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Abstract: Increasingly advanced applications of polymer fibers are driving the demand for new,
high-performance fiber types. One way to produce polymer fibers is by electrospinning from
polymer solutions and melts. Polymer melt electrospinning produces fibers with small diameters
through solvent-free processing and has applications within different fields, ranging from textile
and construction, to the biotech and pharmaceutical industries. Modeling of the electrospinning
process has been mainly limited to simulations of geometry-dependent electric field distributions.
The associated large change in viscosity upon fiber formation and elongation is a key issue governing
the electrospinning process, apart from other environmental factors. This paper investigates the melt
electrospinning of aerogel-containing fibers and proposes a logistic viscosity model approach with
parametric ramping in a finite element method (FEM) simulation. The formation of melt electrospun
fibers is studied with regard to the spinning temperature and the distance to the collector. The
formation of PET-Aerogel composite fibers by pneumatic transport is demonstrated, and the critical
parameter is found to be the temperature of the gas phase. The experimental results form the basis
for the electrospinning model, which is shown to reproduce the trend for the fiber diameter, both for
polymer as well as polymer-aerogel composites.

Keywords: electrospinning; porous materials; composite fibers; thermal insulation; finite element
modeling; logistic viscosity model

1. Introduction

Polymer micro- and nanofibers can be created in several ways, and one fast and effi-
cient process is electrospinning [1]. Electrospinning occurs when a droplet of fiber-forming
solution or melt is placed in an electric field. As the field strength surpasses the surface
tension, a Taylor cone emerges and a fiber emanates from the droplet [2]. The critical point
of melt electrospinning occurs when the temperature of the melt is in a range above or equal
to the glass transition temperature, but below the decomposition temperature [2]. The
upper temperature limit of melt electrospinning is actually lower than the decomposition
temperature for the polymer due to oxidation and the viscosity of the polymer melt. The
process can be controlled through many parameters [3–5]. In the past, several efforts to
electrospin advanced composite materials [6–8], and to upscale the process to an industrial
scale [9,10], have been made. Among these types of advanced materials [8,11–13] are aero-
gel/polymer composite fibers, described earlier by this group [14,15]. Such materials allow
for a combination of the incredible thermal insulation properties of silica-based aerogel
and the mechanical strength and ease of handling of polymer fibers. So far, these fibers
have been produced with organic solvents that are environmentally hazardous [16–18]
and can compromise the properties of the aerogel [19]. Solvent-free production of aerogel
composite fibers can enable their application in a whole range of new fields, including
building insulation [20], high-performance clothing [21], aerospace suits [22], and the
insulation of batteries in electric vehicles [23].
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Several approaches to the simulation of the electrospinning process have been formu-
lated over the past years, including numeric motion simulations [24] and crystallization
simulations [25]. These approaches cover various electrospinning scenarios, including
centrifugal electrospinning [26], morphology simulations [27], and fiber diameter simula-
tions [25] in numerical environments. Furthermore, the finite element method (FEM) has
been used for field calculations [28] and for the calculation of the mechanical properties of
the resulting fibers [29,30]. However, the simulation of the actual fiber formation by FEM
is not covered in the literature. The finite element method is versatile as it can simulate
multiphysics problems [31] as well as integrate with digital design and manufacturing
environments [32]. With the increasing robustness of computational fluid dynamics algo-
rithms, this method can also be implemented for the electrospinning process. This has
been shown for the electrospinning of liquids with a constant viscosity [31]. However, this
approach is not suitable for modeling melt electrospinning since it involves large variations
in viscosity during the glass transition of the fiber formation process. The introduction of a
parametric dependence can address this problem.

In the solvent-free melt electrospinning process, the main parameter is the temperature-
dependent viscosity, which increases drastically upon cooling of the melt [2,33]. Modeling
based on a phenomenological temperature dependence can be used to evaluate the influ-
ence of other parameters on electrospun fiber morphology.

