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Abstract: Graphite is used as a state-of-the-art anode in commercial lithium-ion batteries (LIBs) due
to its highly reversible lithium-ion storage capability and low electrode potential. However, graphite
anodes exhibit sluggish diffusion kinetics for lithium-ion intercalation/deintercalation, thus limiting
the rate capability of commercial LIBs. In order to determine the lithium-ion diffusion coefficient of
commercial graphite anodes, we employed a galvanostatic intermittent titration technique (GITT)
to quantify the quasi-equilibrium open circuit potential and diffusion coefficient as a function of
lithium-ion concentration and potential for a commercial graphite electrode. Three plateaus are
observed in the quasi-equilibrium open circuit potential curves, which are indicative of a mixed
phase upon lithium-ion intercalation/deintercalation. The obtained diffusion coefficients tend to
increase with increasing lithium concentration and exhibit an insignificant difference between charge
and discharge conditions. This study reveals that the diffusion coefficient of graphite obtained with
the GITT (1 × 10−11 cm2/s to 4 × 10−10 cm2/s) is in reasonable agreement with literature values
obtained from electrochemical impedance spectroscopy. The GITT is comparatively simple and
direct and therefore enables systematic measurements of ion intercalation/deintercalation diffusion
coefficients for secondary ion battery materials.

Keywords: graphite; diffusion coefficient; galvanostatic intermittent titration technique; quasi-
equilibrium open circuit potential; lithium-ion battery

1. Introduction

Over the last three decades, lithium-ion batteries (LIBs) have been employed for
diverse energy storage applications ranging from portable electronics to stationary energy
storage systems [1,2]. The performance of LIBs is determined by lithium-ion diffusion in
both the anode and cathode, which is furthermore coupled to electron transport [3]. For
the practical use of electrodes, the lithium-ion diffusion coefficient of an electrode can be
used as a performance descriptor [4–7].

It is generally recognized that graphite anodes limit the rate capability of commercial
LIBs due to slow lithium-ion diffusion, allowing only a rate of up to 1C for the charging
process in order to prevent lithium metal plating on the graphite surface in fast charge
regimes [3]. The lithium-ion diffusion coefficient of graphite has been reported across
seven orders of magnitude (from 10−12 to 10−5 cm2/s), as determined from electrochemi-
cal impedance spectroscopy (EIS) [8–14], galvanostatic intermittent titrations [15,16], and
potentiostatic intermittent titrations [17,18]. EIS is a useful tool for identifying the contri-
bution of different charge transfer and transport processes to overall electrochemical cell
impedance [19,20]. EIS with subsequent equivalent circuit model fitting has been widely
used to determine the diffusion coefficient of graphite [8–14]. However, diffusion coeffi-
cients measured by EIS are sensitive to differences in particle size and shape of the electrode
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materials [21], resulting in seemingly disparate diffusion coefficients in the literature. Con-
versely, the galvanostatic intermittent titration technique (GITT) is insensitive to particle
size and electrode shape, which allows both thermodynamic and kinetic parameters to be
determined, including the lithium-ion diffusion coefficient [21]. GITT measurements are
composed of a series of small positive (or negative) current pulses followed by a relaxation
period, where no current passes through the cell. This allows for the quasi-equilibrium
open circuit voltage (open circuit voltage as a function of the state of charge) to be obtained
as a function of intercalated ion concentration. Furthermore, the diffusion coefficient can be
extracted by monitoring the change in potential with time under the assumption of Fick’s
law. Despite there being various reports on graphite analysis using EIS and the GITT, there
are few detailed studies that use the GITT to evaluate the diffusion coefficient of graphite
as a function of lithium-ion concentration and potential.

In this study, we prepared a coin cell using a commercial graphite electrode sheet as
the counter electrode and lithium metal as the reference electrode. The charge–discharge
behavior of the coin cell was performed as a function of charge rate, confirming reversible
lithium-ion intercalation/deintercalation below 0.2C. GITT experiments were performed
with three different C-rates (i.e., 0.2C, 0.05C, and 0.01C), revealing that 0.05C is the opti-
mum condition for extracting the quasi-equilibrium open circuit potential and lithium-ion
diffusion coefficient of graphite. To the best of our knowledge, this is the first system-
atic study on the lithium-ion diffusion coefficient of graphite as a function of lithium-ion
concentration and potential.

