanation.

Sr. No. MATHEMATICA Syntax Explanation

01. a = 0.1; Cylinder diameter.

02. b = 0.06; Cylinder length.

03. t0 = 500; Laser–material exposure time.

04. tau = 5000; Electron–phonon relaxation time.

05. Rv = 0; Variable parallel to cylinder radius.

06. Zv = 0.055; Variable perpendicular to cylinder radius.

07. c1 = c2 = 1; Coefficients needed to fit the experimental data,
which are selected by hit and trial.

08. h = 0.3; Heat transfer coefficient.

09. K =0.078; Thermal conductivity.

10. c = 977; Specific heat.
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Table A3. Cont.

Sr. No. MATHEMATICA Syntax Explanation

11. ro = 541; Material density.

12. gamma = k/(c ∗ ro); Thermal diffusivity.

13.

w = 23.8 * 10ˆ−3;
unu = 0.96;
zo = 43.2 * 10ˆ−3;
q = 4.7 * 10ˆ−3;
debit = 200;
fr = Exp[−r * r/(2 * w * w)];
fz = unu/(1+Exp[z/q − zo/q]);
s = debit * ro * fz * fr;

Here, “w” is the laser beam waist, “zo” is the
maximum distance that electrons can penetrate, “q”
is the electron beam waist perpendicular to the
cylinder and “debit” is the electron dose on a
given material.

14. vbessel = {2.3556, 5.4711, 8.6048, 11.742, 14.882, 18.022, 21.162,
24.303, 27.444, 30.585 }; Eigen Values along the cylinder radius.

15. vcos = {4.898087,8.65222, 12.4238, 16.2351, 20.0775,
23.9414,27.8201, 31.7093, 47.324, 51.2361 }; Eigen Values perpendicular to the cylinder radius.

16.

mih = Table[BesselJ[0,(Part[vbessel,i]) * b]ˆ2,{i,10}];
wm = Table[N[Part[mih,i]],{i,10}];
poc = Table[((2 * (Part[vbessel,i])ˆ2)ˆ-1) * ((b * h/k)ˆ2+(b *
Part[vbessel,i])ˆ2),{i,10}];
cnr1 = Table[Part[poc,i] * Part[wm,i],{i,10}];
cnz2 = Table[1/(4(Part[vcos,j])ˆ3)((2(h/k) (Part[vcos,j])+2 a
(h/k)ˆ2(Part[vcos,j])+2
a(Part[vcos,j])ˆ3-2(h/k)(Part[vcos,j])Cos[2a(Part[vcos,j])]-
(h/k)ˆ2Sin[2a(Part[vcos,j])]+ (Part[vcos,j])ˆ2Sin[2 a
(Part[vcos,j])])),{j,10}];

“cnr1 to cnr2” are the normalizing coefficients
perpendicular and along the cylinder radius.

17.

pz = Table[fz * Part[kz,j],{j,10}];
pr = Table[fr * r * Part[kr,i],{i,10}];
zz1 = Chop[Integrate[Part[pz,1],{z,0,a}]];
zz2 = Chop[Integrate[Part[pz,2],{z,0,a}]];
zz3 = Chop[Integrate[Part[pz,3],{z,0,a}]];
zz4 = Chop[Integrate[Part[pz,4],{z,0,a}]];
zz5 = Chop[Integrate[Part[pz,5],{z,0,a}]];
zz6 = Chop[Integrate[Part[pz,6],{z,0,a}]];
zz7 = Chop[Integrate[Part[pz,7],{z,0,a}]];
zz8 = Chop[Integrate[Part[pz,8],{z,0,a}]];
zz9 = Chop[Integrate[Part[pz,9],{z,0,a}]];
zz10 = Chop[Integrate[Part[pz,10],{z,0,a}]];
zz = {zz1, zz2, zz3, zz4, zz5, zz6, zz7, zz8, zz9, zz10};

Source term for laser–material interaction
perpendicular to the cylinder radius.