The present study reports a novel method for pneumatic transport of particulate matter
into the core of melt electrospun fibers. Up until now, this has only been demonstrated
for solvent electrospinning [14,15]. Melt electrospinning, on the other hand, offers solvent-
free fiber formation, allowing the incorporation of dry porous particles without residual
solvent, and avoiding their collapse due to solvent wetting. Specifically, polyethylene
terephthalate (PET) and cellulose acetate butyrate polymer fibers were melt electrospun
at various temperatures. Insugel™ aerogel particles were transported pneumatically into
the core of the PET polymer fibers at different flow rates to create PET-Aerogel composites.
These experiments formed the basis of the simulation of the fiber diameter with a viscosity
ramping approach implemented as a temperature-dependent logistic viscosity model.

2. Materials and Methods

PET (ES306313) was purchased from Goodfellow (UK), and cellulose acetate butyrate
(Mw 30,000 g/mol) from Sigma Aldrich (Denmark); Insulgel™ hydrophobic silica aerogel
particles with grain sizes in the range of 1–44 µm were purchased from Insulgel High-Tech
(Beijing) Co., Ltd. (Beijing, China). The experiments were performed using a downward
electrospinning setup, as shown in Figure 1, where a positive potential was applied to the
collector while the spinneret was connected to ground. The electrospinning nozzles and
aerogel outlets were 3 mm and 1 mm in diameter, respectively. The aerogel was transported
into the spinneret by compressed dry air.

The fibers were characterized by scanning electron microscopy (SEM, Zeiss XB40,
Germany); the fiber diameter distribution was extracted from the SEM images. The
presence of aerogel in the composite fibers was validated using energy dispersive X-ray
spectroscopy (EDX, Thermo Scientific NORAN System 7, USA).

2.1. Electrospinning Experiments

The electrospinning experiments consisted of a series of parametric variations used to
find suitable settings for the production of aerogel-containing polymer fibers. The variation
in temperature and distance formed the basis for the simulation work.

First, PET and cellulose acetate butyrate were spun into fibers in order to investi-
gate their spinnability. On the basis of these experiments, PET was chosen for further
experiments as the equipment’s available temperature range fit this polymer better.

In the second phase, the temperature and spinning distance were varied. The distance
was varied between 7.4 and 21 cm, while the temperature was set to 280, 290, 300, and
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320 ◦C. These experiments yielded an optimal spinning parameter set of 7.4 cm and 300 ◦C,
which was used for the last production of polymer/aerogel composite fibers.
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Figure 1. (a) Sketch and (b) image of the electrospinning setup.

While producing the aerogel-containing fibers, airflow was varied between 0.3 and
0.5 L/min in order to investigate the effect on fiber thickness and aerogel transport. This
airflow was applied through the aerogel inlet and transported the aerogel particles into the
middle of the electrospinning process.

2.2. Multiphysics Simulations

The electrospinning process simulation was performed in three steps: (i) the electro-
spinning of polymer fibers without aerogel was simulated; (ii) a thermal simulation of
the aerogel transport airflow was performed to obtain an average air temperature at the
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outlet; (iii) the average air temperature was used for the input parameters for the composite
electrospinning simulation.

During the first phase of simulations, the electrospinning process simulation relied
on an FEM ramping approach in COMSOL Multiphysics 5.4, where a liquid with no
temperature dependence on viscosity in a force field was simulated. The multiphysics
consisted of heat transfer and laminar flow in a two-phase field. The liquid was injected
into a domain with an applied body force, and the propagation of the liquid was simulated
over a time span of 2 s in steps of 0.1 s. The liquid phase diameter at the opposite boundary
was evaluated as a function of the applied force (corresponding to spinning distance) and
temperature (corresponding to a higher cooling rate in the composite experiments).