2. Materials and Methods

A commercial graphite electrode sheet was provided from LIBEST (Daejeon, Korea).
This graphite electrode sheet was composed of 91 wt.% graphite (See the Figure S1) as
the active material, 1 wt.% Super-P carbon black as a conductive additive, and 8 wt.%
polyvinylidene fluoride as a binder polymer. The electrode was cast on a copper foil (10 µm
thickness), dried, roll pressed, and then punched into discs 1.5 cm in diameter to obtain a
mixture loading level of 8.68 mg/cm2 with a thickness of 100 µm (the overall thickness of
the graphite electrode sheet was 110 µm). The 2032-type coin cells were then assembled
with a prepared electrode disc as the cathode and a lithium metal foil as the anode using
1 M lithium hexafluorophosphate in ethylene carbonate (EC) and ethyl methyl carbonate
(EMC) as the electrolyte (EC/EMC, 3:7 w/w).

Electrochemical characterization of the coin cell was performed using a battery test
system (Land Instruments, CT2001A). The coin cell was first tested at 27 ◦C in order
to investigate the specific capacity and Coulombic efficiency. GITT experiments were
conducted to determine the quasi-equilibrium open circuit potential (QOCP) and lithium-
ion diffusion coefficients as functions of the lithium-ion concentration in graphite. For the
electrochemical experiments, the upper and lower cut-off potentials were set to 1.5 and
0.06 V vs. lithium metal, respectively. For the GITT experiments, a series of current pulses
were imposed on the cell for 1200 s, after which the relaxation potentials of the cell were
measured for 2400 s when no current was applied. Figure 1a shows GITT experimental
condition during charge at 0.05C. Figure 1b shows representative GITT curves under
charging conditions of 0.05C. When a positive current pulse was applied, the potential first
increased quickly—corresponding to the electrical internal resistance of the electrode—and
subsequently increased slowly due to electrochemical lithium-ion deintercalation upon
galvanostatic charging. After reaching a certain cell potential, due to electrical internal
resistance, the potential instantaneously dropped, after which it slowly decreased until
reaching equilibrium at the QOCP. When a negative current pulse was applied, the opposite
held true. The diffusion coefficient (D) can be calculated at each step as follows:
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S
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where τ is the duration of the current pulse (s), n is the number of moles (mol) of the
electrode, V is the molar volume (cm3/mol) of the electrode, L is the thickness of the
electrode, and S is the apparent electrode area (cm2) [22,23]. As shown in Figure 1b, ∆Et
is the potential change for the charge/discharge current pulse, while ∆Es is the steady-
state voltage change after eliminating the IR drop originating from the electrical internal
resistance.
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responding variations in potential during the 0.05C charging current pulses and relaxation periods, where ∆Et is the overall
change in potentials during the current pulses after subtracting the IR drop and ∆Es is the change in steady-state potential.

3. Results and Discussion

Figure 2a shows the galvanostatic charge–discharge curves as a function of charging C-
rate (0.2C, 0.5C, 1C, 2C, and 5C) when the discharging C-rate was fixed at 0.2C. At 0.2C, the
highest charge capacity and Coulombic efficiency were 365 mAh/g and 99.5%, respectively
(Figure 2b). Both charge capacity and Coulombic efficiency decreased with increasing C-
rate due to sluggish lithium intercalation kinetics. Therefore, among the C-rates analyzed,
0.2C was the highest that could be used to perform GITT measurements to determine the
diffusion coefficient for reversible lithium-ion intercalation/deintercalation into graphite,
with respect to specific capacity and Coulombic efficiency. Since the GITT measurements
included a series of current pulses followed by a relaxation period, the optimal C-rate for
GITT measurements could be different from that used in the galvanostatic charge/discharge
experiments. Therefore, three different C-rates (0.2C, 0.05C, and 0.01C) were used in the
GITT measurements and were examined to extract the quasi open circuit potential and the
diffusion coefficient.