18.

rr1 = N[Integrate[Part[pr,1],{r,0,b}];
rr2 = N[Integrate[Part[pr,2],{r,0,b}]];
rr3 = N[Integrate[Part[pr,3],{r,0,b}]];
rr4 = N[Integrate[Part[pr,4],{r,0,b}]];
rr5 = N[Integrate[Part[pr,5],{r,0,b}]];
rr6 = N[Integrate[Part[pr,6],{r,0,b}]];
rr7 = N[Integrate[Part[pr,7],{r,0,b}]];
rr8 = N[Integrate[Part[pr,8],{r,0,b}]];
rr9 = N[Integrate[Part[pr,9],{r,0,b}]];
rr10 = N[Integrate[Part[pr,10],{r,0,b}]];
rr = {rr1,rr2,rr3,rr4,rr5,rr6,rr7,rr8,rr9,rr10};
psij = Table[(debit ∗ ro ∗ unu/(Part[cnr1, i] ∗ Part[cnz2, j]))
∗Part[rr, i]
∗Part[zz, j]/

(
Part[vbessel, i]2 + Part[vcos, j]2

)
, {i, 10}, {j, 10}

]
;

Source term for laser–material interaction along the
cylinder radius.

19. radical = Table[Sqrt[1/gammaˆ2 − (4 * tau/gamma) *
Part[vbessel,i]ˆ2 − (4 * tau/gamma) * Part[vcos,j]ˆ2],{i,10},{j,10}];

Spatial component of the thermal field along
cylinder radius.
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Table A3. Cont.

Sr. No. MATHEMATICA Syntax Explanation

20.

krv = Table[BesselJ[0,(Part[vbessel,i]) * rv],{i,10}];
kzv = Table[(Cos[Part[vcos,j] * zv] + (e/(k * Part[vcos,j])) *
Sin[Part[vcos,j] * zv]),{j,10}];

Tij = Table[(c1 ∗Exp[(−(1/gamma)− Part[radical, i, j])
∗(t− t0) ∗UnitStep[t− t0]
∗gamma/(2 ∗ tau)] + c2
∗Exp[(−(1/gamma) + Part[radical, i, j]) ∗ t
∗gamma/(2 ∗ tau)])
∗Part[krv, i] ∗ Part[kzv, j], {i, 10}, {j, 10}];

Tij1 = Table[c1 * Exp[(−(1/gamma) − Part[radical,i,j]) * (t − t0)
* UnitStep[t − t0] * gamma/(2 * tau)] * Part[krv,i] *
Part[kzv,j],{i,10},{j,10}];
Tij2 = Table[c2 * Exp[(−(1/gamma) + Part[radical,i,j]) * (t−t0) *
UnitStep[t−t0] * gamma/(2 * tau)] * Part[krv,i] *
Part[kzv,j],{i,10},{j,10}];
Tij = Tij1 + Tij2;
Tsj0 = Table[ Part[psij,i,j] * Part[krv,i] * Part[kzv,j],{i,10},{j,10}];
Tsij1 = Table[ Exp[(−(1/gamma)−Part[radical,i,j]) * (t − t0) *
UnitStep[t − t0] * gamma/(2 * tau)] * Part[krv,i] *
Part[kzv,j],{i,10},{j,10}];
Tsij2 = Table[ Exp[(−(1/gamma) + Part[radical,i,j]) * (t−t0) *
UnitStep[t − t0] * gamma/(2 * tau)] * Part[krv,i] *
Part[kzv,j],{i,10},{j,10}];
Tsij = Tsj0 + Tsij1 + Tsij2;
T = Sum[Part[Tij,i,j],{i,1},{j,1}];

Compiles the normalizing coefficient, radial
component, temporal component, electron–phonon
relaxation time, laser beam intensity, and
thermal conductivity.

21.

Tsursa = Sum[Part[Tsij,i,j],{i,10},{j,10}];
Plot[%%,{t,0,10000},
AxesLabel->{“t[s]”,”dT[a.u.]”},AxesStyle->Directive[20]]
Plot[%%,{t,0,10000},AxesLabel->{“t[s]”,”dT[a.u.]”},AxesStyle-
>Directive[20]]

Sums up every provided input and generates the
final solution, i and j are the number of steps used in
simulations. Plots and gives 3D results.

The Eigen Values “vbessel” and “vcos” were calculated using the same procedure provided in Table A2.
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