The simulations were carried out in a 2D axio-symmetric geometry (COMSOL Multi-
physics 5.4), where two coupling terms were used to couple a two-phase flow with heat
transfer in fluids. Figure 2 shows the simulation geometry. The inlet and outlet conveyed
the molten polymer, the walls were set as an open boundary (to allow for airflow through
the model) and a slip wall boundary condition. The model included heat transfer and a
laminar two-phase flow with the applied body force due to the electrostatic force acting on
the liquid. These were coupled so they would update material properties dependent on
each other (thermal properties and viscosity). The coupling took place so that the thermal
settings were resolved for a given time step, and the flow solver improved the temperature
distribution. Subsequently, at the beginning of the next time step, the flow settings were
imported by the thermal solver, ensuring an update of the material properties in a given
region at all times.
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Figure 2. Simulation geometry and boundary conditions of the spinning process. Melted polymer
is supplied through inlets a and b. The temperature at inlet a is set to either the heating mantle
temperature or the airflow temperature from the thermal air transport simulation. Inlet b is set to the
heating mantle temperature. Open boundaries allow air to enter or exit the model.

The solution was configured in two steps, a phase initiation step and a time-dependent
step. The viscosity difference between the glass transition viscosity and the melt viscosity
was ramped between 1 to 105 in steps of 10 by setting the initial phases equal to the
previous solution and applying the new, higher glass transition viscosity.

The dynamic viscosity, µdynamic, was modeled as a logistic function. This approach
has previously been used to describe the flow properties of other viscous liquids, such
as blood [34] and asphalt [35,36], in other modeling systems. While the viscosity of the
polymer melt is different from blood and asphalt, all have a strong viscosity dependence on
environmental conditions that can be approximated with the same mathematical approach.
This approximation can be implemented within the finite element environment, as it is
easily tunable and fully differentiable and, at the same time, has been proven to describe a
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liquid that flows and eventually solidifies. This implementation allows for a parametric
ramping approach, where the factor determines the order of magnitude of viscosity change
from the melting temperature to the glass transition temperature:

µdynamic = µmelt +
µglass

1 + 10
2·a

Tmelt−Tglass
·(T−Tmelt+

Tmelt−Tglass
2 )

, (1)

where µdynamic is the dynamic viscosity of the molten polymer, µmelt is the viscosity at the
melting temperature, µglass is the viscosity at the glass transition temperature, Tmelt is the
melting temperature, Tglass is the glass transition temperature, T is the temperature of the
given element, and a is a number added to let a controlled fraction of the viscosity change
happen between the glass transition temperature and the melt temperature. It is noted that
the viscosity remains constant if a = 0.

The thermal conductivity, heat capacity, and density of the mixture in a given element
were evaluated through a linear mixture model, where

cp,tot = cp,polymer·%vol,polymer + cp,air·%vol,air, (2)

λtot = λpolymer·%vol,polymer + λair·%vol,air, (3)

ρtot = ρpolymer·%vol,polymer + ρair·%vol,air, (4)

where cp is the heat capacity, λ is the thermal conductivity, ρ is the density, and %vol refers
to the volume percentage in a given element.

The pulling force on the droplet was applied to the elements within the finite element
method. This was implemented as a description of Coulomb’s law,

F(r) = qE(r) = −q
ϕ

r
, (5)

where F is the force, q is the charge density, E is the electrostatic field, ϕ the electrostatic
potential, and r the distance from the charged object. This is implemented as a body force
acting on the volume element, so

F ∝
ρ

d
, (6)

where F is the force on the volume element, ρ is the density, and d is the distance from the
spinneret, as the charge and mass density are proportional.

Since (1) the viscosity of suspensions is proportional to particle content, (2) the particle
content in this study is low, and (3) the viscosity develops exponentially with temperature,
it can be assumed that the temperature effect is dominant (∆µT >> ∆µparticle) [37,38]. Thus,
the presence of aerogel particles is considered to be an inhomogeneity and does not affect
the simulated properties [39].

In order to perform the parametric ramping, the electrospinning process can be
described as a set of simulations with increased polymer viscosity. This was performed as
six series of experiments, where the first experiment had a viscosity setting of µglass = µmelt.
For the next step, µglass was increased by a factor of ten. At the same time, the solution
from the previous time step was used in the initial phase and temperature distribution so
that the result would be updated to the new polymer properties.