As shown in Figure 3, GITT measurements were performed at 0.2C, 0.05C, and 0.01C
charge/discharge rates. The potential change during the current pulse and relaxation
process at 0.01C was insignificant compared to those obtained at 0.2C and 0.05C rates.
This suggests that the duration of both the current pulse and the relaxation process must
increase substantially to observe a significant potential change at 0.01C. By contrast, the
GITT curves at 0.2C and 0.05C displayed a change in the potential for both the current pulse
and relaxation process, which originated from lithium-ion intercalation/deintercalation
and ion redistribution after intercalation in graphite, respectively. According to the GITT
theory [22,23], the change in potential during the current pulse must exhibit linear behavior
as a function of the square root of time. Figure 4 shows the potential change of the
current pulse as a function of the square root of time at 0.05C charge/discharge rate,
which exhibits linear behavior with R2 > 0.95. Furthermore, weak linear behavior of the
potential change of the current pulse was observed at 0.2C and 0.01C charge/discharge
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rates (Figures S2 and S3), particularly for the charge pulse (0.61 < R2 < 0.98). This suggests
that the optimum charge/discharge rate was 0.05C for the GITT investigation.
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(top, (a–c)) and three charge (bottom, (d–f)) processes at a rate of 0.05C. The linear fitting line and R2 value of the linear
regression are also displayed. Diffusion is rate-limiting for the electrochemical ion intercalation/deintercalation process
when the potential change during the current pulse exhibits linear behavior with respect to the square root of time; this is
because the diffusion coefficient determined by the GITT is based on Fick’s law.

The GITT measurement curves and QOCP values during charge/discharge at 0.05C
rate are shown in Figure 5. QOCP is also plotted as a function of lithium concentration
in graphite (x in LiC6/x), displaying three different plateaus. Low-level hysteresis was
observed between charging and discharging with x < 0.08, as this low concentration of
intercalated lithium resulted in random intercalation of lithium ion in graphite. Even
though a large hysteresis between lithium insertion and removal on QOCP graphite was
observed previously [24–26], no distinct hysteresis was found when x ≥ 0.08, suggesting
that a rate of 0.05C is sufficiently slow to investigate lithium intercalation/deintercalation
processes.

Three transients of the QOCP were observed at 1.0–0.22 V, 0.2–0.1 V, and 0.1–0.08 V,
which arose from disordered lithium ions intercalated in graphite and were attributed
to a significant increase in the intercalation reaction entropy and considerable change
of the QOCP [24]. The plateaus are located at approximately 0.22, 0.12, and 0.08 V for
both charge/discharge QOCPs. These distinct plateaus confirm that reversible lithium
intercalation/deintercalation occurs because the chemical potential of the lithium ion in
coexisting phases is equal with respect to the cell potential [27]. In the first plateau at
~0.22 V (0.08 ≤ x ≤ 0.17), the formation of a LiC36 phase (Stage 4) occurs according to
LiC72 + Li+ + e− ↔ 2LiC36. The second plateau at ~0.12 V (0.25 ≤ x ≤ 0.50) is attributed to
the formation of a LiC12 phase (Stage 2) following LiC24 + Li+ + e− ↔ 2LiC12. The third
plateau at ~0.08 V (x ≥ 0.55) represents the reversible phase transition between LiC12 and
LiC6 (Stage 1, LiC12 + Li+ + e− ↔ 2LiC6).
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The diffusion coefficient (D) of graphite during charge/discharge at a rate of 0.05C as
a function of lithium concentration (x in LiC6/x) was investigated (Figure 6). The trends of
diffusion coefficients between charge and discharge, which increase with increasing lithium
concentration (x in LiC6/x), are nearly identical. When x < 0.16, the diffusion coefficient
is ~10−11 cm2/s; because the d-spacing of graphite undergoes an insignificant change
from 3.36 Å to 3.39 Å upon lithium-ion intercalation [28], a high overpotential for both the
insertion and removal of lithium ions occurs. In situ synchrotron X-ray diffraction results
confirmed that the symmetry of the (0 0 2) peak of graphite exhibited higher symmetry
upon lithium-ion intercalation due to the strong repulsion between intercalated lithium
ions [25,27,28], resulting in an increased diffusion coefficient. In the range of 0.16 ≤ x ≤ 0.2,
the diffusion coefficient substantially increased approximately 10 fold to ~2 × 10−10 cm2/s,
since the d-spacing of graphite increased significantly from 3.39 Å to 3.49 Å, thus providing
sufficient space for lithium-ion diffusion in conjunction with the formation of the LiC36
phase [28]. The diffusion coefficient decreased slightly to approximately 8 × 10−11 cm2/s
in the 0.2 ≤ x ≤ 0.25 range due to formation of LiC24, which is in good agreement with
previous X-ray diffraction studies [25,27]; lithium ions in LiC24 are intercalated in a more
compact manner than in the LiC36 phase. When 0.25 ≤ x ≤ 0.5, the diffusion coefficient
was found to increase again to ~2 × 10−10 cm2/s due to the phase transition from LiC24 to
LiC12 [29]. During this transition, lithium ions were sufficiently intercalated into graphite
and available for diffusion from the edge to the basal plane, which is in good agreement
with the high entropy associated with the charge/discharge process [24,25]. At x ≥ 0.5,
the diffusion coefficient remained at approximately 10−10 cm2/s but exhibited a sharp
drop for both charge/discharge curves at x = 0.6. This sudden decrease at x = 0.6 is
associated with the formation of a superdense LiC12 intermediate phases, such as Li7C24
or Li11C24 [25], acting as nucleation sites for the formation of LiC6 as observed in in situ
X-ray diffraction. This is because the presence of intermediate phases leads to a lithium
concentration gradient between the surface and interior of graphite particles, which hinders
lithium-ion diffusion.
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The diffusion coefficients of lithium-ion intercalation in graphite as a function of
specific capacity (x in LiC6/x) and potential (vs. Li+/Li) from different EIS studies are
compared in Figure 7. Only a single diffusion coefficient value of 4 × 10−8 cm2/s was
previously reported using the GITT with a charge current of 0.2 mA [15], which is similar
to this study. Recently, diffusion coefficient values of graphite in the range of 1 × 10−13