The parameters applied to this polymer flow model are shown in Table 1.
A finite element model with temperature-flow coupling was used to estimate the

temperature of the air and aerogel in the composite experiments. Figure 3 shows how
thermal simulation was configured with geometry and boundary conditions. The flow was
simulated according to the experiment, and the average output temperature was evaluated.
This simulation was performed by heating the moving air, and the output was the average
air temperature from the aerogel pipe.

The simulations of the spinning with aerogel were performed as described for the
general spinning, but with a lower input temperature in the fiber core. This corresponds to
the area (a) in Figure 2.
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Table 1. Parameters applied to the polymer flow model.

Parameter Value Unit

µmelt 0.1 Pa·s
µglass 0.1–10,000 Pa·s

Ramping factor between each simulation 10 -

a 0.001 -

Tglass 150 ◦C

Tmelt 250 ◦C

cp,polymer 0.1 W/m·◦C
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Figure 3. Subsection of the melt spinneret geometry and the boundary conditions. Airflow with
room temperature was applied through the inner tube, and 300 ◦C was applied at the outer part. The
casing and the tube were set as steel and the inner part as PET polymer.

3. Results and Discussion

Fibers were produced from both PET and cellulose acetate butyrate, yielding diameters
in the micrometer range. Figure 4 shows representative images of polymer fibers Figure 4a),
and composite fibers (Figure 4b). The two polymer types were both spinnable, but cellulose
acetate butyrate showed thermal degradation at all temperatures with spinnable viscosity
(150 ◦C and above). The PET fibers had small mean diameters and a stable electrospinning
rate at 300 ◦C and a 7.4 cm spinning distance. Hence, these were chosen as the spinning
parameters for further pneumatic experiments. All fibers had small, uniform diameters at
high temperatures and smaller distances, but both the diameter and the variance increased
with greater distances and lower temperatures. All spinning was stable at the chosen
distance, but at greater distances, it tended to destabilize. The upper and lower distances
mark the maximal and minimal spinning distance, respectively, where stable spinning
could be maintained. Further details are shown in Table 2.
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Table 2. Overview of fiber diameters for non-aerogel fibers from PET and cellulose acetate.

Material Distance
(cm)

Temperature
(◦C)

Diameter
(µm)

STD.DEV
(µm)

PET 7.4

280
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The pure PET fibers exhibited a smooth surface, while the aerogel exhibited small
particles on the composite fibers’ surface. This was also confirmed by EDX measurements
of an aerogel-containing fiber, proving that the silica aerogel particles are both present
on the surface and inside the fiber (Figure 5). This suggests that the aerogel particles are
intermixed well with the polymer and were encapsulated in a polymer matrix within
the fiber. It should be noted that unstable spinning at high airflow rates and low aerogel
incorporation at low airflow rates place some limitations on the aerogel content of the
fibers in the experimental setup used.

The mean size of the produced fibers without added aerogel varied between 12.4 and
91.2 µm for PET fibers, and 22.2 m and 39.0 µm for cellulose acetate butyrate fibers,
depending on distance and temperature. Table 2 shows the average fiber diameters and
standard deviations for all the experimental series for pure polymer fiber spinning. The
table shows that spinning at a lower distance produced thinner fibers due to a higher
electrostatic pulling force. Furthermore, increasing temperature also led to a decrease in the
fiber diameters for both materials due to a reduction in viscosity. Figure 6 shows the fibers
and their size distribution for all samples spun at 300 ◦C. This temperature and the distance
of 7.4 cm were chosen for the spinning of aerogel-containing fibers, as they produced thin
fibers with a narrow size distribution. The electrospinning at 320 ◦C produced thinner
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and more uniform fibers but did show signs of thermal degradation (fiber discoloration).
Electrospinning of PET at temperatures below 280 ◦C was not possible due to high viscosity.
Therefore, the spinnable range of non-degraded PET polymer fibers is between 280 and
300 ◦C.
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When the melt without temperature dependence was simulated in the initial simu-
lation, a polymer jet was obtained. Upon introduction of temperature dependence and
ramping up the proportionality factor a, the jet was used as an initial estimate for the next
iteration. This was repeated as the proportionality factor was ramped between 1 and 105.
The fiber diameter at the outlet was evaluated as a function of temperature and applied
force. Figure 7 shows a 3D representation of the liquid–air interface in the simulations,
and a plot of the simulated and measured results can be seen in Figure 8. Note that the
simulated results are normalized. It was observed that the simulated results yielded three
curves with increasing diameter for lower temperatures, while the experiments showed no
significant differences between the spinning series at 290 and 300 ◦C. This can be attributed
to little actual change in viscosity here, which can be caused by thermal degradation or the
limited volume of the melting zone. The simulations cannot take this physical difference
into account and will, therefore, deviate from the experimental results (Figure 8). Further-
more, as this effect takes place for the greatest spinning distances, the simulations cannot
account for the whipping of the fiber either.

Figure 9 shows the relationship between the measured and simulated diameters
for the composite fibers. While the low-airflow experiment (30 mL/s, 247 ◦C) yielded
uniform fibers with a small diameter variation (34 ± 4 µm), the high-airflow experiments
(40–50 mL/s, 227 and 207 ◦C) showed instabilities, yielding very high variance in the
fiber diameter (64–65 ± 46–50 µm). The applied method was found to produce aerogel-
containing fibers, and the modelling approach was able to reproduce the experimentally
observed trend within the stable spinning region.
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Furthermore, it can also be concluded that the primary obstacle in the electrospinning
of composite fibers with pneumatic conveying is cooling by the transport gas. This type
of issue might be avoided by applying an airflow around the spinning nozzle (e.g., [40])
where heated air is used to support the Taylor cone formation. Moreover, heated air-
flow might also be applied to the pneumatic gas to reduce the cooling effect. These
types of additional studies could also form the basis for an update of the airflow and
electrospinning simulation.

The simulation method can find applications as it describes the relationship between
the electrospinning parameters, temperature, viscosity, spinning distance, and applied
airflow. The experiments showed no whipping in the fiber-forming process due to the
inversed setup and the relatively short spinning distance. Therefore, it can be assumed
that a significant part of the diameter change occurs in the near field while the polymer is
still viscous. This corresponds to the findings of Zhmayve et al. (2011) for crystallization
during electrospinning [25].
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In general, the applied ramping approach offers a way to simulate melt electrospinning
in the temperature range close to the glass transition temperature where steep viscosity
changes with temperature occur. The ramping approach offers a better computational
robustness in comparison to the traditional William–Landel–Ferry model for thermoplastic
viscosity [33]. Since the general temperature dependence of polymer viscosity is well-
established, this technique can be applied to the development of new melt electrospinning
equipment and techniques for a whole range of thermoplastic polymers.
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4. Conclusions

The increasing need for materials with new and improved properties calls for new pro-
duction methods and the validation of these methods. Electrospinning of polymer/aerogel
composites can yield novel thermal insulation materials and make them available for
general use.

The study showed that electrospun polymer/aerogel composite fibers can be produced
solvent-free by the pneumatic transport of aerogel into a fiber core. The airflow of the
pneumatic aerogel transport is the limiting factor of the aerogel loading into the fibers due
to its cooling effect on the surrounding polymer. This leads to the fiber diameter increasing
with increasing airflow due to faster cooling of the fiber core and the corresponding increase
in the viscosity of the polymer melt.

Finite element modeling of the melt electrospinning process was demonstrated. In
order to accommodate the steep viscosity dependence on temperature in the simulations,
a logistic function approach was applied to evaluate the viscosity of the polymer melt,
coupled with a parametric ramping approach. A stable simulation of the composite electro-
spinning process was shown within the experimentally accessible range of parameters.
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