to 2 × 10−11 cm2/s determined from the GITT have been reported using relatively rapid
C-rates from 0.2C to 5C [16]. However, lithium-ion diffusion coefficients of graphite as
functions of specific capacity and potential have not yet been reported using the GITT. In
fact, most reported lithium-ion diffusion coefficients as functions of specific capacity and
potential are obtained from EIS [8–14] and potentiostatic intermittent titration technique
measurements [17]. Even though discrepancies between lithium-ion diffusion coefficients
could arise from differences in the structure of graphite particles, electrode sheet compo-
sition, and analysis techniques, the lithium-ion diffusion coefficient obtained from this
study is in reasonable agreement with the results from Levi and Aurbach [8] and Ong
and Yang [9] as a function of x in LiC6/x, and with those of Yang et al. [13] as a func-
tion of potential. It has been demonstrated that the GITT enables the direct and reliable
determination of the lithium-ion diffusion coefficient of graphite when the lithium-ion
intercalation/deintercalation reaction occurs reversibly.
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4. Conclusions

We investigated the quasi-equilibrium open circuit potential and lithium-ion diffusion
coefficient of a graphite electrode by employing the galvanostatic intermittent titration
technique as a function of intercalated lithium-ion concentration (x in LiC6/x) and potential.
We determined that the optimum charge/discharge rate was 0.05C for investigation of the
quasi-equilibrium open circuit potential and lithium-ion diffusion coefficient of graphite.
Furthermore, three distinct plateaus were identified from the quasi-equilibrium open
circuit potential curves at approximately 0.22, 0.12, and 0.08 V; the first plateau at ~0.22 V
(0.08 ≤ x ≤ 0.17) corresponds to the phase transition from LiC72 to LiC36, the second
plateau at ~0.12 V (0.25 ≤ x ≤ 0.50) is related to the phase transition from LiC24 to LiC12,
and the third plateau at ~0.08 V (x≥ 0.55) corresponds to the phase transition from LiC12 to
LiC6. Finally, the calculated diffusion coefficient values from the galvanostatic intermittent
titration technique were in the range of 1 × 10−11 cm2/s to 4 × 10−10 cm2/s, showing fair
agreement with previous results obtained using electrochemical impedance spectroscopy.
We believe that once reversible electrochemical intercalation/deintercalation conditions are
established, the galvanostatic intermittent titration technique can be universally applied as
a powerful tool to determine the ion diffusion coefficients of graphite-based electrodes.
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